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Flexible Control of Mutual
Inhibition: A Neural Model of
Two-Interval Discrimination

Christian K. Machens,1 Ranulfo Romo,2 Carlos D. Brody1*

Networks adapt to environmental demands by switching between distinct
dynamical behaviors. The activity of frontal-lobe neurons during two-interval
discrimination tasks is an example of these adaptable dynamics. Subjects first
perceive a stimulus, then hold it in working memory, and finally make a de-
cision by comparing it with a second stimulus. We present a simple mutual-
inhibition network model that captures all three task phases within a single
framework. The model integrates both working memory and decision making
because its dynamical properties are easily controlled without changing its
connectivity. Mutual inhibition between nonlinear units is a useful design motif
for networks that must display multiple behaviors.

In our daily lives, our minds can flit from

thought to thought with remarkable speed and

flexibility (1). A simplified task that requires

rapid shifts between different mental actions

is known as two-interval discrimination (two

stimuli separated by a time interval; Fig. 1A).

Subjects must first perceive a brief stimulus,

called f1, maintain it in working memory for

several seconds, and then compare it with a

brief second stimulus, called f2, to immediately

decide which of the two stimuli was larger. The

task requires both working memory and de-

cision making, interfacing between the two in

a rapid switch from one to the other.

The biophysical mechanisms underlying

the performance of this task remain unknown.

Spiking neural-network models, built to serve

as mechanistic accounts of cognitive neural

activity, have focused so far on only single

cognitive processes (2–8). Few models (9, 10),

and no spiking network models, have address-

ed the question of how more than one com-

putation and dynamic can be implemented in

a single network. Yet cognitive acts typically

require more than one type of computation.

Many cognitive psychology models do inte-

grate multiple processes, but do not address

biophysical mechanisms (11). On the basis

of recent neurophysiological data (Fig. 1)

(12–17), we use a nonlinear dynamical sys-

tems approach (18–21) to design a simple and

testable spiking-neuron model of two-interval

discrimination. The model integrates three

key processes into a single framework that

proposes mechanistic links between the differ-

ent processes, as well as between biophysical

properties and neural and behavioral phenome-

na. These processes are fast initial loading

of stimulus f1 into working memory, slow

maintenance of working memory, and fast

decision making.

Figure 1, C and D show the firing rates of

two prefrontal cortical (PFC) neurons recorded

from previously trained macaque monkeys

while they performed a two-interval discrim-

ination task in which f1 and f2 were the fre-

quencies of mechanical vibrations applied to

the tip of a finger (12, 16, 22). The dynamics

of the activity of these neurons depends strong-

ly on the phase of the task. During the loading

of f1 into working memory, there is a rapid

flow to an f1-dependent firing rate. During the

maintenance of f1 in working memory, there is

a long-lasting persistence of f1-dependent firing

rates, despite the absence of the stimulus. During

the comparison/decision phase, upon presenta-

tion of the second stimulus f2, the firing rates

quickly segregate into one of two categories,

depending on the monkey_s subsequent choice

of a Byes[ or Bno[ push-button answer to the

question, BIs f1 greater than f2?[ Responses

similar to these PFC responses are also found

in ventral (17) and medial (14) premotor corti-

ces. For brevity, here we will refer collectively

to these three areas as Bfrontal lobe areas.[ We

highlight two aspects of the frontal lobe data.

First, signals are encoded in complementary

sets of roughly equal numbers of neurons

(12, 14, 17). One set is composed of Bplus[
neurons, defined as neurons with a delay-

period firing rate that is a monotonically in-

creasing function of f1 (Fig. 1C). Plus neurons

typically fire the most for Byes[ decisions af-

ter presentation of f2. The complementary set

are Bminus[ neurons, defined as those which

have delay period firing rates that are mono-

tonically decreasing functions of f1, and fire the

most for Bno[ decisions (Fig. 1D). Because

higher f2 stimuli are more likely to lead to

Bno[ decisions; plus neurons are excited by

high f1 stimuli but inhibited by high f2 stim-

uli. The converse occurs for minus neurons
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(fig. S9) (23). Each of the two sets of neurons

carries all the information necessary for the

task; the existence of two apparently redun-

dant sets is so far unexplained.

