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SUMMARY

It was recently discovered that subthreshold
membrane potential fluctuations of cortical
neurons can precisely repeat during spontane-
ous activity, seconds to minutes apart, both in
brain slices and in anesthetized animals. These
repeats, also called cortical motifs, were sug-
gested to reflect a replay of sequential neuronal
firing patterns. We searched for motifs in spon-
taneous activity, recorded from the rat barrel
cortex and from the cat striate cortex of anes-
thetized animals, and found numerous repeat-
ing patterns of high similarity and repetition
rates. To test their significance, various statis-
tics were compared between physiological
data and three different types of stochastic
surrogate data that preserve dynamical charac-
teristics of the recorded data. We found no
evidence for the existence of deterministically
generated cortical motifs. Rather, the stochas-
tic properties of cortical motifs suggest that
they appear by chance, as a result of the con-
straints imposed by the coarse dynamics of
subthreshold ongoing activity.

INTRODUCTION

A long-lasting debate in neural coding revolves around

the role of precise timing of action potentials. Different

studies have shown that information in the central nervous

system is well represented by the average firing rate of

the neurons (Mazurek and Shadlen, 2002; Richmond

and Optican, 1990; Richmond et al., 1987; Shadlen and

Newsome, 1998). Precise spike times, in the order of a

millisecond, may carry additional information (Dan et al.,

1998; Mainen and Sejnowski, 1995; Victor and Purpura,

1998) that was suggested to play an important role in

various perceptual processes in the cortex. Precise tem-

poral firing in the form of coherent oscillatory activity
N

among different neurons may link different features of

a single object (Eckhorn, 1994; Engel et al., 1992; Gray

et al., 1992), and precise oscillations were also suggested

as a key feature of place cells (Burgess and O’Keefe,

1996; Huxter et al., 2003).

In the above studies, the precision of firing was sug-

gested to be manifested in the form of brief spatiotempo-

ral correlations and synchrony that emerge in the cortex

and are strongly related to stimulation and behavior.

Whether cortical mechanisms may control the precision

of firing over a relatively long duration (up to several hun-

dreds of milliseconds) and create complex spatiotemporal

patterns of spike appearance is controversial. Clearly,

a network-controlled timing of nonoscillatory spike pat-

terns can encode information more efficiently than rate,

count, or oscillations. Precise temporal patterns may re-

flect functional connectivity or task-dependent cohorts

of cooperative neurons (Abeles et al., 1993). Precisely re-

peated temporal patterns of spikes, distributed across

multiple neurons, have been considered as an indication

of the existence of such functionally active groups of

neurons (Dayhoff and Gerstein, 1983a, 1983b; Lestienne

and Strehler, 1987; Prut et al., 1998). These claims are

highly sensitive to the underlying statistical assumptions,

and it was suggested that repeats of these types of

patterns occur by chance (Baker and Lemon, 2000;

Oram et al., 1999), therefore not necessarily implying the

existence of controlled mechanisms for generation of

repeating spike patterns (Richmond et al., 1999).

Intracellular recordings provide an additional method

for searching for patterns of cortical firing. A single cortical

neuron receives inputs from thousands of other neurons,

so that precise repeating activation patterns of these neu-

rons may lead to repeating patterns in the subthreshold

fluctuations of the postsynaptic neuron, mediated by

postsynaptic potentials. Repeated epochs of spontane-

ous synaptic potentials (‘‘motifs’’) were indeed reported

in several recent studies of cortical slices using intracellu-

lar and imaging techniques (Cossart et al., 2003; Ikegaya

et al., 2004; MacLean et al., 2005; Mao et al., 2001), and

in in vivo intracellular recordings (Ikegaya et al., 2004).

(By way of full disclosure, I.L. is an author on Ikegaya

et al. [2004].) A single motif may include several noticeable
euron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 413

mailto:ilan.lampl@weizmann.ac.il


Neuron

Stochastic Emergence of Cortical Motifs
waves of synchronized synaptic potentials separated

by quiet hyperpolarized periods. Some motifs show ex-

traordinary degree of precision in the reappearing activity,

accurate down to a few milliseconds. The duration of

a motif is on the order of one second, with a time span

of seconds to minutes between its successive appear-

ances (Ikegaya et al., 2004). Repeats which occur beyond

the chance level provide a compelling evidence for the

existence of mechanisms that enable precise regenera-

tion of specific long-lasting patterns. Indeed, such a con-

clusion was argued by Ikegaya et al. (2004), who tested

whether motifs occur more often than predicted by

chance by applying various tests (see the Discussion

below).

In this study, we reexamine the appearance of motifs in

spontaneous membrane potential fluctuations of neurons

in the rat barrel cortex. Using a search algorithm similar to

the one described in Ikegaya et al. (2004), a large number

of motifs were found in long continuous recordings, in

some cases with a higher similarity than previously re-

ported. We have applied three different methods to gen-

erate surrogate data, each corresponding to a different

model of randomness. In the first method, the surrogate

data were constructed by a time domain shuffling of the

original traces. In the second method, the data were

randomized in the frequency domain. In the third method,

we optimized the parameters of a simulated passive cell

receiving random synaptic inputs in order to elicit an

activity with dynamics similar to that of the recorded

cell. Motifs were found in all types of surrogate data.

