A Ventral hippocampus inactivation impairs goal-directed spatial navigation in obstacle-laden environments
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1. Introduction Computational Modeling 4. HP inactivation did not produce any motor impairment 6. Computational model
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hippocampus is involved in emotional and motivational - Ventral HIPC s strongly connected to the value estimation portion of the AC DH DH made and a significant
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spatial navigation (3,4,5,6). _— 47 Q
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hippocampus are differentially involved in trajectory planning Action Selecition Nl
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When an obstacle is put into a normal cell's field, its firing is negatively O 20 n 1
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- We used a |eaming task in which animals memorize the modulated (11,12) by a sigmoid function m() of the distance to the obstacle, as = ®)
. . shown in the following equations, where dtco is the distance to the closest g T
location of a set of rewarded feeders, and recall these locations obstacle. =
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Small obtacles 5. Dorsal and Ventral Hippocampal inactivation impaired spatial
Animals Feeder - performance in complex environments
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» Male rats, 7-8 months old. 7. Conclusions
« Bilateral lae in d I tral hi .
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: a b C impairments in both small and large obstacles conditions.
Behavioral Apparatus _ _ Dorsal inactivation had less effect than ventral inactivation on
. Open field arena with 8 equally spaced feeders 3. Behavioral performance (recall without obstacles) . Dorsal recall with large obstacles.
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containing sugar water. PPOCEMpES - These deficits were not due to impairments in recalling reward
locations, therefore suggesting that they were due to
Set 1 Set 2 impairments in spatial navigation computations in the face of

Memory ltem= Set: 1,4,6 obstacles.

(in no particular order)

Ventral

Hippocampus - These results show that the ventral hippocampus supports goal-

directed spatial navigation in complex environments.
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- Our reinforcement learning model of navigation showed that the

Large Obstacles Small Obstacles iInactivation of both ventral and dorsal hippocampus can disrupt
navigation in the presence of small obstacles while ventral

inactivation alone produced significantly more impairments. Our

» Obstacles: Lego blocks

Hippocampus Inactivation
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100 20 - Future work will involve electrophysiological recordings in VH and
—~ 100 DH and the implementation of the model on a mobile robot
£ 50 0 10 presented with realistic and noisy navigational challenges.
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