
There is substantially increased interest in 
the sources and impact of stochastic biologi-
cal noise in the nervous system, stemming 
both from new experimental methods for 
identifying it and from a growing body of 
modelling work demonstrating its functional 
consequences. Recent reviews have defined 
noise in terms of variability that results from 
“random or unpredictable fluctuations and 
disturbances”1, and they describe stochastic 
resonance as one example of the potential 
benefits of noise1,2. Here, we take a closer 
look at the divergence between experimen-
tal and theoretical approaches to studying 
stochastic resonance. We propose a unify-
ing framework that reconciles these two 
approaches and advocate the use of the term 
‘stochastic facilitation’ to describe all biologi-
cally relevant noise benefits in the nervous 
system, including stochastic resonance.

The term ‘stochastic resonance’ was 
introduced in the early 1980s in the statisti-
cal physics community3–5. Within this field, 
the term has a very specific definition — in 
this article it is referred to as classical sto-
chastic resonance. In this paradigm, the 
presence of a weak periodic input to a non- 
linear dynamical system cannot be inferred 
from the response of the system in the 
absence of noise (FIG. 1a). Classical stochastic 

resonance is observed when the presence 
of additive noise allows the input signal to 
be detected based on a calculation of the 
output signal-to-noise ratio from the spec-
tral content (power spectral density) of the 
response. Typically, the signal-to-noise ratio 
exhibits a single peak as the power of the 
noise is varied. By the mid 1990s, however, 
the concept had spread to many other scien-
tific fields and the definition had broadened 
considerably6. 

The last decade has seen a growing body 
of experimental and biologically detailed 
modelling work on stochastic resonance 
in the neurosciences7–15, but we are of the 
opinion that because these approaches typi-
cally focus on classical stochastic resonance, 
they have not yet been fully reconciled with 
advances in theoretical work. Increased 
understanding of the functional roles of 
noise in in vivo neural information pro-
cessing will require new experiments to be 
developed in close conjunction with new 
theoretical approaches. Although these new 
approaches should be liberated from the 
classical description of stochastic resonance, 
it is important that they are constrained by 
biologically appropriate modelling.

Theoretical work on stochastic resonance, 
whether classical or otherwise, has rarely 

diverged from the statistical physics dis-
course3–6,16–20. As a result, an abstract model 
is chosen and stochastic resonance is said to 
be observed with respect to an output of the 
model if its statistical signal processing per-
formance improves according to an arbitrary 
metric as various levels of stochastic noise 
are added6. This approach tends to neglect 
the biological appropriateness of key factors 
such as the signal, the noise, the model and 
the neural processing role of the system. The 
characteristics of the system’s processing21–23 
(for example, encoding, transforming,  
feedback inhibition, coincidence detection 
and gain control) should inform the choice 
of models and metrics to help to ensure that 
any theoretical enhancement of performance 
does convey true benefits in biological terms. 

Systemic failure to consider biological 
appropriateness and broader definitions of 
stochastic resonance highlights the impor-
tance of two-way dialogue between theoreti-
cians and experimentalists. Stochastic noise 
is ubiquitous in neural systems1,2,24 and its 
potential roles in facilitating information 
processing deserve greater attention.

For progress to be achieved in this field, 
however, the dichotomous approaches of 
researchers with different backgrounds must 
be reconciled using a common approach. 
One obstacle has been historical semantic 
baggage, and we believe it is timely to advo-
cate using a new term, stochastic facilitation 
(FIG. 1b), as a descriptor for all research into 
the constructive roles of biologically relevant 
noise in the nervous system, including  
stochastic resonance — see below and FIG. 2.

We also propose a unified framework 
for studying stochastic facilitation in future 
experimental and modelling approaches. 
This framework emphasizes the importance 
of beginning every study with a concrete 

O P I N I O N

The benefits of noise in neural 
systems: bridging theory and 
experiment
Mark D. McDonnell and Lawrence M. Ward

Abstract | Although typically assumed to degrade performance, random 
fluctuations, or noise, can sometimes improve information processing in 
non-linear systems. One such form of ‘stochastic facilitation’, stochastic 
resonance, has been observed to enhance processing both in theoretical models 
of neural systems and in experimental neuroscience. However, the two 
approaches have yet to be fully reconciled. Understanding the diverse roles of 
noise in neural computation will require the design of experiments based on new 
theory and models, into which biologically appropriate experimental detail feeds 
back at various levels of abstraction.

we believe it is timely to 
advocate using a new term, 
stochastic facilitation, as a 
descriptor for all research 
into the constructive roles of 
biologically relevant noise in the 
nervous system

PERSPECTIVES

NATURE REVIEWS | NEUROSCIENCE  VOLUME 12 | JULY 2011 | 415

© 2011 Macmillan Publishers Limited. All rights reserved



and precise hypothesis regarding the com-
putational role of a specific neural system, 
thus encouraging divergence from classical 
stochastic resonance and simultaneously 
embracing biological appropriateness. We 

anticipate that an increased intersection 
between theoretical ideas and experimental 
approaches will lead to substantial progress 
in understanding the constructive roles of 
stochastic noise in the brain.

