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Abstract

This article presents a review of reverse correlation in neurophysiology. We discuss the basis of
reverse correlation in linear transducers and in spiking neurons. The application of reverse correlation
to measure the receptive fields of visual neurons using white noise and m-sequences, and classical
findings about spatial and color processing in the cortex resulting from such measurements, are em-
phasized. Finally, we describe new developments in reverse correlation, including “sub-space” and
categorical reverse-correlation. Recent results obtained by applying such methods in the orientation,
spatial-frequency and Fourier domains have revealed the importance of cortical inhibition in the estab-
lishment of sharp tuning selectivity in single neurons.
© 2004 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction—history and background

The article is about reverse correlation in neurophysiology. Reverse correlation is a technique
for studying how sensory neurons add up signals from different locations in their receptive
fields, and also how they sum up stimuli that they receive at different times, to generate a
response. Recently we have developed a variation of reverse correlation that also allows us
to study the time evolution of sensory neurons’ responses to different categories of stimuli
and have applied this to the study of visual signal processing in the visual cortex. After we
introduce the ideas behind the technique, we will discuss various interesting discoveries about
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sensory function that have come out of experiments that used reverse correlation to study spatial
and temporal processing, and some of our new results about the time evolution of categorical
responses.

Many sensory neurons can be understood as stimulus-response transducers that are driven by
sensory stimulation from the outside world. Such a neuron is quiet or in a background state in the
absence of stimulation. Then, when presented with an appropriate stimulus, the neuron is either
activated above its background level of activity or in some cases suppressed below background
in a more or less consistent manner from one stimulus presentation to the next. When the stimu-
lation ceases, the sensory neuron’s activity relaxes back to the background state. This functional
description applies to most sub-cortical sensory neurons that have been studied. In the sensory
areas of the cerebral cortex there are neurons that behave as sensory transducers according to
how we have defined it here, though not all the cortical neurons fit this description. Any cortical
neuron that is involved in memory or decisions or action will have some activity that is not
stimulus driven, and therefore such a neuron will not fit neatly into the definition of a transducer
neuron. The techniques that we will be discussing in this review paper under the heading of
“reverse correlation” are only applicable to neurons of the transducer type. These techniques
do not apply to cell’s whose response depends on memory or decisions or action. Nevertheless,
there are many neural transducers that are worth understanding in order to understand how the
nervous system works and how neuronal networks can explain aspects of behavior.

2. Linear transducers

The simplest transducers are linear, so let’s consider them first. The simplest linear transduc-
ers are those with a single input and a single output. We can find out the principles of reverse
correlation from these simplest transducers, which we’ll call linear-single-input, single-output
systems, or LSISOS. As illustrated inFig. 1a, a LSISOS will respond to a brief pulse of input
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Fig. 1. A linear time-invariant system is characterized by its impulse response,h(t). The figure illustrates two different
ways of measuring it. (a) The impulse response can be measured as the response to a brief pulse of unit area, or (b)
the impulse response of the system,h(t), can be measured by having a white noise input and cross-correlating the
resulting output with the input. The impulse response provides a full characterization of a linear system.
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of unit area with a responseh(t), its so-called impulse response. It turns out that if the system
is linear, once we know the impulse response, we know all there is to know about how the
LSISOS will respond to any input. This is because linear systems obey two principles: ho-
mogeneity and superposition. Homogeneity means that the response of a stimulusx that has
been scaled in intensity by a factorα has to equal toα times the response tox. Superposition
means that the response of the cell to a sum of two stimuli,x + y, must equal the sum of
the responses to the individual stimuli. Any input can be decomposed into a sum of pulses at
different times, of different heights; the response of an LSISOS to this sum is simply the sum
of its responses to each of the pulses appropriately scaled and translated in time. This process
of summation is usually called convolution and it is the basis for the synthesis of responses of
LSISO transducers to any input (e.g., seeBracewell, 1998). The point of this discussion is that
if we can measureh(t), the impulse response, then the LSISOS is understood.