Second, the same neurons that show graded

delay-period activity, which represents work-

ing memory of f1, also show categorical ac-

tivity after stimulus f2, which represents the

monkey_s decision (14, 17, 24). This finding

contrasts with current mathematical psychology

models of two-interval discrimination, which

have implicitly assumed that working mem-

ory and decision making are processes repre-

sented by separate variables (25–28). Instead,

we propose an algorithm (Fig. 2) in which

both memory and decision outcome are repre-

sented by the value of a single state variable

(horizontal axis). The dynamical modes of the

system are described by a hypothetical energy

function L (vertical axis), the shape of which

does not depend on the value of the state

variable. The state variable always evolves

so as to reduce L. During the loading phase,

the external stimulus creates a single mini-

mum in L (a single stable point) at a position

determined by the value of f1. This forces

the state into an f1-dependent position. Dur-

ing the memory maintenance phase, there is

no longer an external stimulus that deter-

mines the shape of L. The memory of f1 is

represented by the state_s position, and for

this to remain steady, the L function must be

approximately flat Ea line attractor configu-

ration (2, 29, 30)^. During the comparison/

decision phase, we map stimulus f2 onto the

same horizontal axis as f1. All state positions

to the left of f2 now represent memories of f1

values that are less than f2. States to the right

of f2 represent memories of f1 that are greater

than f2. If a peak in L (an unstable point) is

created at the position given by f2, the state

will evolve in one of two opposite directions,

depending on the yes or no answer to f1 9 f2?

If the horizontal axis stands for a firing rate

that grows from left to right, the plots mimic

the activity of plus neurons through all phases

of the task. If the firing rate grows from right

to left, the plots mimic minus neurons.

We propose that the frontal-lobe areas in-

stantiate this dynamical algorithm. The task-

relevant sensory inputs to these frontal areas

arise from the secondary somatosensory cor-

tex (S2) (Fig. 1, E and F) (31). During the first

stimulus, responses in the S2 are similar to

those in the PFC: there are both plus (Fig. 1E)

and minus (Fig. 1F) neurons (13, 15). Unlike

the PFC, however, during most of the delay

period, S2 neuron firing rates are low and not

f1-dependent. Also in contrast with the PFC,

immediately after presentation of f2, neurons

in the S2 respond to f2 with the same plus- or

minus-type firing-rate dependence with which

they responded to f1 (32).

Clues about the underlying frontal-lobe

neural architecture come from the analysis of

firing rate covariations between pairs of PFC

neurons. These tend to be positive if both

neurons are plus, or if both are minus, but

negative when one is plus and one is minus

(33), leading us to consider the architecture

sketched in Fig. 3A. In a simplified version

of this circuit (Fig. 3B), each node represents

a population of neurons, and each node_s out-

put variable is the average activity of the pop-

ulation. Figure 3C shows a node_s i/o function,

which is defined as its output, expressed as a

resulting postsynaptic conductance, as a func-

tion of excitatory input (34). The overall shape

obtained, with a threshold below which output

is negligible and with saturation at high out-

puts, is characteristic of many neuron models.

To study graphically the dynamics of the

circuit in Fig. 3B, we show in black in Fig.

3D the output of the plus node as a function

of the inhibitory input from the minus node.

An additional excitatory input, E, is held con-

stant here. The minus node_s i/o function can

be plotted by exchanging the horizontal and

vertical axes to form the brown axes and

curve in Fig. 3D. This phase-plane plot now

describes the complete dynamics of the sys-

tem, because we can follow the input to output

activity of each node as it reverberates around

the circuit loop. Points where the two i/o

curves intersect are known as fixed points, or

steady states. These may be stable (like the

minimum in L during loading as seen in Fig. 2)

or unstable (like the maximum in L during

comparison/decision).

During the first stimulus Eloading phase

(Fig. 3E)^, inputs from the S2 area are active.

Together with the external input E, they can

shift the i/o functions along their input axes.

If both nodes receive the same S2 input, then

by symmetry, the crossing point of the two

i/o curves must lie along the 45- diagonal of

the phase-plane plots. However, we propose

that S2 plus neurons project to frontal plus

neurons, and S2 minus neurons project to fron-

tal minus neurons. As a result, the position of

the single stable point is determined by the

value of f1, thus instantiating the loading mode

of Fig. 2. Horizontal position in Fig. 2 corre-
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Fig. 1. The two-interval discrimination task and
neuronal responses to it in the PFC and the S2
cortices. (A) Schematic diagram of each trial of
the task. (B) Typical stimulus set used in the
neurophysiological studies we focus on here
(14, 17, 44, 45). Stimuli are frequencies of
mechanical vibrations applied to the tip of a
monkey’s finger, and each colored box indicates
a (f1, f2) stimulus pair. For each pair, monkeys
made the correct response more than 91% of
the time (16, 22). (C to F) Neuronal responses.
The rainbow color code at the upper left
indicates the f1 value applied during each type
of trial. Y/N color code indicates the push but-
ton pressed by the monkey at the end of each
trial. (C) and (D) show smoothed firing rates of
two different PFC neurons recorded over many
trials. (C) shows a plus neuron and (D) shows a
minus neuron. (E) and (F) show neuronal re-
sponses in area S2 (13, 15). For (E) and (F) only,
rainbow colors for t 9 2.8 s indicate value of f2.
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Fig. 2. One-dimensional dynamical algorithm for
two-stimulus–interval discrimination. The value
of the state variable (horizontal axis) is used to
represent both memory of f1 (maintenance) and
decision-making outcome (comparison/decision).
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sponds here to the angle of q (defined in top

phase plane, Fig. 3E).