Moreover, their numbers, similarity scores, and basic

emergence statistics closely resembled the recorded

data. Based on these findings, we suggest that repeated

patterns of synaptic activity appear at random as a result

of the coarse dynamical properties of the subthreshold

fluctuations in cortical cells, rather than by controlled

network mechanisms.

RESULTS

Continuous intracellular recordings of spontaneous activ-

ity of 10–20 min in duration from five cells of the barrel

cortex in anesthetized rats were included in the analysis.

Each cell was recorded from a different animal, from the

granular or the supragranular layers. Spontaneous firing

rate was low, on average a cell fired 0.18 spikes/s. Exam-

ples of spontaneous subthreshold activity recorded from

these five cells (Figure 1A) demonstrate different dynam-

ics, which is also evident from power spectrum density

functions and voltage histograms (see Figures 1B and

1C). The membrane potential distribution covers a large

range of potentials and in most of the cells shows some

bimodal tendency (see Figure 1B), cf. (Anderson et al.,

2000; Lampl et al., 1999; Petersen et al., 2003; Sachdev

et al., 2004). The recordings had a stable membrane po-

tential activity for the entire period, evident from stable

voltage distributions and power spectra along the record-

ing (data not shown).
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Motifs Appear in Recordings of Spontaneous

Activity of Cortical Neurons

The search for motifs in spontaneous membrane potential

fluctuations of cortical neurons was performed by employ-

ing a method similar to the one previously reported in

Ikegaya et al. (2004). As in this previous study, we avoided

analyzing cells with clear and robust oscillatory activity,

when inspected by eye and by power spectral analysis.

Many repeating pairs of a high temporal precision and of

similar amplitude of voltage deflections were found in all

cells. Motif detection was based on the high-resolution

index (HRI) scores (see Experimental Procedures and

the Supplemental Data available with this article online),

which were successful in capturing remarkable examples

of repeating activity. For example, despite being recorded

27 s apart, the two 1 s segments presented in Figure 1D

(upper left pair of traces) show that every swing of mem-

brane potential in the first segment is accompanied by

the same pattern in the repeat. These selected examples

represent only a small fraction of motifs found in each

cell. The two examples of motifs in the right panels of

Figure 1D were ranked as the 1000th most similar pair,

yet they show a marked similarity.

Numerous motifs were also found when we searched

for motifs of 2 s duration. The number of 2 s motifs was

25%–30% of the number of 1 s motifs. To compare the

distributions of HRI scores of motifs of different durations,

we sorted each set of scores and plotted it, normalized at

the abscissa by its size. The normalized distribution of 1 s

motifs is similar in its shape to the distribution of 2 s motifs

and these two distributions show substantial difference

among the cells (Figure 2). Since this suggests that the

normalized distribution of motifs HRI scores is insensitive

to motif duration, we limited our analysis to motifs of 1 s

in duration, a choice which also follows the average motif

length found in Ikegaya et al. (2004).

A possible source for repeating motifs could arise from

oscillatory activity in the recorded data. Such activity may

increase the tendency of epochs to repeat, provided that

the oscillations are accurate and reproducible during

different periods of ongoing activity. To find if oscillatory

activity and HRI scores are correlated, we measured the

oscillatory index (OSI), defined as the amplitude of the first

satellite peak in the normalized autocorrelation of each of

the 1 s motifs. A higher OSI index corresponds to a more

oscillatory subthreshold activity. When motifs were ranked

by their OSI, we found that in many cases the top 1000

oscillatory epochs demonstrated a peak between 3 to

20 Hz in their power spectrum. However, the correlation

between HRI values and their corresponding OSI values

was almost negligible, demonstrating correlation coeffi-

cients between �0.004 and 0.104 (n = 5 cells, the correla-

tion was negative in one cell). In addition, for each re-

corded cell, we compared the OSI scores of the top 50

HRI-ranked motifs to those of the next 10,000 top-ranked

motifs. A statistically significant difference was found

only in one cell (cell 3, t test, p < 0.01). Even for this

cell, the mean OSI of top 50 HRI-ranked motifs (mean
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Figure 1. Emergence of Repeating

Epochs of Spontaneous Subthreshold

Activity

(A) Examples of spontaneous activity recorded

from five cells. Note that rapid synaptic activity

is observed throughout the entire 4 s epochs.

(B) Membrane potential distributions.

(C) Power spectrum of the recorded cells,

obtained by averaging the power spectrum of

a 10 s sliding window (without overlapping).

(D) Examples of repeating motifs from two

different cells. Each row presents examples

from the same cell, first the two motifs with

the highest HRI values, then a motif which

has the 1000th highest HRI rank (still showing

a marked similarity). Such highly similar motifs

were found in all the recorded cells in spite of

the differences between cells in their statistical

properties.
OSI = 0.27) was higher than the mean OSI of the next

10,000 rank ordered motifs only by 12%, while the mean

OSI of the top 50 most oscillatory motifs was 0.54. The

low correlation between HRI and OSI suggests that the

oscillatory activity in the data rarely repeats with a preci-

sion that is high enough to result in high HRI. Therefore,

the entire data were analyzed irrespectively of OSI scores.

Types of Surrogate Data

Our hypothesis is that motif statistics in spontaneous

activity are determined by the stochastic properties of

subthreshold voltage dynamics. One way to test this

hypothesis is to compare the statistics of motifs in the re-

cording to that of random surrogate signal which has

dynamics similar to the recorded data. To this end, the
most straightforward approach to produce surrogate

data is by shuffling the recorded trace in the time domain.