3. Cross correlation with white noise

There are many operational ways to measure the impulse response of an LSISOS. One could
simply measure the response to a pulse. Or one could measure a frequency response with a
sequence of sinusoidal inputs, and recover the impulse response as the Fourier transform
of the frequency response (seeBrodie, Knight, & Ratliff, 1978for a physiological example
of this procedure). But for various technical reasons (and also theoretical reasons we will
address below) there is some advantage to determining the impulse response by using noisy
signals as inputs, and measuring the impulse response by means of cross-correlation. The cross
correlation function between the input stimulusS(t) and the output responser(t), in a system
that is stationary over time, is defined asC(t′) = 〈S(t)r(t + t′)〉, where〈·〉 means averaging
over time. Suppose the stimulusS(t) is a white noise. This means that the stimulusS(t) has
a flat power spectrum (it has the same energy at all frequencies), or equivalently that the
autocorrelation ofS(t) is an impulse function such thatA(t′) = 〈S(t)S(t + t′)〉 = δ(t′). Here,
δ(t′) is the Dirac’s delta function which is obtained as the width of a pulse of unit area tends to
zero. Then one can prove that, for an LSISOS driven by white noise:

C(t′) = h(t′) (1)

that is, the cross correlation function of the response with its white noise input is equal to the
impulse response (seeBracewell, 1998). This is an important theoretical result about white
noise analysis techniques for studying transducers (seeFig. 1b).

Because it is so important for understanding reverse correlation and its applications, we
need to study the cross correlation result in some detail. First, note that in the defining equation
C(t′) = 〈S(t)r(t + t′)〉, we intend fort′ to be understood as the time between when the stimulus
is presented and when the response is affected.C(t′) will only be non-zero for positive values
of t′ because the LSISOS’s in which we are interested are causal, that is they only respond
to past inputs and the response cannot depend on the stimulus at a future time. Next, let us
consider how the cross correlation is calculated. One chooses a time offsett′ and fixes that
value. Then for all stimuli at each timet, one looks ahead to the response at timet + t′, and
forms the productS(t)r(t + t′). Then one averages up all these products to get the correlation
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for the time offsett′. However, you could do it differently. After pickingt′ and fixing it, you
could choose to define the running time variable asu = t + t′. And then you could choose
r(u) and look backward to the stimulus that preceded it byt′, that isS(u − t′), and form the
productS(u − t′)r(u), and then average all these products as before. It is obvious that each of
the products is the same whether you choose the stimulus first or the response first, and the
sum is the same, and the sum is the cross correlation,C(t′) = 〈S(t)r(t + t′)〉 = 〈S(u− t′)r(u)〉.
But if one chooses the response first and looks back in time to find the stimulus that preceded
it, this is usually termed “reverse correlation.” But it should be clear that what one is doing
is calculating the same cross correlation function as if one had chosen the stimulus first and
calculated the “forward correlation.”

There are computational advantages to calculating the cross correlation in the reverse manner
when studying neurons that fire nerve spikes, and it is this technical advantage that has inspired
many papers that calculate the cross correlation by the reverse correlation procedure (de Boer
& Kuyper, 1968; Jones & Palmer, 1987; McLean, Raab, & Palmer, 1994; Reid & Shapley,
1992; Ringach, Sapiro, & Shapley, 1997; Ringach, Hawken, & Shapley, 1997, among others).
As we show below the main reason for the computational efficiency of “reverse correlation”
in spiking neurons is that, in these case, the response can be considered a sequence of 0s and
1s (with 0s representing times when the cell did not spike and 1s representing times when the
neuron spiked). Because there are usually a much smaller number of 1s than 0s in the sequence,
and because accumulating multiplications of the input by zeros is not very helpful, one can
restrict the calculation to those times when spikes are present. This makes the time complexity
of the calculation linear in the number of spikes. However, for neurons that produce only slow
potential responses to visual stimulation, for example, the horizontal cells in the retina, it is
quite clear that the “reverse” and “forward” correlation are two names for the same calculation.
An illustration of the results of such a calculation applied to horizontal cells in the catfish retina
by Ken Naka and his colleagues is shown inFig. 2 (from Naka, Chan, & Yasui, 1979). Here
the horizontal cell (H cell) is acting approximately as an LSISOS around each mean level of
illumination, and the cross correlation of the H cell’s response with a white-noise-modulated
light allowed Naka and colleagues to calculate the impulse response of the H cell at each light
adaptation level. These impulse responses reveal the slow time course of temporal integration
in the retina. The weak overshoot of the response is an indicator of some amount of temporal
adaptation to the stimulus even in the outer retina. This figure also illustrates that the time
course of the impulse response is influenced strongly by the mean level of illumination—this
is thus a very quantitative way of characterizing retinal light adaptation.

