
1Summary

• We present experimental evidence for three cholinergically-
induced oscillatory regimes in the hippocampal slice. 
Frequencies are within the ‘delta’ (.5-2Hz), ‘theta’ (5-10Hz)
and ‘gamma’ (40-70Hz) bands, and depend on the 
concentration of the neuromodulator (carbachol) applied.

• CCH-theta and CCH-delta are initiated in CA3 and depend 
essentially on AMPA receptor activation.

• CCH-theta involves the synchronous firing of CA3 
pyramidal cells, at most once per cycle, while the majority of 
CA3 interneurons fire tonically (at theta) in a non-
synchronized manner.



2Summary

• Low concentrations of neuromodulator result in CCH-delta; 
large CA3 regular population discharges that entrain CA1.

• APV (10 µM) reversibly turns the CA1 CCH-theta rhythm 
into CCH-delta.

• At medium concentrations, repeated stimulation of the 
Schaeffer collaterals result in CCH-gamma ripples in CA1. 
Spontaneous CCH-gamma epochs may occur in isolation, or 
combined with CCH-theta and CCH-delta rhythms.

• CCH-theta and CCH-delta are present simultaneously in the 
longitudinal CA3 slice. 
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4Theta Reset

Schaeffer stimulation resets ongoing theta episodes.
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5Subthreshold CCH-theta in CA3 at low CCH
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6Synchronous CA3 discharges at high CCH
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7Some CA3 interneurons are tonically active
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8But are not synchronous with field events
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9Three CCH levels, three rhythms
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10CCH-delta in CA1
8 
µM

C
C

H

200 µV 



11CA1 is preferentially recruited by CCH-delta
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12But not necessarily by CCH-theta

Class III (McMahon et al. 1998)

100 µV / 20 mv

25
 µ

M
C

C
H



13Excitatory Transmission in CA1

CNQX reversibly blocks CCH-induced theta.
Low concentrations of APV (<10µM) reversibly turns CCH-theta into CCH-delta.
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14CCH-Gamma
8-25µM CCH

Ev
ok

ed
Sp

on
ta

ne
ou

s

500 µV

100 µV

100 µV

(Fisahn et al. 1998)



15CCH-gamma in CA1 and CA3
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16Longitudinal Slice

• In longitudinal slices, both CCH-theta and CCH-delta rhythms 
coexist, at CCH concentrations where they would not in transverse 
slices.

• CCH-theta oscillations are longer-lasting and more 
pronounced in longitudinal slices.
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• 3 cholinergically induced oscillations in the hippocampal 
slices: CCH-Delta (.5-2 Hz), CCH-Theta (5-10Hz) and 
CCH-Gamma (40-70Hz). 

• In vivo and in vitro delta, theta and gamma rhythms may be of different nature and 
involve the Septal inputs. Our results suggest that the hippocampus features a circuitry 
which is capable of ‘resonating’ at these three specific frequencies, depending on the level 
of cholinergic neuromodulation.

• The effect of various concentrations of 
carbachol on intrinsic and synaptic mechanisms 
has been studied ( Madison et al. 1987). 
Computational modeling is possible to understand 
and explain how different concentrations of 
Carbachol may induce 3 different spontaneous 
oscillatory modes in the same neural circuitry.



18Conclusions
• Computational roles ? Induction and reversal of LTP or LTD (Barr et al 1995; Huerta
Lisman 1995)? Synchronization (Cobb et al, 1995) ? Learning (Liljenstrom and Hasselmo
1995; Hasselmo et al 1996)?
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19Methods

We use young (20-30 days) Sprague-Dawley rats from which 400µm thick slices are 
obtained. Slices are submerged in ACSF (mM: NaCl, 124; NaH2CO3, 26; D-glucose, 10;
KCl, 5; CaCl2, 2; MgSO4, 2; NaH2PO4, 1.2) at 31-32 oC and perfused at constant flow 
(2ml/min). Field recordings are achieved using glass microelectrodes (ACSF filled, 300-400 
KΩ). Whole cell patch clamp is achieved using glass electrodes containing (4-10 MΩ : mM: 
KmeSO4, 140; Hepes, 10; NaCl, 4; EGTA, 0.1; Mg-ATP, 4; Mg-GTP, 0.3; Phosphocreatine
14). All drugs are freshly prepared in ACSF and bath applied. Stimulations are administred 
through a unipolar glass electrode, filled with ACSF, and placed in the Stratum Radiatum. 
Data are acquired with Labview, and analyzed with Matlab.
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