Neurors

- Functional Classes: Central nervous system (NS) + Peripheral NS
 - Sensory neurons (collect internal and external information)
 - Motor neurons (control muscles)
 - Other (interneurons)

- Morphology (what it looks like)
 - Neurons fall into several morphological classes (shapes).
 - The study of neuron shapes is called neuro anatomy
 - In some cases, the shape of a neuron is indicative of its function

- 3 basic shapes
 - How many branches are coming out of cell body
 - Unipolar neurons, Bipolar neurons
 - Sensory neurons: External or internal stimuli -> brain
 - Motor neurons: Brain -> muscles, glands

- Multipolar neurons
 - Information is “summed” at the soma, from all the dendrites. It is then sent away on the axon
• Nerve = bundles of axons

• Synapses
 o Neurons ‘talk’ to each other through synapses
 o The synapse is a ‘place’ not an ‘object’
 o Circuit diagram

• Inside a multipolar neuron
 o Cytoskeleton: ensemble of microtubules and other proteins that together produce the shape of the neuron

• The neurons
 o Neurons support many functions: Perception, action, thinking, emotion...
 o Neurons need to be ‘taken care of’ throughout the nervous system
 o NeuroAtatomy: how the neurons ‘look’
 o NeuroPhysiology: How the neurons ‘work’
○ Neurons are electrical devices

● The Glial cells: 5 times more than neurons
 ○ 3 basic types
 ■ Astrocytes
 ● ‘City workers’
 ● Buffers for chemical substances
 ● Structural support
 ● Cleanup (phagocytosis)
 ● Nourishment: e.g. lactate
 ● Active interface between blood vessels and neurons
 ■ Oligodendrocytes (CNS): Myelination
 ● These are destroyed in MS Patients (Multiple Sclerosis)
 ■ Schwann cells (PNS)
 ● Microglia
 ● Smallest of glial cells
 ● Phagocytes (motile)
- Members of the immune system, in the brain (like macrophages in the blood).
- Are activated during inflammatory reactions due to brain damage (alzheimer’s)

- **Blood-Brain Barrier**
 - Neurons need to be protected from blood
 - Selective permeability
 - Active transport (e.g. glucose)
 - Exception: Area Postrema in the brain: control of vomiting

- **Inside vs Outside**
 - Difference of electrical potential between the ‘inside’ of a neuron (cytoplasm) and the ‘outside’ (extracellular space)
 - Has energy at rest

- **The resting membrane potential**
 - 2 forces
 - Diffusion: from high concentration... to low concentration
 - Electrostatic pressure: same charges repel

- **Keeping sodium out**
 - sodium-potassium pump (a.k.a. transporter)
 - Keeps sodium out, gets potassium in

- **Membrane potential: departure from rest**
 - Hyperpolarization:
 - Membrane potential goes more negative
 - Depolarization:
 - membrane potential goes more positive

- **Action potential**
○ Study membrane potential change: need to stimulate
 ■ Stimulator: deliver precise stimulation

- Voltage dependent Ion channels
 ○ Ions move in/out of the cell through ion channels
 ○ Ion channels open when the membrane depolarizes enough
 ○ K+ channels are a bit slower than the Na+ channels
 ○ Na+ in -> depolarize
 ○ K+ out -> hyperpolarize