The Traveling salesrat: Insights into optimal spatial navigation and the role of the dopaminergic system.

Laurel Watkins de Jong², Gerard M. Martin², Jean-Marc Fellous ${ }^{3}$
Undergraduate Biology Research Program (UBRP), Univ. of Arizona, Tucson, AZ ${ }^{2}$ Dept. of Psychology, Memorial University, CA³. Dept of Psychology and program in applied Mathematics, Univ. of Arizona, Tucson, AZ.
679.22

Introduction

- The traveling salesman problem is a classic problem in artificial intelligence and theoretical computer science in which an agent has to plan visits to a fixed set of cities. It can be solved by calculating the total distance traveled for every possible tour and sorting the solutions. Finding the best solution is computationally expensive (NP-complete problem) because each city added increases the complexity of the problem exponentially. - Heuristic methods allow humans to find near optimal solutions. - Understanding the neural mechanisms underlying these heuristic processes can give insights into how complex choices are made. - We propose a rodent model to investigate problem solving strategies at both behavioral and neural levels. - We study how rats use a combination of spatial and reward information to optimize their decisions.

Methods

Influence of initial orientation in cases of ambiguous choices

Rats were randomly started at
eight angles $0,0,30,90,120$,
 Rats were allowe
only one city.

Re-optimization due to modification of reward contingencies

$\underset{\substack{\text { Renad } \\ \text { Rorass }}}{ }$
Trials continued until rat was
able to ore-optimize its path

Re-Optimization because of reward removal Re-optimization of path after a reward is removed from a learned location

$$
\underbrace{2}
$$

$$
\int_{T 11}^{x^{\text {Reward Removed }}} 5
$$

Conclusions

-The ability of rats to optimize their path based on reward contingencies sugg
that reinforcement my contribute to the rats' ability to shift their strategy
towards the optimal path towards the optimal path

- This shift is likely to depend at least in part on the interaction between brat
structures that are involved in reward processing (VTA), spatial navigation (hippocampus) and planning (prefrontal cortex).
-Route optimization occurs within a configuration, not over sessions, which suggests that this task involves planning and short term memory, not long term
memory. -Rats will choose the optimal spatial or reward solution if presented separately this choice is made more decisively with training. When both reward and spatial options are presented together, rat wili shift strategy from reward to
spatial optimization with training.

Unlike in most TSP problems, spatial choice is biased by the current
position and orientation of the rat -Rats are able re-optimize whe eward contingencies are changed.

-Optimization based on reward
availability and quantity suggests involvement of quantity suggests the entral tegmental area (VTA)

References

pplegate, D., Bixby, R, Chviatal V., etal. (2006) The Traveling Salesman Problem: A Compotational
 problem? Behavioural Brain Research. 52 2 133-142.

Acknowledgments

