Disorders

- Tumors: growth of non-functional cells
 - **Benign**: cells grow within their own membrane - clear boundaries
 - Can usually be removed surgically
 - **Malignant**: no "border" between cell and tissue
 - Infiltrating tumor, cancerous - among healthy cells
 - **Metastatic** tumor: cells coming from malignant tumors in other organs that reach the brain and develop
 - i.e. lungs
 - Damage is caused by compression or infiltration
 - Compression takes space and compresses brain
 - Infiltration is cancerous tissue going into healthy brain - occupies space and takes other nutrients from organ area

Tumors
Because neurons cannot divide, they are not responsible for tumors.

Gliomas: malignant - can be removed surgically and with radiation (originate in the brain)
 - Glial cells are actually responsible for tumors
 - Can have tumors wherever there are glial cells

Meningiomas: from dura mater; benign
- Malignant, benign → compression
- Malignant → take-up space, use-up oxygen/glucose, destroy cells

Neurological Disorders

Seizure disorders: uncontrollable spread of neural activity (excitatory) - sometimes leads to convulsions
 - Recurring seizures = **epilepsy**

2 types of seizures
 - **Partial** (focal + remain local)
 - Partial seizures can be simple (no loss of consciousness) or complex
 - Usually occur in the same spot for many patients
 - **Generalized seizures**
 - Activity everywhere in the brain

Main Seizure Types

- **Grand mal:** generalized seizure with convulsions
- Different stages of seizures
 - **Aura** (perceptual phenomenon); few seconds → tonic phase (rigidity, loss of consciousness)
 - ~15 sec → **Clonic** phase (convulsion fast → slow; stop breathing; increase in inhibition) → Sleep/coma
- **Petit mal:** absence seizures (generalized, complex)
 - Stop of activity (~secs), unconscious
• Treatment includes neurotransmitter GABA
 ○ Inhibitory

Seizures
• Epilepsy = repeated seizures
• Primary damage in the temporal lobes
 ○ Hippocampus, amygdala
• Status epilepticus = repeated complex seizures without regaining consciousness
 ○ State of permanent seizures without coming back for a long while
• Neural substrate: hippocampus, among others
 ○ Hippocampus is one of the most interconnect areas in the brain
 ▪ High density - high density brain areas at more risk than others
 ○ Excitotoxicity: neuron death because of too much excitation through NMDA channels

• Treatments:
 ○ Anticonvulsants (benzodiazepines, barbituates)
 ○ Surgery (side effects: remember H.M)
 ○ Vagus nerve stimulation (partial seizures)
 ▪ Designed to prevent seizures by sending regular, mild pulses of electrical energy in the brain via the Vagus nerve
 ▪ VNS device

Disorders: Cerebrovascular Accidents
• Issues with blood vessels in the brain
 ○ Figure 14.5
• Stroke:
 ○ .5 million strokes per year - age related
 ○ Hemorrhagic: bleeding in the brain
 ○ Obstructive: blood clot --> ischemia (loss of blood flow) --> hypoxia (loss of oxygen) --> shortage of oxygen
 ▪ Prevented with aspirin (dilates blood vessels - increase blood vessel size)
 ○ 2 types of obstructive strokes:
 ▪ Thrombus --> blood clot that grows on the vessel wall and can get bacterial infections
 ▪ Embolus --> grows somewhere else and tries to go through blood vessel, blocks it (clump of dead cells) - risk of bacterial infection

Stroke
• Strokes produce permanent brain damage

• Can be prevented:
 - Medications to reduce blood pressure
 - If have vessels that are susceptible to breaking
 - Brain surgery (on vasculature)
 - Antibiotics (embolus and bacterial infections)
 - Anticoagulants (prevent blood clot up to 9 hours after stroke)
 - i.e DSPA (Desmoteplase - prevents blood clot after several hours)

Causes of Stroke

• Plaques - Atherosclerosis: buildup of material on walls of blood vessels
 - Cholesterol, calcium deposits
 - Detected by angiography
 - i.e x-ray of blood circulation
 - Treated by surgery
- Plaque removal (cleaning of blood vessel)
- Stent
- **Stent**: use for obstructive stroke
- Refer to figure 14.7 above
- Rehabilitation after stroke: therapies depend on the type of brain damage (speech, motor impairments, ...)
 - Case of limb movement impairment
 - **Constraint-Induced Therapy**: inducing brain plasticity by artificially "amputating"/restricting movement of good limb - forces use of impaired limb
 - **Brain-Machine Interface**: linking neural activity to an external device
 - Perception: artificial device
 - Motor: artificial hand/arm

Developmental Disorders
- Generally induced by viruses or drugs
- Result in nonviability or mental retardation

Fetal alcohol syndrome: affects axonal growth and synaptic plasticity (i.e LTP/LTD)
- Low doses of alcohol during pregnancy are sufficient
- Inherited metabolic disorders: deficiency in the production of an enzyme - genetic bases
 - PKU (Phenylketonuria): deficit in phenylalanine --> tyrosine conversion
 - Lack of myelination
 - Mental retardation if untreated
 - Detectable at birth
 - Preventable by appropriate diet (low protein diet)
 - Lack of vitamin B6: damage to thalamus and cerebellum
 - Lack of (milk) glucose metabolism (Galactosemia): damage to cerebellum
 - Tay-Sachs disease: inability to breakdown cellular waste products
 - Accumulation of waste, brain swelling, death
 - Eastern European Jewish population
 - There is a retinal diagnosis
- **Down syndrome**: congenital (born with)
 - 1/700 children >350,000 people in U.S
 - Extra chromosome 21 in mother's ovum
 - Over expression of genes
 - Can be detected before birth
 - 10% less brain - less neurons in frontal lobe and Sup Temp Gyrus (Wernicke's area)
 - Mild to severe mental retardation
 - Can learn to have almost normal lives
 - No cure
 - Research: focused on avoiding associated diseases (heart condition, epilepsy, hearing/vision deficits
 - Study gene over-expression pattern