Fig. 2. Impulse response of a horizontal cell in the retina at different light adaptation levels as measured byNaka
et al. (1979).
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4. Spiking neurons

A neuron that fires spikes is not an LSISOS. The spike threshold makes it a highly nonlinear
system, and we need to take this into account. Let us consider the system that has an LSISOS
with impulse responseh(t) followed by a spike encoding mechanism, such as a Poisson spike
generator. The spike encoder is one example of a class of possible nonlinear transducer stages.
In this caseBussgang’s theorem (1952)established that if one performs a cross correlation of
the output of such a system with white noise input, one will obtain the result that the cross
correlationC(t′) is proportional toh(t):

C(t′) = 〈S(t)r(t + t′)〉 = Kh(t) (2)

whereK is a constant that depends on the details of the nonlinearity in the spike encoder and the
variance of the white noise signal. For neuroscience this is a very important result because it
means we can use cross correlation to study the neural interactions that drive spiking neurons.

Now we can point out how the reverse (or triggered) correlation technique works for this
case of an LSISOS followed by a spike encoder. All the more sophisticated spatio-temporal
studies are just generalizations of this result. To calculateC(t′) we can choose to assemble the
products of stimulus and response that make up the grand sum by first noticing the fact that
the response is non-zero only at the times of occurrences of nerve spikes. SoC(t′) is simply
the finite sum of terms liker(ui)S(ui − t′) whereui is the time of occurrence of thei-th spike.
That is, for each spike we look back in timet′ earlier and take the stimulus then and add it to
the grand sum forC(t′) (because we assign unit height to each nerve spike). Then we get the
reverse correlation equation (de Boer & Kuyper, 1968):

C(t′) = 〈S(t)r(t + t′)〉 ≈ 1

N

N∑

i=1

S(ui − t′) (3)

As above, we note this is simply the cross correlation function and in this case will equal
h(t′), the impulse response of the LSISOS front end. One has to be aware, however, that not
any type of spike encoder will lead to this result. A spike encoder that fires every time when
the signal crosses a threshold (in the upward or downward direction), will result in a different
expression (de Boer & Kuyper, 1968). However, for a more realistic model of a spike encoding
mechanism that generates an inhomogeneous Poisson process whose rate is controlled by the
membrane potential,Eq. (3)works.

5. Multi-input systems and the spatio-temporal impulse response

While LSISOS’s are relevant to the study of temporal processing in audition, the field in
which reverse correlation was introduced into neuroscience (de Boer & Kuyper, 1968), in
visual neuroscience the nature of spatial interactions and spatial summation is equally if not
more important. There have been several extensions of the reverse correlation technique to
the study of neural systems that are characterized by spatial and temporal summation and
integration. In a sense such systems can be viewed as having multiple inputs from each spatial
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location in the receptive field, and a single output. A linear transducer of this type could be
called a Linear Multiple Input Single Output System, i.e., LMISOS. Such a system can be
characterized by its spatio-temporal impulse response,h(x, y, t) (Brodie et al., 1978; Yasui,
Davis, & Naka, 1979), a concept that was suggested in the highly original work byRodieck
(1965). The spatio-temporal impulse response will predict the response of a LMISOS to any
arbitrary sequence of images. One way of seeing this intuitively is thath(x, y, t) specifies the
temporal impulse response for every position in the spatial field (x, y). Since we are considering
linear systems only here, the response to a temporal sequence of images will be the sum of the
responses elicited by each of the locations in the image. Each of these separate responses can
be calculated from the temporal sequence of intensity values of the image at each location, say
for instance location (x, y) and the temporal impulse response at that location,h(x, y, t). So once
we knowh(x, y, t) for a LMISOS, we can predict its responses. Another way of understanding
the spatio-temporal impulse response,h(x, y, t) is that it is a temporal sequence of maps in the
(x, y) plane that describes the time evolution of the neuron’s spatial distribution of sensitivity,
as we will illustrate inFig. 5.