Our time-domain-shuffling method (‘‘Interval shuffling,’’

Figure 3A) closely preserves the voltage distribution and

higher-order statistics of the recorded data. The resulting

power spectrum is also very similar (see Figure S1). The

shuffled surrogate data was obtained by fragmenting the

recording into short segments and assembling them in

a random order (see Experimental Procedures and the

Supplemental Data). An example of a motif found in the

time-domain-shuffled data is depicted in the right panel

of Figure 4A. For comparison, a motif that was detected

in the recorded data is shown in the left panel. Note that

the dynamics of the surrogate data, as we mentioned

above, seem to be unaffected by the shuffling. Since every
Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 415
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second of the shuffled data was randomly composed

from at least three segments, each shorter than 500 ms,

the depicted 1 s motif must have repeated by chance.

A different type of surrogate data was obtained by using

the phase randomization method (see Figure 3B and

Experimental Procedures) to generate a random signal

whose power spectrum is identical to that of the original

data. Phase randomization is equivalent to filtering a white

noise signal with a filter whose modulation transfer func-

tion (MTF) is identical to the physiological power spec-

trum, and it is known to produce a voltage trace with

normal distribution (Schreiber and Schmitz, 1996), which

could differ from the distribution of our recorded data.

An important consequence of this randomization method

is that any particular sequence of events in the original

data, e.g., distinct fast rising synaptic potentials, disap-

pears in the phase randomized trace. Still, we found

repeated motifs in this type of surrogate data as well,

and one of them is illustrated in Figure 4B (right panel),

next to an example from the recorded data (left panel).

Both of the methods described above acted upon the

entire recorded data in order to produce a corresponding

random surrogate data. We also developed a method to

generate randomized data based on a small number of

parameters extracted from the recorded data, by using

a simulation of a cell that receives Poisson-distributed

random synaptic inputs (see Figure 3C and Experimental

Procedures). The aim of the simulation was to generate

voltage fluctuations similar to those in the physiological

data using a relatively simple and comprehensible random

process, even if such a simulation does not fully reflect

actual presynaptic properties and rates. Indeed, simu-

lated voltage distributions were unimodal (see Supple-

mental Data, Figures S2A and S2C), as expected from

similar stochastic models (Rudolph et al., 2004), whereas

most of our recordings had a tendency toward bimodal

voltage distribution. Although these simulations fed cells

with completely stochastic synaptic inputs, the resultant

Figure 2. HRI Scores of Motifs of 1 s and 2 s Duration, Sorted

from Highest to Lowest, for Two Different Cells

Abscissa is normalized by the total number of motifs. In each cell,

distributions of motifs of 1 s and 2 s durations show remarkable

similarity when compared to differences across the cells.
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traces exhibited motifs (Figure 4C), as was also found

by the other two methods.

Statistics of Motifs in Physiological

and in Surrogate Data Are Similar

The appearance of high-precision motifs in randomized

data might be considered surprising. In itself, however, it

is insufficient for drawing any conclusions. Hence, we

proceeded with a detailed comparison between various

statistical properties of motifs found in the physiological

and the randomized data. First, we compared the entire

distribution of motifs, when they were rank ordered by

their HRI scores. The distributions of the HRI scores of

all the motifs found in the physiological data and in the

corresponding surrogate data are presented for two of

the recorded cells in Figures 5A and 5B. The data is pre-

sented in a semi-log scale to emphasize higher-ranked

motifs. The HRI distributions of phase randomization

and Poisson simulations were obtained from single ran-

domized surrogate, whereas for the time domain inter-

val-shuffling method the green solid curve was obtained

by averaging HRI-ranked distributions of 40 independent

shuffles of the original recorded trace. Dashed green

curves are the 99% confidence limits of this average

distribution (see ‘‘Statistical Analysis’’ in the Experimental

Procedures section). For both cells, the distribution of the

top recorded motifs is within the confidence limits range

of data obtained using time domain shuffling. At lower

HRIs, the physiological curve slightly departs from the

upper confidence limit of the time-domain-shuffled data.

To compare the number of motif repetitions and their

mean HRI scores across cells, rather than just between

each physiological data and its corresponding random

data, we limited the search for motifs to the duration of

the shortest recording, i.e., to the first 10 min of continu-

ous recording from each cell. In some cells, more motifs

were found in the physiological data, while in others it

was the surrogate data that exhibited more motifs

(Figure 5C). However, the differences in the number of

motifs were more significant across the cells (p < 0.04,

two-way ANOVA) than within cells (p > 0.1) for different

data sets. For example, the number of motifs in the phase

randomized data of cell 1 is by 25% higher than the

number of motifs found in the phase randomized data of

cell 3, yet the number of motifs in these randomized traces

is smaller only by 5% than the number of motifs found in

the corresponding original data.

To compare the mean HRI scores of motifs found in

recorded data and in the three types of surrogate data,

for each data set we calculated the mean HRI value of

three subpopulations—the mean HRI score of the entire

distribution (Figure 5D), the mean HRI of the top 1000

HRI-ranked motifs (Figure 5E), and the mean HRI of the

top 10 motifs (Figure 5F). Across cells, the mean HRI score

of the recorded data was slightly higher than the value

measured from the time domain shuffles (2.0%, 3.6%,

and 8.0% difference in Figures 5D–5F, respectively).

