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The effects of multiple firing events on pattern stability in continuous attractor networks without lateral excitation
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Attractor networks without lateral excitation are stable 
across a broader range of excitatory timescales

With sufficiently fast excitatory synapses, bumps can still 
become unstable and wander

We propose a dynamical mechanism based on indirect I->I 
interactions and MFEs

On-going/future work:
Other relevant dynamical features, e.g.,  spatial voltage 
distibution
Quantitative analysis?  

Background/Motivation: 

·Continuous attractor networks have been used to model 
persistent neural activity in several contexts - e.g. 
working memory, head direction cells, and grid cells  

·Networks form “bumps” in 1-D and ”grids” in 2-D

·Synchrony induced by lateral excitation has been shown 
to adversely affect the stability of patterns in continuous 
attractor networks [1]

· Transient, local synchrony can emerge through brief, 
rapid firing cascades known as Multiple Firing Events 
(MFEs) [6]

·Experiments suggest that some systems (head direction 
cells, grid cells) can be modeled by continuous attractor 
networks without lateral excitation [7,8]

Are attractor networks with no lateral 
excitation more stable? What factors 
affect their stability?

Goals:
· Compare the stability properties of spiking continuous 

attractor networks with and without lateral excitation 
· Determine the relationship between transient synchrony 

and pattern (”bump”) stability in networks without lateral 
excitation

· Develop a mechanistic understanding of synchrony and 
pattern stability, in terms of MFEs
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Bumps in networks without lateral excitation remain stable
across a broader range of excitatory synaptic timescales:

Neuron model 

Network structure

Stable bumps can form in both types of network architectures:

Stability of activity patterns: Dynamical mechanisms?

MFEs become more prominent with fast synapses,
 also affected by input rates:

First, some observations:

Sufficent amount of fast E-I synapses can still destabilize
pattern, leading to bump drift  

Higher input rates re-stabilize the bump

1-D lattice with periodic
boundary conditions

Spatially structured 
connectivity

Excitatory
Layer

Ne = 500

Inhibitory
Layer

Ni = 500

Poisson drive to 
whole network

Comparison of architectures

No Lateral Excitation Network:

E I

EI

II

E E
0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 300 400 500

Center-Surround (”Mexican Hat”) Network:

Proportion of AMPA

M
F

E
 m

e
a
su

re

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

D
if
fu

s
io

n
 C

o
e

ff
.

0.0 0.2 0.4 0.6 0.8 1.0
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Input Rate (kHz)
0.8 1.0 1.2 1.4 1.6

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.8 1.0 1.2 1.4 1.6
-2

0

2

4

6

8

10

12

M
F

E
 m

e
a
su

reInput rate = 1.7 kHz

Bump drift is
associated with

synchrony
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Proposed mechanism:

Ingredient 1: indirect I-I interaction

Ingredient 2: Multiple firing events (MFEs)

Expected consequences: 
1. Larger MFEs -> more drift
2. Lots of (smaller) MFEs, e.g., at high input rates, average out -> less drift 
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Bumps drift more with faster synapses, less at higher input rates:

MFEs are correlated with bump drift:

MFE measure

Data obtained by varying 
AMPA/NMDA ratio

MFE measure
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Measuring 
synchrony:

1. Bin all spikes in 
time (2.5 ms bins)

2. Compute variance 
of histogram

3. Divide by 
expected variance 
assuming ind. 
Poisson trains
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Voltage Distributions
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