The effects of multiple firing events on pattern stability in continuous attractor networks without lateral excitation

1 Program in Applied Mathematics, University of Arizona, Tucson AZ - 2 Department of Psychology, University of Arizona, Tucson AZ - 2 4 Department of Computer Science and Engineering, University of South Florida, Tampa FL

Introduction

Background/Motivation:

- Continuous attractor networks have been used to model persistent neural activity in several contexts - e.g. working memory, head direction cells, and grid cells
- Networks form "bumps" in 1-D and "grids" in 2-D
- Synchrony induced by lateral excitation has been shown to adversely affect the stability of patterns in continuous attractor networks [1]
- Transient, local synchrony can emerge through brief, rapid firing cascades known as Multiple Firing Events (MFEs) [6]
- Experiments suggest that some systems (head direction) cells, grid cells) can be modeled by continuous attractor networks without lateral excitation [7,8]

Are attractor networks with no lateral excitation more stable? What factors affect their stability?

Goals:

- Compare the stability properties of spiking continuous attractor networks with and without lateral excitation
- Determine the relationship between transient synchrony and pattern ("bump") stability in networks without lateral excitation
- Develop a mechanistic understanding of synchrony and pattern stability, in terms of MFEs

Mode

Neuron model

boundary conditions

Spatially structured connectivity

Bumps in networks without lateral excitation remain stable across a broader range of excitatory synaptic timescales:

Sufficent amount of fast E-I synapses can still destabilize pattern, leading to bump drift

2. Compute variance of histogram

Results

Stability of activity patterns:

Stable bumps can form in both types of network architectures:

Stable bump w/o lateral excitation (100% NMDA)

Stable bump in center-surround network (100% NMDA)

10 s

10 s

Higher input rates re-stabilize the bump

Input rate = 0.9 kHz

Bump drift is associated with synchrony

Measuring synchrony:

I. Bin all spikes in time (2.5 ms bins)

3. Divide by expected variance assuming ind. **Poisson trains**

200 ms

100% NMDA

200 ms

David Lyttle¹, Alfredo Weitzenfeld⁴, Jean-Marc Fellous^{1,3} and Kevin K Lin^{1,2}