At the upper range of HRI scores (Figures 5E and F),
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Figure 3. Stochastic Surrogate Data Were Generated by

Three Different Methods

(A) Time domain interval shuffling. Using two levels of potentials (deter-

mined from 1/3 and 2/3 of the density distribution), the data were

fragmented into short segments. Each segment starts and ends at

one of the two levels, and its duration was the longest possible below

500 ms. Five different segments are marked by colors. The fragments

were then randomly assembled to generate a new continuous voltage

trace.

(B) Frequency domain phase randomization. The recorded data were

decomposed into its frequency components using FFT. For demon-

stration, two components, 5 Hz and 10 Hz, are shown (blue). Each

component was shifted by a random phase (red), and new random

data were constructed by summing up all phase randomized compo-

nents.
however, confidence limits cover a larger range, and in

some cells they indicate that the differences were nonsig-

nificant. Moreover, we found a strong correlation between

the physiological HRI scores and those of the time-

domain-shuffling surrogate (r2 > 0.98, p < 0.002 for each

of the three ranges) and also between the physiological

HRI scores and simulated surrogate (r2 > 0.93, p < 0.002

for each of the three ranges). For the phase-randomized

surrogate, the correlation was nonsignificant due to the

lower HRI scores obtained for cell 3. We conclude that

the three types of surrogate data capture the primary

statistical properties of the recorded HRI distributions.

One issue of concern with any method that produces

surrogate data from recorded data is its effect on genuine

motifs, if they do exist. In the Supplemental Data, we show

that even if one epoch (selected randomly) is artificially im-

planted in random places of a 20 min continuous data,

approximately once per minute, it is easily ‘‘detected’’ by

comparing the HRI scores distribution of this synthetic

data to its shuffles. Thus, the small differences between

the distributions of the physiological and the randomized

data that were found suggest that the vast majority of mo-

tifs are a result of the coarse characteristics of the recorded

trace, such as its power spectrum and voltage distribution.

Nevertheless, we proceeded with examining additional

statistical properties which further support this hypothesis.

In Ikegaya et al. (2004), it was reported that the mean

duration between the repeats of a motif can vary substan-

tially, from less than a second to minutes. To understand

the source of this variability, we compared the distribution

of the time interval between the repeats of each motif in

10 min of recorded data to that in the random data

(Figure 6). Panel A of Figure 6 shows that shorter intervals

between repeats were more abundant and that the density

function declines linearly with the increasing interval length.

The same behavior is observed for the top 1000 motifs

(inset in Figure 6A), both from the physiological data and

from the random data. The observed density function co-

incides with the distribution of the distance between two

points that are randomly and independently selected in

a unit interval (each point with a uniform probability). In

this case the expectation of the distance is 1/3, which

closely matches the mean time interval (normalized by

the recording duration) between a motif and its repeat.

This result was obtained for all cells and all randomization

methods (Figures 6D–6F) and independently of the re-

cording duration (Figures 6B and 6C). This result seems

to match the measures of (Ikegaya et al., 2004), after nor-

malizing the reported mean time interval by the reported

mean duration of the recordings. These observations indi-

cate that motifs’ appearance times are random.

(C) Simulation of a single compartment neuron with Poisson-distrib-

uted synaptic inputs. The simulation parameters (average rates of

excitatory and inhibitory synaptic inputs, their maximal conductance,

and time constants) were obtained using a simulated annealing

algorithm by minimizing the differences in power spectra and voltage

distribution between the simulated and the recorded data.
Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 417



Neuron

Stochastic Emergence of Cortical Motifs
Figure 4. Motifs from the Original Data

and the Corresponding Surrogate Data,

from Three Different Cells and from

Three Different Surrogate Data Types,

Chosen from the 50 Top-Ranked Motif

Pairs

(A) On the left side, an example of a motif pair

found in recorded data, and on the right, a motif

found in its interval-shuffled surrogate.

(B) Left side, a motif from a different cell, and on

the right, a motif from its phase-randomized

surrogate.

(C) An example of a motif from a third cell and

on its right a motif from a simulated neuron

with random Poisson-distributed inputs.
An additional characteristic that may distinguish be-

tween deterministic and stochastic processes of motif

generation is the number of times a motif is repeated. A

network-controlled mechanism of repeating motifs is

expected to repeat motifs more times than dictated by

chance. To test this possibility, we searched for multiple

repeats and compared them across different data sets.

In this analysis, we limited our search in each cell to the

top 1000 motifs as ranked by their HRI scores. Triplets,

quadruplets, quintuplets, and multiple repeats of higher-

order appeared in all the cells and all the data sets that

were analyzed (Figure 7). The frequency of the number

of multiple repeats decreases almost equally across

different cells and data sets. Note that the differences

between the physiological data and the time-domain-

shuffled data are not significant, as is indicated by the

confidence limits bars for this surrogate data.

DISCUSSION

Summary of the Findings

In this study of cortical neurons in the anesthetized rat, we

find that 1 s epochs of spontaneous subthreshold activity

can faithfully repeat seconds to minutes apart. To test the

expected occurrence of motifs, we generated randomized

data that preserve the dynamics of the recorded data. The

statistical properties of the motifs found in the recorded

and the surrogate data, such as their number, HRI distri-

bution, the time interval between motif repeats, and the

number of motifs with more than two appearances, were

very similar, in particular when the most similar repeating

patterns are considered.

