The Neurotransmitters

Principles of Psychopharmacology

• Psychopharmacology
 ◦ study of the effects of a drug on behavior

• Pharmacokinetics
 ◦ study of the 'fate' or 'movement' of substances administered to the body
 ▪ administration
 ▪ absorption
 • entering the body, or a body compartment (brain)
 ▪ distribution
 • being carried to specific target organs (blood)
 ▪ metabolism
 • being broken down by enzymes
 ▪ excretion

Routes of Administration

• Intravenous
 ◦ fast, precise, direct access to the brain
 ▪ drugs of abuse (heroin), adrenaline

• Intraperitoneal (abdomen)
 ◦ fast, indirect access to the brain
 ▪ chemotherapy

• Intramuscular
 ◦ slower (capillaries), direct access
 ▪ vaccines, antibiotics

• Subcutaneous (skin)
 ◦ slow absorption (fat tissue), indirect
 ▪ insulin

• Oral
 ◦ easy, delayed (has to go through the stomach/intestines and liver)
 ▪ aspirin

• Sublingual (under the tongue)
 ◦ easy (for humans), bypasses digestive system, capillaries of the tongue
 ▪ steroids, cardiovascular (hypertension, vasodilator)

• Intrarectal
 ◦ slow, bypass the stomach
 ▪ suppositories

• Inhalation
 ◦ fast, easy, requires volatile substances
 ▪ nasal, decongestant, drugs of abuse, asthma

• Topical administration
 ◦ fast, local (skin, mucous)
 ▪ nasal, eye (herpes, glaucoma) and ear drops

• Intracerebral
 ◦ bypass the Blood Brain Barrier, local (specific brain area), mostly research

• Intra(Cerebro)Ventricular
 ◦ bypass the BBB, global effect, emergency

• FDA considers 111 routes of administration as valid
 ◦ epidural, intracardiac, transdermal
Kinetics of Absorption
- Study of the effects on some specific brain areas, movement through the BBB
- Lipid-soluble (e.g. heroin) substances pass the BBB, water-soluble substances (e.g. morphine) do not

Effectiveness
- Dose-Response curve
 - if the effect was proportional to the amount of drugs: linear curve
 - most drugs are non-linear
- Affinity and sites of actions
 - drugs may have the same end-results, but may vary in effectiveness/sites of action
 - different sites of action
 - morphine
 - analgesic: inhibits pain-perception neurons
 - aspirin
 - suppress 'chemical signal' from damaged cells to the nervous system
 - different affinity (strength of the binding)
 - drug binds to receptors

Margin of Safety
- Drugs have multiple effects at different concentrations
 - morphine

Therapeutic Index
- Measure of drug safety, overdose danger
 - LD50/ED50
 - lethal dose for 50% of the animals
 - effective dose for 50% of the animals
 - high TI is 'better', risk of overdose is smaller
 - valium (tranquilizer, anxiety reducer)
 - TI = 100
 - barbiturate (anesthesia, anticonvulsant)
 - TI = 3

Drug Misuse/Abuse
- What kinds of long term effects do drugs have
 - effect decreases with repeated (prolonged) use
 - tolerance: need more drugs, compensatory mechanism counteracting the effect of a drug
 - decrease in affinity, decrease in receptor numbers
 - withdrawal symptoms
 - compensatory mechanism alone
 - opposite behavioral/emotional effects
 - euphoric drug withdrawal causes depression
 - effect increases with repeated use: sensitization
 - antidepressants: need time to be effective
 - effect can be psychological: placebo effect
 - used mainly in research
 - control for anxiety (human)
control for the effect of drug administration (animals)
• drug reinforcing effect depends on environment
 ‣ nicotine and cues
• rat experiments find nicotine reinforcement to be low alone
• with combination of nicotine and visual cues, rate of nicotine use increases
 ‣ other smokers around for humans, environmental cues

How do Drugs Work?
• Agonists
 ‣ an agonist has the same postsynaptic effects as a particular neurotransmitter (it opens/closes receptors)
• Antagonists
 ‣ an agonist opposes or inhibits the effects of a particular neurotransmitter
• Competitive binding
 ‣ direct agonist/antagonist competes with neurotransmitters
• Noncompetitive binding
 ‣ indirect agonist/antagonist does not compete with neurotransmitters
• Drugs can interfere with reuptake and degradation

Neurotransmitters
• Goal of neurotransmitter release
 ‣ postsynaptic potentials (EPSP/IPSP)
• Transmitter ID card
 ‣ pathway of release
 ‣ receptors
 ‣ disease/behavior and action of prescription drugs
• The main families of neurotransmitters
 ‣ Amino acids
 ‣ Glutamate
 ‣ GABA
 ‣ Glycine
 ‣ Acetylcholine (ACh)
 ‣ Monoamines
 ‣ Catecholamines
 ‣ Dopamine
 ‣ Norepinephrine
 ‣ Epinephrine
 ‣ Serotonin
 ‣ Histamine
 ‣ Neuropeptides
 ‣ other (lipids, nucleosides, soluble gases)
Amino Acids

Glutamate (Glu, Glutamic acid)
- believed to be the first neurotransmitters to have evolved
- synthesis
 - from proteins in food
- found where
 - everywhere in the CNS
- receptors
 - always excitatory
 - ionotropic for Na+ (AMPA, Kainate)
 - ionotropic for Na+ and Ca2+ (NMDA)
 - metabotropic glutamate receptor
- psychopharmacology
 - NMDA involved in learning and memory
 - AP5 blocks the glutamate binding site on NMDA receptors (antagonist)
 - alcohol blocks NMDA receptors (antagonist)
 - PCP (angel dust) blocks NMDA and blocks calcium entry in the cell
 - hallucination and aggression, animal models for schizophrenia
 - too much glutamate binding results in **excito-toxicity** (cell death)

GABA
- synthesis
 - from Glutamate
- found where
 - everywhere in the CNS
- receptors
 - always inhibitory
 - ionotropic for Cl- (GABAa)
 - metabotropic for K+ (GABAb), exists presynaptically (autoreceptor)
- psychopharmacology
 - controls spread of excitation (epilepsy, seizures)
 - Muscimol opens, and Bicuculline blocks GABAa
 - Benzodiazepines (anxiolytics, sleep promoters, seizure reducers) open GABAa
 - valium= Diazepam, Librium
 - GABAa is blocked by picrotoxin (convulsions)
 - Barbiturates (low doses= anesthesia, higher dose = respiratory arrest, low TI) open GABAa
 - Gamma-HydroxyButyrate (GHB, 'date rape drug'), GABA agonist

Glycine
- synthesis
 - found in sugar cane
 - endogenous production unknown, non essential (can be synthesized by the body, no need for external source)
- found where
 - mainly spinal cord
- receptors
 - always inhibitory
 - ionotropic for Cl-
- psychopharmacology
 - prevents excessive muscle contraction
 - Tetanus: bacteria produces a chemical that blocks Glycine release
 - Strychnine blocks the Glycine receptor (convulsions and death), used for animal control