The operational question becomes, how can we recoverh(x, y, t) experimentally for such
LMISOS’s? There is a natural way to do this extending the notion of reverse correlation to input
stimuli that are not simply sequences of numbers as a function of time, but rather sequences
of visual images. Suppose each picture element, denoted (x, y), is modulated in time by a
white noise stimulus. Further, suppose all picture elements are modulated around the same
mean luminance. And further, suppose that the cross correlation between the luminance values
between any two positions on the image is zero, meaning that all the picture elements in
the image are uncorrelated. Such an ideal stimulus isspatio-temporal white noise, and it is
approximated by the “snow” one can see on a TV set that is not tuned to any program channel.
If one were to use this stimulus as the input to a neuron that is an LMISOS, and were to perform
cross correlations between each of the inputs at each value of (x, y) and the output, one could
determine the spatio-temporal impulse responseh(x, y, t). In this case:

Cx,y(t
′) = h(x, y, t′)

Now suppose, as is usually the case, that we need to estimateh(x, y, t) for a neuron that fires
spikes. So it cannot be viewed as an LMISOS but rather it could be modeled as an LMISOS
followed by a nonlinear spike encoder. As with single-input systems, we can invoke Bussgang’s
Theorem and state that for a spiking neuron:

Cx,y(t
′) = Kh(x, y, t′)

Thus for spiking neurons also, we can recover the spatio-temporal impulse response by calcu-
lating the cross correlation between the stimulus and the neuron’s spike train when the neuron
is stimulated by spatio-temporal white noise.

It is in the calculation of the cross correlation of spatio-temporal white noise with neuronal
spike activity that reverse correlation has been used most effectively. One can calculateCx,y(t

′)
by taking each spike in the spike train, and finding the image that preceded it byt′ milliseconds,
and then adding this image into an image accumulator (adding up the pixel intensities across
images). One can do this for all values oft′. In this way one builds up a sequence of maps in (x,y)
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Fig. 3. Simple cortical cells can be modeled as a linear system acting on a spatio-temporal volume followed by a
spike encoder. The impulse response of the linear system,h(x, y, t), can be measured via reverse correlation when
the system is stimulated with spatio-temporal white noise.

that describes spatial sensitivity as a function of time offset between stimulus and response
(Fig. 3).

Erich Sutter provided one of the first demonstrations of how white noise analysis can be
used to measure the spatio-temporal impulse response in cat visual cortex (Sutter, 1975). He
devised an ingenious device where the (x, y) position of a dot on an oscilloscope was recorded
on an analog tape and the responses of the neurons were recorded on a second analog tape. To
compute the cross-correlation between stimulus and response the tapes would be delayed one
with respect to the other by a few milliseconds and then played back. The average stimulus
before a spike was computed by repeatedly exposing photographic film during the occurrence of
the spikes (photographic summation), by having the spikes trigger the exposure of the camera.
By repeating this procedure for different lags between the stimulus and response tapes Sutter
calculated the entire spatio-temporal response for a simple cell in cat area 17. He observed the
typical elongated “on” and “off” subfields described in the studies of Hubel and Wiesel. To
our knowledge this is the first time such a calculation was performed in a cortical cell.

Measurements of the spatio-temporal impulse response by cross correlation with spatio-
temporal white noise were also attempted in the retina byHida and Naka (1982). They stimu-
lated retinal ganglion cells in the catfish retina with white noise and derived spatial weighting
functions at the time delay of peak response. They triggered on each ganglion cell’s spike and
accumulated images at past times in a running sum, to estimate the cross correlation func-
tion. They observed asymmetries in the retinal ganglion cell receptive fields that had been
unobservable before.

Other kinds of stimuli have been used to determine the spatio-temporal impulse response
function. Jones and Palmer (1987)used small, rectangular bar stimuli, flashed at random
locations in the receptive fields of V1 cells in cat visual cortex. By using reverse correlation
between the evoked spikes and the positions and times of occurrence of the stimuli, they
estimated the spatial impulse response at a fixed offset (50 ms).Fig. 4 illustrates the kind
of (x, y) mapsJones and Palmer (1987)obtained for the spatio-temporal impulse response
of cat V1 neurons. Jones and Palmer’s stimuli were approximately similar to white noise in
power spectrum and autocorrelation, but differed greatly in other statistical measures. As has
been discussed elsewhere (Reid, Victor, & Shapley, 1997), the stimuli ofJones and Palmer
(1987)were “sparse” in time—most of the time the stimulus at each location (x, y) was zero.
Similar results with similar techniques were obtained in later work byDeAngelis, Ohzawa,
and Freeman (1993)who studied spatio-temporal receptive field properties in the adult cat as
well as in kittens. The approach of Jones and Palmer and of DeAngelis et al. is very unlike
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Fig. 4. Four examples (A–D) of spatio-temporal kernels of simple cells in cat area 17 measured by Jones and Palmer.
The reverse correlation calculations in these examples were performed for a time lag of 50 ms.