Why ‘stochastic facilitation’?
There are several reasons why we advocate 
the term stochastic facilitation. First, the 
term stochastic resonance is problematic in 
several ways. Pinpointing which phenomena 

Figure 1 | Classical Stochastic resonance versus stochastic facilita-
tion. a | The necessary conditions for classical stochastic resonance5. A 
weak periodic signal is assumed to be an input to a non-linear dynamical 
system, such that its presence cannot be inferred from the response of the 
system in the absence of noise. In many cases, the signal is labelled as ‘sub-
threshold’. Classical stochastic resonance is said to be observed when noise 
allows the input signal to be detected statistically, with the quality of that 
detection measured by output signal-to-noise ratio (SNR), based on the 
spectral content (power spectral density (PSD)) of the response4. Typically, 
the SNR exhibits a single peak as the power of the noise is varied. Non-
classical variations of stochastic resonance have discarded the require-
ments of periodic signals and SNR6, and weak subthreshold signals have 
been shown to be unnecessary for a simple network of neurons89.  
b | A six-step scheme for studying stochastic facilitation in neural systems. 
First, a hypothesis concerning the positive role of stochastic biological noise 
in facilitating signal processing or a computational task of a specified neural 
system is stated (step 1). Next, a neural preparation — or mathematical or 
computational model  — that can be stimulated by inputs relevant to the 
hypothesis and produce output responses that can be measured is specified 
(step 2). Then hypothesis-relevant input signals (if necessary for the hypoth-
esis) and noise that can be generated and introduced into, or deleted from, 

the experimental material or model are chosen (step 3). Once the input 
signals and noise (or its suppression) that are selected in step 3 are intro-
duced into the experimental rig or simulation of the model, the relevant 
output data are acquired (step 4) and processed (step 5). Finally, the hypoth-
esis from step 1 is assessed based on step 5 (step 6). In many past studies of 
neural-system stochastic resonance, these steps have been followed in a 
different sequence. Typically, the neural system was chosen for study and 
performance was measured by output SNR, as a function of noise power 
— which requires the signal to be periodic. Often the output was defined 
solely in terms of the times of action potentials, and the SNR was based on 
the output PSD of the resulting stochastic point process. Rather than first 
stating a hypothesis regarding a computational role, the choice of SNR as a 
metric imposed an implied hypothesis; that the computational role of the 
neural system is to produce a sequence of action potentials when a sinusoi-
dal input current at a specific frequency is introduced into the system and 
to produce a statistically distinct pattern of action potentials when it is 
absent. Moreover, the full computation, which is to determine if the noisy 
periodic signal is present, cannot be completed by the neural system. In the 
approach we advocate, the hypothesis of step 1 should instead be stated 
first and investigated using only relevant, biologically appropriate signals 
and metrics.
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should be labelled as stochastic resonance is 
not trivial because of the multiple evolving 
definitions in theoretical work6. Moreover, 
the word resonance is misleading, because 
in its broad sense, stochastic resonance 
describes a noise-induced peak in perfor-
mance that may have nothing to do with 
frequency resonance6. The term stochastic 
facilitation would remove this confusion and 
yet is sufficiently general to encompass all 
previous definitions of stochastic resonance 
and its qualitative essence.

Notwithstanding the above semantic 
issues, stochastic resonance stands apart 
from other identified constructive roles for 
noise in that all existing definitions require 
identification of an input signal and an out-
put signal6. This immediately associates the 
concept with notions of information pro-
cessing and computation, as in engineered 
signal processing systems. Consequently, 
stochastic resonance is often described as 
paradoxical or counter-intuitive, because in 
engineered electronic systems noise is natu-
rally seen to be only detrimental to quality. 
However, in a biological context, the effect 
is hardly counter-intuitive when thought of 
as the benefits of randomness, as with other 
constructive roles of noise in which inputs 
and outputs need not be readily identifiable6. 
As depicted in FIG. 2, the term stochastic 
facilitation encompasses all constructive 
roles for noise, including stochastic reso-
nance, and would no longer be associated 
with any paradoxes.

The most interesting unresolved scien-
tific questions about stochastic facilitation 
are those concerning whether, or when, 
biologically relevant noise is exploited to 
benefit neural systems, and if so, precisely 
how this occurs. Classical stochastic reso-
nance tends to focus on signal detection, but 
more broadly, stochastic resonance is con-
cerned with signal processing. With regard 
to the more general concept of stochastic 
facilitation, however, there are many pos-
sible choices for a computation that might be 
relevant to a neural system, and that do not 
necessarily require identification of an input 
signal or an output signal25.

Nonetheless, in this article we devote our 
attention to stochastic resonance as a spe-
cial case of stochastic facilitation in neural 
systems, in which input–output information 
processing is facilitated by random vari-
ability that originates from biological noise, 
although we acknowledge that randomness 
can, and does, play a facilitative part in many 
other areas of biology, such as foraging, 
evolution and learning. We do this to high-
light that although stochastic resonance has 

been reported in neurobiological experi-
ments8–12,14,15,26–49 (TABLE 1; see supplemen-
tary information S1 (table)) and models 
(TABLE 1 ; see supplementary information S2 
(table)), these studies have rarely embraced 
the much richer set of conditions that are 
allowed by broader theoretical definitions 
in combination with biologically appropri-
ate hypotheses, thus precluding the cross-
application of ideas and tools.

The need for computational hypotheses
Observation of stochastic facilitation in 
neural function first requires the identifica-
tion of a constructive computational role 
for endogenous biological noise. One goal 
of computational neuroscience is to deter-
mine the information processing proper-
ties of the nervous system50–55. Typical 
approaches describe functional and biologi-
cally realistic neurons (and neural systems) 
and generate formal models that capture 
the essential features of a biological system 
at multiple spatial and temporal scales. 
These computational models are used 
to frame hypotheses that can be directly 
tested by biological and/or psychological 
experiments.

The findings from classical stochastic 
resonance cannot be reconciled easily with 
this definition of computational neurosci-
ence. Experiments have often involved 
adding exogenous noise to neural systems, 
rather than aiming to control or reduce 
endogenous noise. Observed improve-
ments in performance due to exogenous 
noise do not provide evidence for in vivo 
stochastic facilitation. Many modelling 

studies have been published in the physics 
literature, as their purpose was to estab-
lish underlying principles, not to model 
specific existing systems. Often, the neural 
models that were used were not biologi-
cally appropriate in terms of their physiol-
ogy as the focus was often on simplified 
models for which mathematical tractabil-
ity was potentially feasible, thus allowing 
verification or prediction of simulation 
results. This has meant that aspects such 
as multiple-scales, neuron topology and 
geometry, the role of protein and chemical 
coupling, and network architecture have 
been largely excluded from study, as math-
ematical tractability is unlikely in these 
contexts. Although model simplification 
aids the examination of general hypotheses, 
the specification of a hypothesis and an 
associated conceptual model should ideally 
precede simplification of a mathematical or 
computational model56.