Any of the randomization methods inevitably altered

some of the characteristic of the recorded data. This is

particularly true for the phase randomization and simula-

tion of Poisson-distributed synaptic inputs. Therefore,

we could expect, a priori, some statistical differences
418 Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc
between physiological and surrogate data and we would

be greatly surprised if they were completely identical in

all statistical properties. The fact that the differences in

motif statistics between recorded and random data were

found to be very small (at the order of few percents at

the most), together with the results of our test of synthetic

data with planted motifs, strongly support our argument

that 1 s repeating motifs emerge stochastically rather

than by a network-controlled mechanism.

Comparison to Previous Studies

According to several measures (Friedberg et al., 1999), our

recordings were obtained from lightly anesthetized rats.

We support this by the fact that membrane potential

fluctuations in our study somewhat resemble the mem-

brane potential activity recorded from awake animals

(Crochet and Petersen, 2006; DeWeese and Zador,

2006). Cells recorded in the present study show less bi-

modality of voltage distribution when compared to several

previous studies describing UP and DOWN states of

membrane potential fluctuations (Anderson et al., 2000;

Compte et al., 2003; Leger et al., 2005; Sachdev et al.,

2004; Wilson and Kawaguchi, 1996). At the same time,

the membrane potential fluctuations that we find in our

study span a range of potentials similar to that reported

in these previous studies. Analysis of the transition times

between UP and DOWN states suggests that these transi-

tions are nonperiodic, uncorrelated, and their generation

by stochastic or chaotic oscillators could not be ruled

out (Stern et al., 1997). Indeed, recent models of UP and

DOWN states attribute this activity to stochastic mecha-

nisms (Compte et al., 2003; Holcman and Tsodyks, 2006).

The stochastic nature of spontaneous activity was

challenged in several papers that demonstrated repeating

temporal structures. A study which was performed in

cortical slice cultures, revealed brief repeating patterns

(few milliseconds long) that have been hypothesized to
.
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Figure 5. Distributions of Number of Motifs and HRI Scores in Recorded Cells and Their Corresponding Surrogate Data

(A and B) HRI scores for all the motifs found in two different cells, sorted in decreasing order. Recorded data and the three types of surrogate data have

very similar distributions of HRI scores (see also Figure S3). The time-domain-shuffled curves (green) are the averages of 40 independent shuffles of

the original recording, and the dashed green curves are their confidence intervals (p = 0.99).

(C) The total number of motifs found in the first 10 min of recording of each cell and in the corresponding surrogates. Observe that the number of motifs

found in the recorded data and in the surrogates produced by time domain shuffling and by phase randomization closely match. Error bars at the time

domain interval shuffling bars correspond to upper and lower 99% confidence limits. A two-way ANOVA test shows no significant difference between

recorded data and different surrogates and at the same time a significant difference across the cells (p < 0.05).

(D–F) Mean HRI score for each cell’s original trace and for the corresponding surrogates calculated for the entire distributions, top 1000 ranked motifs,

and top 10 ranked motifs, correspondingly. Error bars denote the 99% confidence interval for time domain interval shuffling.
serve as building blocks for information representation

(Beggs and Plenz, 2003, 2004). The existence of short

patterns in in vivo recordings was not addressed in our

study. The most striking evidence for repeating temporal

patterns is provided by several studies which demon-

strated long repeating patterns in spontaneous firing and

voltage fluctuations of cortical neurons (Cossart et al.,

2003; Ikegaya et al., 2004; MacLean et al., 2005; Mao

et al., 2001). In our study, the number of motifs was higher

than previously reported for cells recorded in vivo (Ikegaya

et al., 2004), while the mean HRI score was lower. Yet, in

both cases the maximal HRI scores were similar. We
conjecture that the high number of motifs in our study is

a consequence of longer recordings (since the number

of candidates grows quadratically with recording duration)

and of the differences in the dynamics of the activity.

In previous studies (Ikegaya et al., 2004; MacLean et al.,

2005), two statistical methods were used to test whether

motif occurrence exceeds chance level. First, recordings

from different cells were searched for matching patterns

(Ikegaya et al., 2004) and the low number of cross-cell

motifs was regarded as an indication for the significance

of motif appearance in any given cell. However, if the

activity dynamics of the two cells is different, as we find
Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 419
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Figure 6. Appearance Times of Motifs Are Random

(A) Density function of the normalized time interval between the repeats of a motif, for all motifs found in the first 10 min of recorded data and three

types of surrogate data. Inset shows the density function for the top 1000 ranked motifs. Total recording duration was normalized to a unit length and

divided into 50 bins. Frequency of occurrences at each bin was normalized by the total number of motifs to obtain the density function for each data

type. The observed density function matches the assumption of randomly distributed motif appearance times.

(B–F) Average time interval between a motif and its repeat. The interval length is normalized by the length of the data. Blue, green, and brown bars are

the results for the top 104, 103, and 102 motifs, respectively. The red line denotes the expectation of the distance between two points selected

independently and uniformly from a [0,1] interval, which is 1/3. Error bars are SEM and asterisks indicate significant results (p < 0.01). Significant

but small deviations from this chance level occur even in surrogate data.
in our sampled population, the number of pattern matches

across cells is indeed likely to be lower than within cells,

whether they occur by chance or not. To support their con-

clusion, Ikegaya et al. (2004) also compared motif statistics

from recorded data against surrogate data. A threshold

was set to identify large PSPs, while the voltages below the

threshold were set to the threshold value. Then, surrogate

data were generated by shuffling the inter-PSP periods.