the stimulus ofSutter (1975)or Hida and Naka (1982)in which each pixel was modulated
like a Gaussian white noise. White noise stimuli like those used by Hida and Naka. have been
termed “dense noise” as opposed to the “sparse noise” stimulus of Jones and Palmer (Reid
et al., 1997). For a linear system, for example, an LMISOS, reverse correlation with either a
dense or a sparse white noise would give the same result, and for both the cross correlation
would equal the spatio-temporal impulse response. However, non-linear systems may have
significantly different cross-correlations with the two different kinds of noise, and then one
cannot easily equate the cross correlation with a spatio-temporal impulse function. For such
non-linear systems, more analysis is required (seeReid et al., 1997; Victor, 1992).

It is worth comparing and contrasting the visual receptive field measurements made with
the reverse correlation techniques and those obtained with “classical” receptive field mapping
techniques. One cannot escape some kind of systems analysis technique if one is attempting to
characterize a receptive field—it is like trying to speak without speaking in prose. In general, the
transfer properties of a neuron can be characterized by cross-correlating stimulus with response
whether the stimulus is a flashing spot, or a drifting bar, or a drifting or contrast-modulated
sine grating. (Technically, one has to take into account the autocorrelation of the stimulus.)
This is the reason for writing that all measurements of receptive fields are a kind of systems
analysis, whether intentional or not.
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The original idea of visual receptive fields came from H.K. Hartline in his studies of the
visual properties of retinal ganglion cells in the frog retina (Hartline, 1940). This was an idea
Hartline derived from E.D. Adrian, who in turn had used a term invented by C.S. Sherrington
(cf. the scholarly review of the history of retinal ganglion cell physiology byEnroth-Cugell,
1993). The frog ganglion cells from which Hartline recorded had no maintained discharge
of nerve impulses in the absence of stimulation, so the only nerve impulses they fired were
either responses to spots of light that Hartline flashed on the frog’s retina, or responses to the
turning-off of the light. The area on the retina from which he could evoke nerve impulses from
a ganglion cell Hartline termed the receptive field of that ganglion cell. Later work by Stephen
Kuffler on cat retinal ganglion cells (Kuffler, 1953) required a modification of Hartline’s defini-
tion of receptive field because cat ganglion cells have a maintained impulse rate in the absence
of stimulation. The modified definition was that the receptive field was the region on the retina
where stimulation could cause amodulation of the impulse ratearound the average level of
firing in the absence of stimulation.

It is also important that because of the maintained activity, Kuffler could observe stimulus-
dependent modulations in spike rate above and below the maintained activity. For this reason,
Kuffler was the first to recognize center-surround antagonism in the cat retinal ganglion cell:
stimuli in the periphery of the receptive field caused a response modulation of the spike rate
opposite in sign to that evoked by central stimuli (Kuffler, 1953).

From the beginning, it was clear that the receptive field was not an invariant characterization
of the spatial, visual properties of a neuron. This is because, as defined, it varies in size with
stimulus size and intensity and color and any other stimulus variable that determines the
effectiveness of the stimulus in exciting the neuron. Hartline stated explicitly that the receptive
field varied in size with size or intensity of stimulus spot (Hartline, 1940). For example, if
one uses a stimulus spot with light intensity 1 unit, and then a second stimulus spot with light
intensity 100, the receptive field mapped out with the second spot may be ten times bigger
(or perhaps more!) than the field mapped out with the first spot. However, from his work on
spatial summation, it is reasonable to suppose that already in the 1930s Hartline had the idea of
spatial invariants of the visual properties of the ganglion cells he studied. These are the spatial
distributions of sensitivity. A collection of equal sensitivity contours, one for each intensity of
stimulus spot, will trace out the two-dimensional spatial sensitivity distribution, a surface, for
the neuron studied. Hartline went further to predict the sensitivity for a compound stimulus
which was the sum of two simpler stimuli. He found reasonably good agreement with linear
summation of sensitivity (Hartline, 1940), the first result consistent with the concept of linear
spatial summation weighted by the spatial sensitivity distribution.

