Human sexual behavior
- What makes sexual behaviors different between adult males and females?
- Hypothesis: activation effect of hormones during development
 - Females
 - Rats: hormones (estradiol and progesterone) control the behavior and the motivation
 - Primates: hormones do not control the behavior, but perhaps the motivation
 - Female motivation: initiation is highest when estradiol is high.
 - In primates: corresponds to period of high male selectivity
- Males
 - Key hormone: testosterone
 - Testosterone controls both the physiology (sperm production, erection) and motivation (initiation, overall interest).
 - GnRH blocker men > loose sperm / erection + loose sexual interest
 - GnRH blocker in monkeys > loss depends on rank (pervious experience. Low ranking have largest loss).
 - Testosterone: linked with aggression
 - Levels increase with psychological anticipation
 - Levels decrease with age

Sexual orientation
- Sexual orientation: gendered of preferred sexual partner
- There are more preferences: monogamy, polygamy, age,...
- Dependence on developmental vs genetic factors relating to orientation
 - In some cases, sexual orientation can be explained by prenatal exposure to androgens and genetic factors
- Genetic females
 - CAH (congenital adrenal hyperplasia): excess androgens prenatally
 - Mild physical effects - enlarged clitoris
 - Increased likelihood for homosexual preference
 - Increased likelihood for male behaviors (ex: what toys are used)
 - Sexually dimorphic behaviors
- Genetic males
 - Failure of androgenization: androgen insensitivity syndrome (AIS)
 - XY looking female
 - Internal testes produce testosterone (but there are no receptors)
 - Production of estrogens (small amounts) produce feminization
 - Normal female sex lives / behaviors
 - XY genes not sufficient for heterosexual behaviors. Lack of androgens likely to result in homosexual behaviors (but not necessary)
- Genetic factors
 - Twin studies: significantly more monozygotic (identical) twins are both homosexual when compared to fraternal twins
 - Genetic component for both male and female homosexual orientation
 - There are sexual dimorphisms in the brain, but they do not explain sexual orientation
- Brain differences
 - Men vs women: corpus callosum + few other areas (including hypothalamus)
 - Hetero vs homo sexual: inconclusive (or to the very least: indirect)
- Do animals show homosexual behaviors? Yes
- Homosexual behaviors vs. being homosexual
500-1500 species exhibit homosexual behaviors
- Homosexual behaviors for dominance
 - Chimps, bonobos
- Homosexual behavior for bonding

Neural control for sexual behavior
- **Males**
 - Medial preoptic area: evidence from recordings, stimulation and lesion studies
 - MPA
 - Sexually dimorphic nucleus of MPA: androgen-induces enlargement in males
 - SDN of MPA

![Neural Control Diagram]

- If spinal cord is inhibited, PGi is activated?
- Constant inhibition of PGi for no sexual behavior
- Serotonin related

- Mostly inhibitory pathway. Normal behavior: PGi needs to be constantly inhibited
- PAG (PeriAqueductal Gray) - midbrain, PAG: erection), nuclue
- ParaGigantoCellularis (medulla, PGi: ejaculation)
- SSRIs (antidepressants) decrease male sexual behaviors

Male Sexual behavior
- The amygdala receives sensory inputs, and inputs indicative of sexual behavior (info about stimuli and performance of sexual behavior)
- The amygdala sends its outposts to the MPA (emotional control of sexual behavior)

Neural Control of Sexual Behavior
- **Females**
 - Ventro medial nucleus of the hypothalamus: lesions and stimulation studies
 - Estradiol and progesterone (in rats) act in VMH

![Female Neural Control Diagram]
• Most excitatory pathway. Normal behavior: PGi needs to be exited
• PAG active in females sexual behavior (orgasms in scanner)
• As in males, sensory inputs converge in the amygdala, and the amygdala influences female sexual behavior (VMH)

Neural control of bonding
• 5-7% mammalian species are monogamous
• Prairie voles monogamous. Meadow voles are polygamous
• In voles: monogamy = high levels of oxytocin (females) and vasopressin (males)
• In human: oxytocin increases trust. involved in empathy

Parenting behavior
• Ex: rat milk production equiv: 2 gallons mill/day. Urine recycling and fluid exchange between mother and pups.
• Chemical signals from pup to mothers.
• Hormones and maternal behaviors
 • Rats: prolactin (maternal behavior), oxytocin (maternal bonding).
 • Humans: Postpartum Depression affects 13% of women
• Neural structures and parenting behaviors
 • MPA: lesion studies affect maternal but not sexual behaviors
 • MPA, oxytocin and prolactin also involved in paternal behaviors

Practice quiz
• Estradiol is an androgen: **FALSE**
 • Testosterone is!
• The vomeronasal organ is involved in vomiting: **FALSE**
 • Involved in pheromones
• The MPA is involved in
 • Male sexual behaviors
 • Maternal behaviors
 • Paternal behaviors
 • **ALL of the above**