This method transforms the continuous recording into dis-

tinct events by a user-defined subjective threshold, thus

ignoring a large portion of the recording, such as negative

deflections and depolarizing events below the threshold.

Using this method, Ikegaya et al. (2004) found that the

number of motifs in the surrogate data was considerably

lower than in the recorded data. We suspect that this
420 Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc.
type of shuffling affects local correlations that may exist

in the original data, e.g., the typical time between a large

PSP and the following PSP, thus reducing the number of

motifs in the shuffled data. We note that the above shuffling

method was not applicable to our data, since the activity

was rarely quiet for a sufficiently long period in order to

be substituted by segments of constant voltage.

Appearance of Motifs in Recorded

and Randomized Data

In the time-domain-shuffling method used in the present

study, the data were fragmented into segments shorter

than 500 ms and then randomly reassembled, resulting

in a continuous subthreshold activity with voltage distribu-

tion identical to the original one. Because fragmented
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Figure 7. Number of Motifs that Repeat Multiple Times among the Top 1000 HRI-Ranked Pairs, in Recorded Data and Three Types

of Surrogate Data

For the interval-shuffled surrogates (green), the mean count in 40 shuffles is presented and the error bars are the confidence interval (p = 0.99). For

other types of data, the presented values were obtained from a single randomization. The number of motifs with multiple repeats were within the

confidence intervals of the interval-shuffled surrogates in all cells and all data types, except for two cases (number of triplets in phase randomized

surrogate of cell 2 and cell 4 [A]).
epochs were relatively long, this shuffling procedure max-

imally preserved the local correlations in the data, yet

enabled determining the significance of motifs of 1 s

length. If the top-ranking instances of motifs occur beyond

chance level, then cutting these motifs into segments and

shuffling them among a much greater number of nonmotif

segments is expected to greatly reduce the number of

highly similar motifs. Our results show that this is not the

case (Figures 5A and 5B). In fact, confidence limits for

the time domain shuffling (obtained using multiple inde-

pendent shuffles), indicate that the top similar motifs are

expected by chance. As the similarity index drops, small

deviations above the upper confidence limit were found.

These small differences are unlikely to reflect the exis-

tence of (even a small number of) repeating motifs above

the chance level: when we tested our detection method,

using an artificially implanted motif (inserted 20 times at

random locations), we found that the distribution of HRI

scores was profoundly reduced after shuffling (Supple-

mental Data, Figure S4).

The observed small differences between the physiolog-

ical and the time-domain-shuffled distributions may arise

from several sources of bias introduced into the HRI

statistics. The time domain shuffling is limited in its ability

to produce dynamics identical to the original data, for sev-

eral reasons. First, segments longer than 500 ms were

excluded from reassembly (1%–2% of the data). Omitting
N

these segments might bias the number of motifs toward

lower values. A second type of bias is introduced by

(slope) discontinuities at the end points of the fragments,

which may produce distorted synaptic events at the reas-

sembly points. The presence of distorted short events is

likely to reduce, to some extent, the correlations between

epochs. A third source of bias is introduced by a reduction

of local correlations that exist in the physiological data and

extend beyond 500 ms, which may result from synaptic

mechanisms such as short-term depression or slow volt-

age-dependent currents. Eventually, despite our require-

ment for a highly stable activity, nonvarying power spec-

trum and similar membrane potential distribution along

the entire recording period, slow and small changes in

the dynamics of the physiological activity may exist.

Such variations are also expected to be eliminated by

the shuffling procedure and therefore bias the results.

Despite these factors, the number of motifs and the distri-

bution of similarity index were found to be very close to

those of the recorded data.

The two additional randomization methods (phase

randomization and the simulation of a point neuron with

Poisson-distributed synaptic inputs) provide a better

understanding of how motifs emerge out of a stochastic

process. The presence of a large number of highly similar

motifs in the surrogate data produced by the phase-ran-

domization method is particularly surprising. This finding
euron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 421
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Figure 8. Examples of Pattern Matches

between Physiological Traces (Blue)

and Simulated Poisson Process Surro-

gates (Red), from Two Cells
indicates that repeating epochs appear by chance in

a noise signal, provided it is long enough and its spectrum

is constrained to the one observed in the subthreshold

activity. We do note, however, that the resemblance of

motif statistics in the original and the phase-randomized

data depends on the type of subthreshold activity. For ex-

ample, phase randomization in cell 3 shows lower mean

HRI when compared to the recorded data and other types

of randomized data (Figures 5D–5F). This cell had fast and

smooth transitions between two voltage states, whereas

phase randomization produces noisy fluctuations at all

voltage levels. Yet, for most cells, both the time-domain-

shuffling and the phase-randomization methods produce

a miniscule difference in the number of motifs and in their

HRI scores.