But although Hartline and many others after him demonstrated some degree of linearity in
the retinal network, the issue of linearity influences our judgments about what is the best way
of doing systems analysis in the cerebral cortex. Most cells in the macaque monkey’s primary
visual cortex are not firing spikes until they are stimulated (Ringach, Bredfeldt, Shapley, &
Hawken, 2002). But we know from the anatomy of the cortex that there are dense intercon-
nections between cortical neurons. The multitude of cortico-cortical connections suggests that
in the cortex we should expect cortico-cortical functional interactions to be important. But if
we study the cortex with stimuli that excite only a small fraction of the cortical cells, we run
the risk of missing the interactions and mistakenly overestimating the relative effectiveness of
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feedforward coupling that is driven by the stimulus. This possible misestimation is traceable
to the spike-firing threshold nonlinearity that is so important in the cortex. Therefore, using
“classical” techniques like receptive field mapping with flashed spots and bars that work quite
well in the retina may result in a serious misestimation of cortical spatial properties. This is
where using “noisy” stimuli can come to the rescue. Such stimuli excite many cells simultane-
ously and thus allow us to observe the full range of cortico-cortical interactions that might be
obscured with “classical” techniques applied to cerebral cortex, a highly-connected network
of threshold elements.

6. Spatio-temporal m-sequences and reverse correlation mapping

Although systems analysis through cross correlation was an outgrowth of a theory based
on random “noise” input signals, similar techniques have been developed for non-random
input signals that have the right properties to be used for the same purpose. One particular
type of signal has been used in many studies: the maximal length shift register sequence, or
m-sequence (Sutter, 1987, 1992). An m-sequence is a string of−1’s and 1’s that looks like a
random telegraph signal, but it is not random. Rather each m-sequence is calculated according
to a deterministic algorithm that describes a series of operations on a shift register (for a detailed
discussion, seeReid et al., 1997). As a consequence of the rules of generation of an m-sequence,
each m-sequence has four properties that are important for systems analysis. These are: (1) the
mean value of the m-sequence is close to 0; (2) the autocorrelation function of the m-sequence
is also almost zero at all points, meaning equivalently that an m-sequence approximates white
noise; (3) for an m-sequence of ordern (meaning its total length is 2n−1), every string of 1’s and
−1’s of lengthnoccurs exactly once in the m-sequence; (4) the product of an m-sequence with a
time-shifted copy of itself is the same m-sequence but with a different starting point. Because of
point 2, that an m-sequence has the same power spectrum as a white noise, m-sequences are very
well suited to spatio-temporal measurements for visual neurons. Each pixel in the visual field
can be modulated by the same m-sequence, with different starting points in time for each pixel.
Then the cross correlation of the spatio-temporal stimulus, composed of all these time shifts of
the one m-sequence, with the neuron’s spike train, will yield cross correlation functions for each
pixel that will be good estimates of the spatio-temporal impulse response at each pixel location.

Reid and Shapley (1992, 2002)used m-sequence analysis to study the receptive fields of
visual neurons in the lateral geniculate nucleus (LGN) of macaque monkeys. The m-sequence
is intrinsically a binary signal, and these investigators made use of this fact by varying the
meaning of the two binary states of the m-sequence. They mapped the receptive fields with
spatio-temporal m-sequences in which the two binary states were: black-white, red-green
(isolating the L (565 nm) cone photoreceptor), red-green (isolating the M (535 nm) cone pho-
toreceptor), and violet-yellow (isolating the S (440 nm) cone photoreceptor). Thus they were
able to measure cone-specific spatio-temporal impulse responses for each neuron for all the
cone inputs to that neuron, as well as its spatio-temporal impulse response for black-white
stimuli. In this way they were able to establish that macaque LGN parvocellular cells were all
single-opponent neurons that received one sign of input from one cone type, and another sign
of input from an opponent cone type, for example, L+, M−. Furthermore, they could follow
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Fig. 5. (A and B) Spatial kernels for parvocellular LGN cells obtained by performing reverse correlation in
cone-isolating directions (Reid & Shapley, 2002).

the input to the neuron from each cone type in time, at each location in the visual field. Such
results are shown inFig. 5as a set of response “movie strips,” a column of slices through the
spatio-temporal impulse response at different times (labeled in the figure).