Crucially, because classical stochastic res-
onance mandates that performance must be 
measured using output signal-to-noise ratio, 
the question of a neural system’s function  
in the context of a framed hypothesis and an 
associated conceptual model concerning the 
nature of the computation, are aspects that 
have been conspicuously underdeveloped. 
Over 30 years ago, Marr and Poggio argued 
that computation in complex systems, such 
as the brain, must be understood at different 
levels of description50,57 — namely, the nature 
of a computation, algorithms and represen-
tations for performing the computation, 
and physical mechanisms that implement 
algorithms.

Figure 2 | The future of stochastic facilitation research. In the past, most research on stochastic 
resonance in neural systems has been at odds with biologically appropriate hypotheses and conditions 
such as the input signal and noise. Stochastic resonance has also been considered in isolation from 
other benefits of randomness that do not exhibit input–output processing. Our proposed definition 
of stochastic facilitation and unified framework would encompass stochastic resonance as a subset of 
all possible constructive roles for biologically appropriate noise in neuroscience, and all such research 
would be based on biologically appropriate computational hypotheses and conditions.
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The problem with defining stochastic 
resonance in terms of signal-to-noise ratio 
is that this implies the nature of the com-
putation — that a neural system encodes a 
periodic signal’s frequency in such a manner 

that spectral analysis is required to detect 
the presence of this frequency (FIG. 1a). This 
computation cannot, however, be fully 
implemented by the neural system, as its 
physical output does not represent the result 

of the computation. Additional mechanisms 
are required to achieve the computation by 
processing the neural output.

Our definition of stochastic facilitation  
allows for arbitrary computational 

Table 1 | Representative experimental and modelling studies of stochastic resonance (in chronological order)

Approach System, or level of 
organization

Technique, or 
level of detail *

Signal and noise Result‡ Function in vivo or 
proposed computation

Ref

Experimental 
studies

Shark multimodal 
sensory cell

Extracellular 
recording

Ramped temperature, 
and electrical current 
changes and intrinsic 
noise in neurons

Information-
transmitting spikes 
generated, allowing 
dual coding of 
temperature and 
electrical fields

Water temperature and 
depth sensing, and prey 
detection

28

Cricket cercal 
receptor — innervating 
interneurons

Intracellular 
recording

23-Hz sinusoidal and 
5–400-Hz broadband 
modulation of 
air current, and 
5–400-Hz white 
noise-modulated air 
currents

SNR (23-Hz signal) and 
mutual information 
(broadband signal) 
enhanced by noise

Predator avoidance 29

Human muscle spindle 
afferents in arm

Extracellular 
recording

0.5-Hz sinusoidal 
rotation of arm and 
random stretching of 
tendon

SNR of afferent firing 
at signal frequency 
enhanced by noise

Movement sensation 30

Whole human brain EEG 5-dB sensation level, 
1000-Hz and 500-Hz 
pure tones and 
broadband acoustic 
noise

Neural synchrony 
within (40-Hz 
transient response) 
and between (θ, α 
and γ frequency 
bands) brain regions 
enhanced by noise

Auditory processing 49

Modelling 
studies

Neuron Single 
compartment

Sinusoidal signal and 
Ornstein–Uhlenbeck 
noise process

Interspike interval 
histogram at period 
of forcing enhanced 
by noise

Transmit frequency of 
input signal

90

Molecules Not applicable Periodic signal and 
white noise

SNR maximized by 
noise

Ion channel signal 
transduction

80

Network Single 
compartment

Aperiodic random 
signal and 
Ornstein–Uhlenbeck 
d-correlated noise

Aperiodic stochastic 
resonance 
demonstrated by 
calculation of input–
output correlation 
coefficient

Sensory neuron encoding 
of input signal in spike 
train

91

Neuron Detailed 
compartmental

Simulated synaptic 
release for both signal 
(simultaneous) and 
noise (correlated)

SNR, interspike 
interval histogram 
and spectral power 
amplification 
enhanced by noise

Response to synaptic 
input events

7

Network Single 
compartment

Periodic pulse train 
signal and irregular 
spikes from CA3 
neuron models 

SNR of CA1 neurons 
enhanced by noise; 
stochastic resonance 
in CA1 neurons used 
to recall encoded 
pattern

Memory recall in 
hippocampus

88

Molecule and neuron Single 
compartment

Aperiodic random 
signal and a 
stochastic ion channel 
noise source 

Calculations of mutual 
information exhibited 
suprathreshold 
stochastic resonance

Estimation of a graded 
signal 

92,93 

Neuron Single 
compartment

20-Hz sinusoid; white 
noise

Noise enables phasic 
neurons to respond to 
low frequency inputs

Encode the instantaneous 
slope of an analogue input 
current into a spike rate

14

EEG, electroencephalography; SNR, signal-to-noise ratio. *‘Level of detail’ refers to models of individual neurons, or neurons within networks. ‡‘Noise’ in the Result 
column of this table refers to a non-zero but intermediate level of added or endogenous noise.
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hypotheses, but these would usually be tar-
geted at the level of physical mechanisms. It 
is likely that observations of stochastic facili-
tation in the brain can be explained in terms 
of the randomness arising from stochastic 
biological noise enabling the operation of 
a mechanism that implements a computa-
tional task. Clearly, there could be a diverse 
range of neural mechanisms in which this 
dependence of ‘algorithm implementation’ 
on noise could occur.