During the delay period Emaintenance phase

(Fig. 3F)^, the inputs from S2 are silent. The

value of E and the neuronal-model parame-

ters can be chosen such that the two i/o

curves largely overlap. This creates a quasi-

continuous line of stable points (a line at-

tractor) and thus instantiates the maintenance

mode of Fig. 2 (35).

During the comparison/decision phase

(Fig. 3G), we propose that an external

control signal, which indicates that the

current stimulus should be treated as f2, not

f1, reduces the otherwise constant excitatory

input E. For low enough E, the system has

two stable fixed points on either side of a

single unstable fixed point, as required for this

phase in Fig. 2. In the data, frontal neurons

switch the sign of their stimulus dependence

between f1 and f2 (23), but S2 sensory

neurons do not. The net functional connection

between S2 and frontal neurons must there-

fore change sign. To match this in the model,

we used the circuit shown in Fig. 3H to

switch the net S2-to–frontal plus neuron con-

nections between loading (Fig. 3E, top) and

comparison/decision (Fig. 3G, top). A similar

circuit was used for frontal minus neuron

connections (36). As a result of this input

sign switch, increasing f2 moves the unstable

fixed point from lower to higher q (Fig. 3G),

which matches the f1-dependence of the stable

fixed point during loading (Fig. 3E). This

completes instantiation of the comparison/

decision mode of Fig. 2.

The continuous-variable nodes of the model

of Fig. 3 were each replaced by 250 noisy,

leaky, integrate-and-fire neurons in order to

produce a spiking neuron model with almost

identical behavior (fig. S4). Figure 4A shows

firing rates for one spiking neuron from the

plus node and one neuron from the minus

node, qualitatively capturing key aspects of

the data. The sign of correlations between pairs

of neurons in the model also matches the pat-

tern found in the experimental data (Fig. 4B).

The one-dimensional algorithm of Fig. 2

produces testable predictions separate from

the neural instantiation proposed here. If the

decision is reported when the state reaches

one of the two final stable points in Fig. 2,

and if the distance to the final stable point is

a dominant factor in the time required to reach

it, then it follows that on trials where f1 equals

f2 (50% Byes[ responses, 50% Bno[) and f1

and f2 are near the high end of the range of

stimuli, Byes[ decisions will be reached faster

than Bno[ decisions. The converse is true at

the low end of the range (Fig. 4D). At the

neural instantiation level, both the fine-tuned

(Fig. 3) and robust (34, 35) instantiations rest

on populations of mutually inhibitory neurons.

If the strength of inhibitory connections were

increased Ee.g., by use of benzodiazepines (37)^,

then the memory maintenance mode would be

perturbed in the direction of the comparison/

decision mode, with a single unstable point.

Because of the circuit_s symmetry, the effect

would be similar to an f2 stimulus in the

middle of the range (, 22 Hz), even though no

stimulus would be present (Fig. 4C). The psy-

chophysical correlate would be a tendency to

categorize f1 into high or low rather than re-

membering it accurately.

Unlike previous line attractor models

(3, 5, 6), which relied mostly on mutual exci-
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tation, we implemented both working-memory

and decision-making dynamics through mutual

inhibition. This facilitated the use of a single

simple circuit for both. The use of neuron

models with i/o functions that are nonlinear

above threshold, instead of linear or threshold-

linear models (38–40), further allowed straight-

forward control of the circuit_s dynamical mode

through an external excitation signal.

Our daily mental lives have an enormous

variety of highly flexible dynamics. What is

the neural basis of this flexibility? Do frontal

lobes contain many separate modules of neu-

rons, each capable of a particular type of com-

putation and its attendant dynamics? Or, as the

data of Fig. 1, C and D have inspired us to

propose here, can single modules of frontal lobe

neurons rapidly reconfigure their dynamical

properties, switching between different behav-

iors as the cognitive flow requires? If single

modules are indeed flexible, what is the range

of dynamics and computations that they can

display? We have only begun to address these

questions here. But we believe they are funda-

mental, and lie at the heart of the nature of

the neural architecture underlying cognition.
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