7. Subspace reverse correlation and cortical receptive fields

As one moves from the retina to higher visual areas the receptive field of neurons become
more complex. For example, some studies have found that neurons in V2 can be tuned to
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two-dimensional stimuli such as angles, arcs, circles, and intersecting lines (Hegde & VanEssen,
2000; Pasupathy & Connor, 2002). Such cells would give very poor responses to white noise
and therefore the applicability of reverse correlation methods appears limited. However, if we
have somea priori knowledge of the type of information processed by a particular class of
neurons, reverse correlation can be modified to take this into account. It has long been known,
for example, that many neurons in V1 are selective to the orientation of the stimulus. It makes
sense in some cases, then, to restrict the class of stimuli used to those that have one orientation.
The reason such stimuli would be more effective in driving V1 neurons is that one has to wait
a long period of time before an oriented pattern appears (by chance) in a sequence of a white
noise images. We termed the idea of restricting the stimulus set to some smaller subset than
the set of all possible random images “sub-space” reverse correlation. In the first application
of the method the set of stimuli were gratings of various spatial frequencies, orientations and
spatial phases (also called Hartley basis functions). It was shown that even though the set was
restricted and quite different from white noise, the standard reverse correlation calculation
would also lead to an estimate of the spatio-temporal receptive field of the neuron (under the
condition that the maximum spatial frequency of the gratings used was beyond the window of
visibility for the receptive field at hand).

Fig. 6ashows a sequence of Hartley basis functions. Such a sequence of images was presented
to V1 neurons. The receptive field of a two simple V1 cells is shown inFig 6b. Regions in red
represent areas of the receptive field where increases in light cause the firing rate of the neuron
to increase, and regions in blue indicate that increases in light at those locations cause the firing
rate of the neuron to decrease. Restricting the space of stimuli used allowed us to increase the
signal-to-noise of our measurements thereby achieving measurements of the first-order kernels
of cortical cells within 10–15 min of experimental time (which would not be possible using
white noise).

A slightly different analysis of the same data can provide a view of the receptive field in
the Fourier domain. In these analyses, instead of calculating the mean image before the spike
of a neuron, we calculate the mean amplitude spectrum of the stimulus. The result of such
calculation in one neuron is shown inFig. 6c. Here the mean two-dimensional spectrum of the
image was calculated 60 ms before the firing of a spike during the presentation of a Hartley
sequence. Regions in red indicate that gratings with the spatial frequency and orientation that
are represented at that location induced the cell to increase its firing rate. Regions in blue,
located at orientations orthogonal to the preferred, show that the cell was actually inhibited
by the orthogonal orientation. Thus, selectivity in visual cortex arises not only because of
enhancement of the response to the preferred stimulus but also by suppression of the response
to non-optimal stimuli.

Sub-space reverse correlation can be extended to study shape selectivity in higher areas.
For example, the sub-space of Cartesian, hyperbolic and parabolic gratings could be defined to
study the dynamics of shape selectivity in V2 and V4. In a recent study, for example,Borghuis
et al. (2003)used the reverse correlation method on the image velocity domain to study motion
processing, andCottaris and DeValois (1998)adopted our method to study the dynamics of
color tuning in V1. In the following section we summarize our recent studies of orientation
selectivity in V1 cortex applying the concept of subspace reverse correlation in the orientation
domain.
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Fig. 6. (a) A sample sequence of Hartley basis functions. (b) Examples of the full impulse response,h(x, y, t), of
simple cells in macaque V1 obtained by the sub-space reverse correlation method (Ringach et al., 2002). (c) The
probability of observing a particular combination of spatial frequency and orientation 50 ms before a spike in a V1
cell. Both enhancement and suppression are evident (fromRingach et al., 2002).

8. Orientation dynamics—categorical reverse correlation

In an attempt to provide data to test models of orientation selectivity, we used a reverse
correlation method developed based on subspace reverse correlation in the orientation domain.
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Fig. 7. Reverse correlation in the orientation domain.