One example is that subthreshold 
membrane potential oscillations, whose 
frequency varies with water temperature 
in shark multimodal sensory cells, trigger 
spikes that transmit this information to the 
shark’s brain only in the presence of noise28. 
Thus, the shark’s algorithm for detecting 
rates of temperature change, based on the 
relationship between subthreshold oscilla-
tions and temperature, requires noise for 
its implementation. A second example, in 
the broader sense of stochastic resonance, 
is that repetitive spiking in models of single 
neurons driven just above their spiking-
threshold input current can be inhibited by 
the presence of noise, as shown by a series 
of theoretical studies58,59. This effect was 
dubbed ‘inverse stochastic resonance’60. If it 
could be shown in vivo that the removal of 
biologically relevant noise diminishes inhi-
bition of spiking under these conditions, it 
could provide evidence that a computation 
requiring such inhibition utilizes noise for its 
implementation.

By contrast, stochastic facilitation is not 
best associated with the algorithmic level of 
description, except when the randomness 
inherent in noise potentially has a necessary 
role, which could occur when the nature of a 
computation involves assessing probabilities61 
or when an algorithm requires a randomiza-
tion step, such as in foraging behaviour.

The principle underpinning our pro-
posed unified framework is that studies of 
stochastic facilitation should begin with an 
explicit computational hypothesis. Given that 
a large proportion of prior work on stochastic 
resonance focuses on single neurons, this 
means attributing some well-defined notion 
of computation to a single neuron. Although 
individual neurons or isolated networks are 
frequently treated as input–output devices 
in experiments and simulations, and many 
computational roles can be suggested based 
on observed dynamics in this context22,53, it 
is often unclear whether such roles can be 
directly related to integrative brain functions 
like behaviour, memory and cognition.

Nevertheless, we place a deliberate empha-
sis on the necessity for a computational 

hypothesis to be stated when studying  
stochastic facilitation, whether or not there is 
evidence supporting that hypothesis, because 
this is still indicative of progress beyond  
classical stochastic resonance.

Hypotheses regarding stochastic  
facilitation need not be associated only  
with computation in single neurons —  
however computation might be defined — 
but can be observed across many levels of 
organization. As highlighted by Churchland 
and Sejnowski, there is a hierarchy of struc-
tural levels of organization62, each with 
a characteristic spatial size scale: central 
nervous system (1 m), systems (10 cm), 
maps (1 cm), networks (1 mm), neurons 
(100 μm), synapses (1 μm), and molecules 
(1 Å–100 nm). They point out that because 
there is organized structure at each level, 
there are many levels at which computa-
tional algorithms are implemented by neural 
mechanisms62. We now provide an overview 
of existing evidence for stochastic facilita-
tion in neurobiology that has been labelled 
as stochastic resonance, with an emphasis on 
studies that provide evidence for the breadth 
in levels of organization.

Stochastic resonance in neural systems
Evidence from experiments. The experi-
mental evidence for stochastic resonance in 
neural systems is diverse, although there are 
relatively few publications compared with 
the number of publications from modelling 
work. A wide range of neural systems has 
been studied at a wide range of size scales, 

from complete organisms (crayfish, pad-
dlefish and humans) to slice preparations, 
and covering a wide range of in vivo func-
tions, from sensory reception to memory 
(TABLE 1; supplementary information S1 
(table)). Signals have typically been com-
prised of artificial sinusoids and noise has 
usually been comprised of random modu-
lations, of the same stimulus dimension 
as the signal. Data collection techniques 
have been more uniform, mostly extra-
cellular recordings for non-humans and 
electronencephalography (EEG) and mag-
netoencephalography (MEG) for humans. 
Many studies describe the effects of noise 
on signal-to-noise ratio at the signal fre-
quency (classical stochastic resonance) or 
the correlation of neural output with input, 
although some more interesting measures 
have also been used, such as coherence 
or synchronization, vowel coding, reflex 
output, heart rate and neural entrainment, 
and evoked potentials, which are more 
closely related to the putative function of 
the system studied. Researchers have often 
tried to simulate natural signals such as 
water movements, air currents or electric 
fields generated by predators or prey, limb 
movements, sounds, lights or touches. 
Often, the human studies have used simple 
stimuli, such as modulated lights, sounds 
or touches, whose processing is well under-
stood in other experimental contexts (see 
BOX 1 for a more detailed description of two 
representative experimental studies at very 
different levels of organization).

Box 1 | Examples of experimental evidence of stochastic resonance

One early experiment29 demonstrated stochastic resonance in the cricket cercal system, which 
detects changes in air currents caused by predators or conspecifics. Intracellular recordings were 
made from single afferent nerve fibres from interneurons connected to the cercal receptors. The 
receptors were stimulated with naturalistic air currents that were modulated either at a single 
frequency or at multiple frequencies in the range of those caused by predator attack, and with 
noisy (broadband) air currents as would occur in a natural environment. Fourier analysis was used 
to extract the signal-to-noise ratio from the spike train, and information transmission between the 
stimulus and the spike train was computed for broadband signals. Both the signal-to-noise ratio 
and mutual information showed a maximum at intermediate (non-zero) levels of the added noise, 
with the former indicating classical stochastic resonance and the latter indicating stochastic 
resonance in the broad sense.

More recently, stochastic resonance-modulated synchronization in the human brain was described 
based on an electroencephalography (EEG) experiment49. EEG detects synchronized neural 
oscillations and synchronization in neural models is enhanced by low levels of added noise. Thus, it 
was proposed that acoustic noise would enhance the 40-Hz transient auditory response and also the 
consequent interactions between brain regions. In the experiment, subjects detected occasional 
intensity deviants in a stream of near-threshold pure tones. Broadband acoustic noise was added to 
the stimuli in the left ear but not to those in the right ear. Independent component analysis was used 
to identify independent signals localized to specific brain regions, and wavelet analysis was used to 
extract the amplitude and phase of the signals in specific frequency bands. Synchronization within 
brain regions (40-Hz response) and between brain regions (in θ, a and g bands) was enhanced by an 
intermediate (non-zero) level of added noise. This happened for both the noise added to the stimuli 
(left ear) and for the noise and stimuli combined in the brain (right ear)42,45. 
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Biologically realistic and unrealistic models.  
Whereas models of individual neurons (and 
neuronal networks) vary vastly in their 
balance between abstraction and details, 
the entire spectrum can lead to important 
new insights into computation22. Five levels 
of abstraction detail have been identified 
for single neurons22 — detailed compart-
mental, reduced compartmental, single 
compartment or point neuron, cascade and 
black box. Stochastic resonance has been 
observed in numerous theoretical studies of 
single-neuron models across all of these lev-
els (TABLE 1; supplementary information S2 

(table)). It is therefore clear that the stochas-
tic resonance phenomenon should not be 
associated with a particular level of model 
detail (see BOX 2 for examples of modelling 
work in both neuron and network level 
models).