In the third method, random data were generated using

simulations of a neuron receiving Poisson-distributed

synaptic inputs. The Poisson distribution is frequently used

to describe the firing of cortical cells (Abeles et al., 1993;

Aertsen et al., 1989; Lestienne and Tuckwell, 1998; Riehle

et al., 1997). With this method, we have directly tested the

hypothesis that repeating motifs may arise from random

synaptic inputs, in the absence of any network mecha-

nisms. In most cases, both the number of motifs found

in simulated data and their mean HRI scores were higher

than those measured in the physiological data. These re-

sults should be cautiously interpreted to avoid concluding

that the observed spontaneous activity in cortical neurons

is a result of Poisson-distributed synaptic inputs. Rather,

the aim of the method was to produce a random activity

of maximal similarity to the recorded data. Indeed, voltage

fluctuations that were produced by the simulation resem-

ble those that were recorded in vivo, and matches of

similar patterns across these two data types could be

found (Figure 8). The obtained set of simulation parame-

ters was not necessarily within the physiological range of

cortical synapses. For example, the time constants of

excitatory and inhibitory inputs (on average 5.1 ms and

13.4 ms, respectively) are several times larger than exper-

imentally measured for synapses in cortical neurons

(Beierlein et al., 2003; Cowan and Stricker, 2004). Thus,

each synaptic event in our simulations may actually repre-

sent a transient conductance rise, generated by a syn-

chronized volley of synaptic inputs that lasts up to tens

of milliseconds. Nevertheless, regardless of the actual
422 Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc
underlying synaptic mechanisms that generate spontane-

ous activity, the method that was used to simulate the

data captured the major dynamics of the activity and indi-

cates that motif statistics can be recapitulated by random

synaptic inputs.

Several statistical properties further suggest that small

differences between the physiological and surrogate

data in the number of motifs and their mean score do not

reflect any controlled mechanisms for motif generation.

The distribution of the time interval between two repeats

of a motif in the recorded data and in the three types of

randomized data matches that of a random process (see

Figure 6) and seems to be consistent with previous reports

(Ikegaya et al., 2004). In addition, the number of triplets,

quadruplets, quintuplets, and multiple repeats of higher

order is similar to that found in the randomized data (Fig-

ure 7). Moreover, HRI statistics differences between the

cells were significantly higher than the differences be-

tween the data recorded from a cell and its corresponding

types of surrogate data (Figures 5C and 5D). This observa-

tion implies that the random models that were used to test

for motif significance captured the properties of the activity

that affect motif statistics. The close similarity between the

statistical properties of motif appearance in the physiolog-

ical data and those found in the surrogate data suggests

that coarse factors, such as the dynamical characteristics

of subthreshold activity and in particular its limited power

spectrum, can closely predict motif emergence statistics.

Coarse temporal statistics were also proposed to account

for repeating patterns of spikes (Oram et al., 1999).

The stochastic emergence of motifs is not limited to the

barrel cortex. We used the time domain interval-shuffling

method to test the statistical significance of motifs found

in spontaneous activity of three cells recorded from the pri-

mary visual cortex of the cat (Ikegaya et al., 2004; Lampl

et al., 1999). We found no significant differences between

the distributions of motifs in the physiological data and

their interval-shuffled surrogates (Figure 9). Thus, we be-

lieve that our results may be generalized to other cortical

areas and other species. Nevertheless, we cannot exclude

the possible existence of deterministically repeating mo-

tifs in the subthreshold activity of cortical neurons in brain

slices or during sensory stimulation. Sensory stimulation,

in particular, may drastically change the dynamics of

cortical activity (Anderson et al., 2000). Yet, several studies
.
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show strong link between evoked and spontaneous

activity (Arieli et al., 1996; DeWeese and Zador, 2006;

Lampl et al., 1999; Petersen et al., 2003; Sachdev et al.,

2004), implying that a large portion of the sensory evoked

response is predicted from spontaneous activity and that

both may share similar dynamical properties. However,

Figure 9. Analysis of Repeating 1 s Patterns in Two Cells

Recorded In Vivo from the Cat Primary Visual Cortex (93 and

190 s Recording Durations, Respectively)

We selected for analysis three recordings that met similar criteria as

were used for the rat barrel cortex recordings: significant subthreshold

activity with amplitude of at least 5 mV, stability of recordings, absence

of significant voltage drifts, and absence of significant oscillatory

epochs.

(A) An example of high-similarity motif found in recorded data of cell 1

(HRI = 2.8).

(B) HRI scores for all the motifs, sorted in decreasing order. There are

no significant differences between HRI distributions of the recorded

data and the time domain interval-shuffled surrogate (p > 0.51, Kolmo-

gorov-Smirnov) or between the corresponding distributions of the top

100 most similar motifs (p > 0.27).

(C) HRI distribution of motifs found in recording from another cell.

There are no significant differences between HRI distributions of

the recorded data and the time domain interval-shuffled surrogate

(p > 0.07, Kolmogorov-Smirnov) or between the distributions of the

top 100 most similar motifs (p > 0.9).
the possibility that nonstochastic, network generated

motifs may be found during sensory processing remains

open. The methods presented here could be useful in

future studies of motifs under different experimental

conditions.

EXPERIMENTAL PROCEDURES

Electrophysiology

Intracellular membrane potential recordings of neurons in the barrel

cortex of anesthetized rats were performed as described previously

(Katz et al., 2006) using the standard patch technique. Briefly, after

induction of anesthesia with ketamine (100 mg/kg) and xylazine

(1 mg/kg) mixed with saline (50%), tracheotomy was made and the

animal was placed in a standard stereotaxic device. Body temperature

was kept at 37.0�C ± 0.1�C by means of a heating blanket and rectal

thermometer (TC-1000, CWE). Maintenance and control of the anes-

thesia were achieved by a mixture of air and halothane (<0.8%), by

means of artificial respiration at a rate of 100–115 bpm, while monitor-

ing the levels of end-tidal CO2 and heart rate. Anesthesia level was

monitored by heartbeat rate (300–450/m), eyelid reflex, vibrissa, and

pinch withdrawal movements. We assess the anesthesia level that

was used in our recordings to be between stages III-3 and III-2. Crani-

otomy of 1 mm in diameter above the barrel cortex was performed, and

the dura was removed. All surgical and experimental procedures were

performed in accordance with the Weizmann Institute Animal Care and

Use Committee.