The classical definition of stochastic 
resonance specifies that an input signal to a 
system must be periodic and that the system’s 
performance should be measured by output 
signal-to-noise ratio, whereas the evolution 
in the definition of stochastic resonance used 
non-periodic (aperiodic) signals29,31,63 and 
measures other than signal-to-noise ratio, 

both experimentally and in models (TABLE 1; 
supplementary information S2 (table)). In 
many cases however, the choice of signal 
was the primary concern, and performance 
metrics were chosen based on this. In some 
cases, simple hypotheses were stated, such as 
that neurons are channels that should com-
municate input spike trains, in the sense that 
a spike train that arrives at a neuron should 
be reproduced precisely by the neuron’s own 
spikes64. This is not realistic, in that neurons 
do not simply relay spikes from one point to 
another. Indeed, they perform a substantial 
amount of computational integration in their 
dendrites, typically integrating inputs from 
thousands of other neurons in producing 
their own spike train. Moreover, they are 
influenced by slow extracellular currents and 
often participate in many interleaved neural 
circuits. Lastly, electrical fields that are gener-
ated by ion flow within and around neurons 
can affect other nearby neurons directly65.

Based on what has been achieved to date, 
we believe there is considerable scope for 
new biologically appropriate hypotheses to 
be investigated in conjunction with biologi-
cally appropriate models of neural systems 
and noise sources.

The future of stochastic facilitation research
Building realistic models with realistic noise.  
There are many different sources of sto-
chastic biological noise in the CNS1,24 
(TABLE 2), but there have not been exhaus-
tive studies of all possible sources with 
respect to stochastic facilitation. Although 
some of the sources listed in TABLE 2, such 
as network connectivity and synaptic bar-
rages, might be argued to be not necessarily 
stochastic, they certainly can be modelled 
as stochastic variables in the context of 
their impact on specific computational 
mechanisms. Clearly not all variability 
is a sign of exploited noise. Nonetheless, 
the lesson from past stochastic resonance 
research is that it can be worthwhile to at 
least consider whether observations of ran-
dom noise or background fluctuations may 
be evidence of a source of biological  
randomness that is potentially exploited  
in vivo for stochastic facilitation.

Building realistic models of course 
requires that we apply simplification judi-
ciously, especially when considering the level 
of detail, neuron type (for example, excita-
tory, inhibitory or bursting), synaptic activity 
and any neuron-to-neuron connections. We 
emphasize that model simplification must 
be based on the proposed computational 
goal of the system. Sufficient model ele-
ments must be included so that the required 

Box 2 | Examples of models that exhibit stochastic resonance

A canonical example of classical stochastic resonance is its occurrence in the output 
signal-to-noise ratio estimated from simulations of the Fitzhugh–Nagumo neuron model when 
stimulated by a small sinusoidal current whose amplitude is corrupted by a wide-band random 
noise current84. The Fitzhugh–Nagumo model85–87 simplifies the Hodgkin–Huxley model: one 
differential equation models the evolution of the membrane potential, including any action 
potentials, and the second replaces all the gating equations. Stochastic resonance was 
demonstrated in the model by numerically solving the equations and estimating the power 
spectral density of the resulting action potential timings for a range of values of input noise 
power84. The resultant plot of signal-to-noise ratio versus noise power displayed a characteristic 
stochastic resonance curve, with a peak signal-to-noise ratio at a non-zero noise power. The 
(implied) computational hypothesis in any study of this type is that the computational role of the 
neuron being modelled is to produce a sequence of action potentials when a sinusoidal input 
current at a specific frequency excites the cell, such that the power spectral density at the signal 
frequency in the spike sequence is greater than that at non-signal frequencies or that at the  
signal frequency in the absence of a signal. The spectral processing part of the computation  
cannot be completed in the neural system itself.

Classical stochastic resonance has been demonstrated in a much more detailed Level I22 
compartmental model of neocortical pyramidal neurons in layer VI of cat cortex7. Signal and noise 
were introduced through currents generated by realistically spatially distributed AMPA synapses 
(>16,000) and GABA synapses (>3,300). Synaptic background activity, based on intracellular 
recordings and modelled by independent Poisson synaptic release, comprised the noise, and a 
simultaneous release every 100 ms from additional AMPA dendritic synapses comprised the signal 
(similar to a 10-Hz sinusoid). In addition to classical stochastic resonance, the detail of the model 
that was used allows for a wide variety of additional computational hypotheses, with the 
concomitant possibility of unexpected stochastic facilitation. For example, layer IV neurons 
project to the thalamus, and it is possible that synchronization between them and thalamic 
neurons could be increased by the synaptic background activity, in turn increasing information 
transmission between cortex and thalamus.

Recently, stochastic resonance has been contrasted in tonic and phasic neuron models14. 
Realistic single compartment neuron models were designed to mimic real auditory brainstem 
neurons. Uniquely, this study described specific and different signal encoding roles for phasic 
(bandpass filtering) versus tonic (frequency encoding) neurons, with a concomitant difference in 
the form of stochastic resonance they exhibited: classical stochastic resonance in tonic neurons 
and ‘slope-based’ stochastic resonance in phasic neurons. Slope-based stochastic resonance refers 
to the noise-enhanced ability of phasic neurons to encode input signals with an intensity slope 
below their usual slope threshold. It would now be important to demonstrate slope-based 
stochastic resonance in auditory brainstem neurons.

Lastly, a biologically realistic example of neural network stochastic resonance was described in a 
model of a hippocampal system responsible for memory encoding and recall88. Single 
compartment models of hippocampal CA1 pyramidal neurons received weak afferent input from 
entorhinal perforant path fibres and noisy afferent input from similar models of numerous CA3 
pyramidal neurons. Network stochastic resonance was demonstrated in that the output 
signal-to-noise ratio of the CA1 neurons to weak sinusoidal input was maximized for an 
intermediate CA3–CA1 synaptic strength, indicating an intermediate level of CA3-induced noisy 
membrane fluctuations in the CA1 neurons. The distribution of CA3–CA1 synaptic strengths can 
encode patterns in memory, and thus the resulting stochastic resonance effect can be exploited to 
implement memory recall.

P E R S P E C T I V E S

420 | JULY 2011 | VOLUME 12  www.nature.com/reviews/neuro

© 2011 Macmillan Publishers Limited. All rights reserved



computations can be realized completely in 
the neural system. The choice of additional 
elements could be based on mathematical 
or numerical tractability, elegance, symme-
try, completeness or other considerations. 
The noise source should also help to deter-
mine which model elements are essential. 
Although noise can often be modelled sim-
ply as a series of samples from a probability 
distribution with associated correlation 
times, as has been done most often in phys-
ics approaches, it may also be necessary to 
model a noise generation mechanism. For 
example, modelling the intrinsic dynamics 
of ion channels provides realistic noise in a 
simulation of the effects of noise on multi-
plicative computations within a neuron66. 
Another study of stochastic resonance in 
which the noise source was modelled in a 
biophysically realistic fashion examined neu-
rons that are under constant bombardment 
by a barrage of synaptic inputs7.

Biologically appropriate signals. New kinds 
of stochastic facilitation might be observed 
when biologically appropriate input and 
output signals are defined within the con-
text of a computational hypothesis. For 
example, whereas the output signal in sto-
chastic resonance work is often a sequence 

of action potentials in response to an input 
current, other signals for a computational 
process might be biophysical entities, such 
as neurotransmitters from synaptic vesicles, 
or calcium currents. Another possibility 
is to define a computation in terms of the 
intervals between action potential initia-
tions at the soma of a neuron (the input) and 
their arrival times at an axon terminal (the 
output). A third possibility is an external 
sensory input, such as sound pressure waves 
that enter the transduction mechanisms of 
the inner ear. Constructive roles for biologi-
cally relevant noise have already been stud-
ied based on the currents induced in inner 
hair cells34 or action potentials in primary 
afferent auditory nerve fibres20,67,68 as  
output signals, with the computation being 
transduction and encoding of a sound wave.

Stochastic facilitation may not require an 
input signal. Stochastic resonance has his-
torically been defined relative to input and 
output signals and information processing. 
However, stochastic resonance has recently 
been identified in a model of emergent 
synchronization of whole brain functional 
networks69, in which it is not clear what 
model features might be labelled as an input 
signal. Although the lack of signal means 

that calling this effect stochastic resonance 
redefines the term — indeed, this type of 
effect is known as coherence resonance70,71 
in statistical physics and has consistently 
been described as a different kind of noise-
enhanced effect from stochastic resonance 
— there would be no such ambiguity associ-
ated with calling it stochastic facilitation. 
The computational hypothesis about the 
constructive role of noise might be that it is 
important for a network to oscillate at 0.1 Hz 
for one range of noise levels and not to  
oscillate outside of that range.

Distinguishing signal and noise. It is often 
very difficult to distinguish signal from 
noise72. In engineered communication sys-
tems, information-carrying signals can seem 
to be as random as a noise source, and this 
should also be expected in vivo. Because 
signal can only be defined in conjunction 
with a well-defined computational hypoth-
esis, defining the assumed nature of the 
computation helps to mitigate this problem. 
Conversely, although many sources of noise 
never act as signals, the input signal for one 
computation may well be considered noise 
for a different computation. To complicate 
matters, although it is often assumed that a 
signal is independent of any noise source, 

Table 2 | Biologically relevant sources of noise that may contribute to stochastic facilitation

Noise Source Description Refs

Thermal noise Also known as Johnson noise, thermal noise arises from random thermal agitation of charge 
carriers in electrical conductors, and appears as fluctuations in membrane potentials.

24

Stochastic molecular diffusion Molecular interactions during calcium signalling in dendritic spines is inherently stochastic 
owing to diffusion, with potentially important consequences for synaptic plasticity.

94

Crosstalk noise Spillover of synaptic vesicles to adjacent neurons can lead to unpredictable variability, as 
potentially could ephaptic coupling, whereby the electric field produced by adjacent neurons 
may cause changes in their membrane potentials.

1,65

Synaptic neurotransmitter 
release

Both the number of neurotransmitter molecules released from synaptic vesicles and the number 
of activated postsynaptic receptors seem to be random variables, and thus lead to stochastic 
variability in action potential generation.

53,95–97

Short-term plasticity Several interacting effects can mean that even spikes that arrive regularly at axonal terminals 
may lead to irregular postsynaptic events. These effects include facilitation, adaptation, 
depression and recovery as well as the stochastic release of neurotransmitters from vesicles.

95,98–100

Ion channel gating and 
membrane noise

The stochastic nature of the opening and closing of ion channels is well known. This leads to 
fluctuations in neuron membrane potentials, and in turn affects action potential generation.

10,53,101,102

Synaptic barrages Pyramidal neurons can have many thousands of synaptic connections with other neurons, and 
the numerous input events from these can lead to the neuron’s membrane potential being in a 
state of increased or decreased, or fluctuating, conductance. This can have profound effects on 
the neuron’s spiking properties.

103

Diversity owing to stochastic 
gene expression

Intrinsic biophysical properties vary over populations of neurons and have been shown to 
benefit neural coding. The notion that this kind of variability can lead to benefits is sometimes 
called diversity-induced resonance.