Standard patch electrodes were filled with an intracellular solution

containing 136 mM K-gluconate, 10 mM KCl, 5 mM NaCl, 10 mM

HEPES, 1 mM MgATP, 0.3 mM NaGTP, 10 mM phosphocreatine,

310 mM mOsm. Patch electrode resistance was 5–8 MU. Series

resistance during the recordings was 40–100 MU. Compensation for

junction potential was not applied. After the electrode was advanced

a few microns inside the cortex, the brain was protected from drying

by covering the craniotomy with warm agar (3%). Recordings were

obtained in the absence of whisker stimulation and current injection.

Signals were amplified using Axoclamp-2B (Axon Instruments) and

low-passed at 3 kHz before digitization at 15 kHz or 20 kHz.

Data Analysis

Below we provide a short description of the methods used for detec-

tion and statistical analysis of motifs in subthreshold recorded activity.

For a detailed description of the data analysis methods see the

Supplemental Data.

Motif Search Methodology

Repeated segments of subthreshold spontaneous activity of similar

shape (cortical motifs) were detected and quantified employing the

algorithms described in Ikegaya et al. (2004). Briefly, spikes in long

voltage traces (10–20 min) were removed from the digitized data for

subsequent analysis by interpolating the membrane potential trajec-

tory from 1 ms before spike threshold to 3 ms after the threshold using

a fifth-order polynomial fitting based on three samples on each side of

this window. These traces were digitally low-pass filtered at 500 Hz

and resampled at 1 ms resolution. We searched the data for motifs

of 1 or 2 s length by comparing segments of same length against

each other with steps of 250 ms. First, the two segments were aligned

to maximize the correlation value. A pair of segments with coefficient of

correlation above the threshold value of 0.45 was considered a motif

and its HRI similarity score was calculated (see Supplemental Data

of the present paper and the supporting online material of Ikegaya

et al. [2004]).

High similarity of two segments yields a high HRI score. Other impor-

tant properties of the HRI score are amplitude invariance and a relative

lack of sensitivity for short subregions of dissimilarity. A pair which is

similar almost entirely, except for a few short subregions, would still

get a high HRI score.
Neuron 53, 413–425, February 1, 2007 ª2007 Elsevier Inc. 423
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The search algorithm was implemented in C++ (VC7 compiler,

Microsoft Windows and GNU C++ compiler, version 4.0.3, Linux).

Surrogate Data

For each recorded cell, we produced three different types of surrogate

data to be used in the statistical analysis of motif appearance. The first

type of surrogate data is created via time domain interval shuffling (see

a schematic illustration in Figure 3A). Briefly, the data are fragmented

into intervals shorter than 500 ms, thus breaking each 1 s motif in the

original data into three pieces at the least. Then the intervals are ran-

domly shuffled and reassembled. Time domain shuffling produces

data which has the same voltage distribution as the physiological

data and with almost similar power spectrum density (see Figure S1).

The second type of surrogate data was generated by shuffling the

original data in the frequency domain (for a schematic illustration of

the method see Figure 3B). We used fast Fourier transform (FFT) to

decompose the original data into its frequency components, each

characterized by its amplitude and relative phase. While keeping the

amplitude of each component, the original phases were replaced by

randomly chosen phases, and the surrogate data was created by

summing all the phase-randomized frequency components. This pro-

cedure generates a trace of identical power spectrum to the original

trace, but eliminates any specific temporal structures of the original

recording.

The third type of surrogate data was based on a simulation of

a passive, single compartment neuron receiving inputs modeled by

two excitatory and one inhibitory Poisson process, each representing

a different population of synapses (Figure 3C). The rate, strength, and

time constants of the inputs were optimized, using a simulated anneal-

ing algorithm, to produce subthreshold fluctuations with power spec-

trum, voltage distribution, and voltage variance that are as similar as

possible to the recorded data.

All the computations described above were implemented in Matlab7

(The Mathworks, Inc).

Statistical Analysis

Several statistics were used to compare between recorded data and

random surrogates: the number of motifs, their HRI scores, the time

between motif appearances, and the number of multiple repetitions.

Confidence intervals for the statistics of motifs found in the time-

domain-shuffled surrogates were estimated for the number of motifs,

means of HRI scores, and numbers of multiple repeats, from the distri-

butions of 40 random shuffles (for each cell). These confidence inter-

vals (99%), presented in Figures 5 and 7, were calculated based on

the t distributions after the null hypothesis of normal distribution could

not be rejected (Kolmogorov-Smirnov test, a = 0.05). Assuming that

the corresponding statistics of other data sets in each cell is also nor-

mally distributed, the confidence limits could be used for statistical

comparisons.

Two-way ANOVA test was used only in Figure 5C. In this case, the

statistic of the number of motifs in the multiple time domain shuffles

passed Bartlett’s test of equal variances across cells (p > 0.33). We

also assumed equal variance across cells for the other data sets,

where only a single sample was obtained.

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/53/3/413/DC1/.
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