104,105

Network connectivity Cortical neurons form connections with many other cortical neurons to form irregularly 
structured networks.

106

Sensory inputs Disturbances can be extrinsic (such as background visual clutter) or intrinsic to biological 
transduction mechanisms.

107

Motor noise Movements induced by muscle fibres are subject to variability through several mechanisms. 1
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this may not always be a good assumption73. 
The problem of deciding what is noise and 
what is signal is even greater in experimental 
work, owing to other systematic forms of 
noise measurement. This means that falsify-
ing hypotheses about stochastic facilitation 
will be very challenging. Our framework 
does not provide solutions for this problem; 
what we hope is that it will encourage a 
much richer, more creative pool of hypoth-
eses and generate new experiments and 
models that help elucidate constructive roles 
for noise.

Bridging theory and experiment
To aid the cross-application of ideas and 
analytical methods between experimental-
ists, modellers and theorists, we propose  
the following more formal definition  
of stochastic facilitation for the neurosciences:

Stochastic facilitation is observed within 
a specific neural system if a proposed com-
putational goal is better achieved in the 
presence of random fluctuations originating 
from stochastic biologically relevant noise 
than in their absence.

We also propose a common framework 
for future experimental and computational 
neuroscience approaches for addressing sto-
chastic facilitation. This framework consists 
of six sequential steps (FIG. 1b) that will help 
researchers to make biologically appropri-
ate choices with regard to stimulation and 
analysis for a given concrete hypothesis. 
Typically, studies of stochastic resonance in 
neural systems are dictated by the classical 
definition of stochastic resonance5, which 
predetermines potentially inappropriate 
choices for stimulation and analysis in steps 
3, 5 and 6 (FIG. 1b), because it imposes a 
restrictive computational hypothesis for step 
1 that cannot be implemented solely by the 
neural system. To assess whether stochastic 
facilitation occurs, a biologically appropri-
ate computational role of a neural system 
needs to be identified or proposed first, 
along with a biologically relevant indicator 
of performance. 

Conversely, in computational studies 
the model in step 2 and the noise in step 3 
(FIG. 1b) are often chosen with little regard 
to specific biologically realistic neural 
systems. For example, classical stochastic 
resonance was often studied in the context 
of single point neuron models. Although 
these neurons simulate the dynamics of real 
neurons74,75, they are too simple to capture 
details of neuron topology, biophysics and 
kinetics that could manifest noise benefits 
in variables other than action potentials. 
The physics approach aims to discover 

fundamental principles that are inferred at a 
level of analysis that predicts the existence of 
stochastic resonance in neural systems gen-
erally, whereas the neuroscience approach 
aims to discover basic mechanisms that are 
actually realized in specific neural systems  
of living organisms.

Confirmation of a stochastic facilita-
tion hypothesis requires performance to be 
measured in normal conditions, as well as 
in conditions under which the noise level 
is reduced, in order to conclude that bio-
logically relevant noise provides a benefit. 
Experimentally changing the properties of 
biologically relevant noise and measuring 
the resulting efficacy of the computation is 
clearly very difficult in most circumstances. 
Nevertheless, it is possible. For example, 
recent experiments have found that correla-
tions in input noise into retinal ganglion 
cells allowed a computation to be more pre-
cise; removing the correlations in the noise 
— but not the noise — was found to cause 
a decrease in the precision of coding76. We 
now present some studies in which  
noise might be modified experimentally  
and stochastic facilitation hypotheses could 
be applied, perhaps leading to new or  
alternative conclusions.

As a first example of the approach that we 
advocate, we consider the study of Mazzoni 
et al.77 Their model simulates some aspects 
of the structure and function of the V1 
region of visual cortex as it receives inputs 
from the lateral geniculate nucleus (LGN) 
of the thalamus. The authors showed that 
it can account for transmission of infor-
mation about an external stimulus in the 
presence of ‘external’ noise from the LGN 
to V1 through synchronous activity in two 
specific frequency channels. The computa-
tional goal of the LGN is assumed to be to 
faithfully transmit the information that it 
receives about the spatial and temporal dis-
tribution of light on the retina to V1, where 
visual features such as oriented edges are 
detected and located relative to each other. 
A relevant measure of performance of this 
goal is the total mutual information between 
the LGN-generated noisy signal and the 
resultant V1 activity integrated across spatial 
location, time slices and frequency channels. 
This model can be studied in the context 
of stochastic facilitation by reducing the 
noise or removing it from the LGN signal 
altogether. Another approach would be to 
introduce V1-specific noise, for example, 
from synaptic bombardment, and manipu-
late the amount and nature of that noise. We 
speculate that either approach could affect 
the LGN–V1 mutual information, and that 

eliminating all noise could substantially 
decrease it, thus indicating that the noise is 
necessary for the successful achievement of 
the computational goal.

Experimental verification would require 
placing extracellular recording electrodes 
(polytrodes) in LGN and V1 areas of mon-
keys while they are immobilized but awake78. 
The monkeys would be trained to look at 
a computer monitor that presents various 
visual stimuli, such as gratings or movies. 
The challenging part of the experiment is 
to determine which inputs to LGN and V1 
are signal and which are noise, or at least to 
determine a way to suppress the noise that 
is added to the signal by the LGN and V1 
neurons. This might be accomplished by 
blocking a subset of synapses resulting from 
pyramidal–interneuron circuits in V1 or by 
suppressing metabotropic synapses (likely 
to be modulatory) but leaving ionotropic 
synapses (likely to be driving) unaffected. 
A decrease in mutual information between 
LGN and V1 neurons would confirm that 
synaptic noise of a particular type is neces-
sary for the normal computational function 
of this network.

A series of papers by Bezrukov and 
Vodyanoy established that external electric 
noise (artificially generated) can facilitate 
transduction of weak sine wave signals 
through the alamethicin channel in a lipid 
bilayer79–81. This work was accomplished 
using the physics discourse (FIG. 1a), includ-
ing the choice of artificial noise with a 
Lorentzian power spectrum (constant ampli-
tude for low frequencies and then a drop-off 
of power as the square of the frequency for 
higher frequencies), and signal-to-noise 
ratio in the output power spectrum as a 
performance metric. Of particular interest 
was the fact that this is a non-dynamical 
and threshold-free system. A sophisticated 
model was proposed to account for this 
experimental finding, including a math-
ematical expression that predicted the 
dependence of the signal-to-noise ratio on 
noise level.

Stochastic facilitation is 
observed within a specific 
neural system if a proposed 
computational goal is better 
achieved in the presence of … 
stochastic biologically relevant 
noise than in its absence.
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On activation by transmembrane poten-
tials, voltage-dependent ion channels have 
a variety of functions, including muscular 
contraction, excitation of neurons, upregu-
lation of gene expression and release of 
hormones or neurotransmitters. A fair 
amount is known about these functions, 
but it is unknown whether any function in 
vivo depends on the presence of random 
fluctuations in the transmembrane potential. 
Following the approach outlined in FIG. 1b, 
a first experiment would be to attempt to 
reduce the electric noise under more natural 
conditions for a specific example of a voltage-
gated ion channel and to measure the per-
formance of the relevant function under this 
condition. Clearly, the performance metric 
would depend on the function studied — for 
example, the force of muscular contraction, 
amount of gene expressed or amount of hor-
mone or neurotransmitter released, or the 
dependence of these quantities on other  
variables. Modelling would then have to con-
centrate on a mechanism for this effect. Some 
elements of the Bezrukov and Vodyanoy 
model could possibly be adapted but this 
is not guaranteed, especially as their model 
concentrated on derivation of an expression 
for the signal-to-noise ratio in the output 
power spectrum for a noisy sine wave input.

A final study to which our approach 
could be applied is one carried out by Ward 
and colleagues (BOX 1), in which stochastic 
resonance-modulated synchronization of 
the whole human brain is described49. They 
showed that adding near-threshold broad-
band acoustic noise to a brief weak pure tone 
stimulus resulted in an increase in both local 
(40-Hz transient EEG response) and global 
(between brain regions showing a 40-Hz 
response) synchronization. Moreover, at a 
higher level, the added noise also increased 
synchronization with respect to a weak stim-
ulus to the contralateral, isolated and noise-
free ear, implying that the noise received 
by the other ear propagated throughout 
the auditory system and beyond. Although 
Ward and colleagues cited and briefly dis-
cussed a model of noise propagation in the 
brain82, they did not develop that model to 
explain their own findings. Again, although 
the performance metric was unique in this 
study (synchronization within and between 
brain regions, also studied in models previ-
ously) these models were not addressed 
directly except to predict the general effects 
of the noise. Lastly, although the natural 
function of the auditory system, detection 
and discrimination of sounds was addressed 
in this study, the noise was added artificially 
and exogenously as in most previous studies.

From our point of view, a first step would 
be to model the phenomenon of noise-
modulated synchronization in response to 
sensory stimuli that was reported by Ward 
and colleagues based on the previous models 
of neural networks and cross-modal sto-
chastic resonance. Presumably, these models 
would assume endogenous sources of neural 
noise and its variation over time and brain 
regions. Informed by these modelling exer-
cises, experiments could then be designed 
that would predict the effects of decreasing 
neural noise by altering neurotransmitter 
function, possibly as in the first example we 
discussed, or increasing it directly by means 
of transcranial magnetic stimulation, for 
example. Additionally, measurements of 
internal neural noise need to be developed 
and employed to test the models’ predictions 
that not only does the noise vary over time 
and brain region, but that the variations 
affect the functions of the relevant regions, 
augmenting or interfering with them.

Once such findings are detailed at a bio-
logically realistic modelling level and con-
firmed experimentally, they could be studied 
at more abstract levels from a physics 
approach to reveal further general principles 
of information processing in non-linear sys-
tems. These principles may be quite different 
from those previously developed based on 
the classical stochastic resonance definition.

The evolutionary origins of noise
Identifying a constructive role for noise does 
not answer the question of why a particular 
stochastically facilitated mechanism might 
have evolved. It is possible that other mecha-
nisms that could achieve the same computa-
tion would perform less well in the presence 
of noise.

Perhaps noise is unavoidable, owing to 
biophysics or biochemistry, and the mecha-
nism that works best given this noise is one 
that does not work if noise is artificially 
removed28. Another possibility is that evo-
lutionary pressures have led to higher levels 
of random fluctuation, perhaps through a 
genetic mutation, resulting in a mechanism 
that implements a computation that did 
not previously exist, or which previously 
had inferior performance (for example, 
REFS 34,83). Experimental evidence for just 
such a scenario has been described in the fly 
antennal lobe11. This mechanism might be 
very far from optimal according to engineer-
ing theory, but if it led to a fitness advantage 
for the corresponding gene in the existing 
niche, then why should it be optimal in that 
sense? Lastly, it might be worth considering 
that the randomness that leads to a working 

mechanism for a computation can be viewed 
as noise in the context of that computation, 
whereas it is in fact a signal when viewed in a 
different context.

In none of these cases is it necessary that 
the presence of noise results in an optimal 
mechanism for achieving a computation. 
What can be said is that the mechanism 
that actually does exist for achieving a com-
putation would perform less well without 
the noise.

Conclusion
We have argued that the physics approach 
that characterizes much of the previous work 
in stochastic resonance has not exploited all 
of the possibilities for advancing our under-
standing of the beneficial role of noise in 
neural systems. Our proposed framework for 
investigating stochastic facilitation in neural 
systems promises not only to elucidate many 
of the mechanisms already known to neuro-
science but also to open exciting new areas. 
Our understanding of neural systems is still 
incomplete, and bridging theory and experi-
ment in the study of the constructive roles of 
biologically relevant noise may lead to  
similar efforts in other areas of neuroscience.
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