The idea was to measure the time evolution of orientation selectivity extracellularly in single
V1 neurons, with a technique that drove most cortical neurons above threshold. The technique
is illustrated inFig. 7. The input image sequence is a stimulus “movie” that runs for 15–30 min.
Sinusoidal grating patterns (optimal size, spatial frequency, and high contrast) of orientations
drawn randomly from a set of equally spaced orientations around the clock (usually in 10◦

steps) were presented for a fixed time (17 ms= 1 frame) at a 60 Hz refresh rate in the early
experiments reported inRingach, Hawken, et al. (1997), and 20 ms= 2 frames at 100 Hz refresh
rate in the more recent experiments reported inRingach, Hawken, and Shapley (2003). There is
no interframe correlation in the stimulus between the grating patterns that are drawn at random.
Furthermore, the cross correlation between any two grating patterns of different orientation is
zero. Therefore such a stimulus approximates a white noise and the system’s properties can be
obtained through cross correlation without correcting for autocorrelation within the stimulus
(Victor, 1992). Each orientation was presented at four spatial phases and the response was
phase averaged. For each time offset, the probability distribution for orientationp(θ, τ) was
calculated by reverse correlation: by incrementing the orientation bin corresponding to the
orientation that preceded each of theN spikes at time offsetτ, and then dividing the bin counts
by N. N was usually of the order of 5,000 spikes. This calculation was done for each time offset
between spike and stimulus to create a sequence of probability distributions for orientation,
one for each time offset—an “orientation selectivity movie.”

The probability distributionp(θ, τ) derived from reverse correlation in the case of the ori-
entation dynamics experiment does not have the status of a spatio-temporal impulse response.
Rather, it reflects the relative preference for a given stimulus (in this case an oriented grating
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pattern) among a set of stimuli. The different patterns were evenly spaced along the dimension
of orientation,θ. But in principle the set of patterns could have been any set of independent
patterns, and a probability distribution could have been calculated by reverse correlation in a
similar manner. So this is a more general application of the reverse correlation approach than
in all the examples cited before in this review article, that aimed to calculate a spatio-temporal
impulse response. This technique can be applied to a wider range of problems than can the
linear systems approach that aims to measure the spatio-temporal impulse response of a linear
transducer. The orientation dynamics measurement is applicable to non-linear systems as well
as linear. The utility of the method is in testing models of neuronal networks that could generate
probability functionsp(θ, τ) that can match the observed function. For instance,McLaughlin
et al. (2000)tested feedforward and feedback models against the orientation dynamics data
of Ringach, Hawken, et al. (1997)and found that a feedforward model could not account for
major features of the probability distributionp(θ, τ).

In our earlier work with the reverse correlation technique applied to the study of orientation
dynamics (Ringach, Hawken, et al., 1997) we reported that most cells in the input layers 4C�

and� have simple, “unimodal” dynamics and are relatively broadly tuned for orientation. By
unimodal dynamics we meant that, after a time delay, the probability distribution for orientation
simply had a single maximum in time and, after that peak, simply relaxed back to baseline.
However, some cells in the output layers 2, 3, 4B, 5, and 6 showed “multimodal dynamics”:
rebound responses, sharpening of the orientation tuning with time, and/or transient peaks of
probability at off-optimal orientation. Also, in a few neurons in the output layers we observed
a shift of the peak of the orientation probability distribution with time. These resemble the
“shifter” cells described byShevelev, Sharaev, Lazareva, Novikova, and Tikhomirov (1993).
But shifter cells are the exception not the rule in macaque V1.

In more recent experiments on orientation dynamics (Ringach et al., 2003), we used a
refined technique that revealed more about the basic mechanisms of orientation selectivity.
As shown inFig. 7, an additional pattern was added to the sequence—a blank stimulus at the
mean luminance of the grating patterns. This allowed us for the first time to measure global
enhancement and suppression because, with this new technique, one could estimate whether
the effect of one of the oriented patterns was greater or less than that of the blank pattern. If
the probability of producing a spike by a pattern of orientationθ is greater than that of a blank,
we view that as evidence that a pattern of orientationθ produces net excitation, while if the
probability of producing a spike by a pattern of orientationθ is less than that of a blank, we take
this as an indication of suppression. Specifically, we takeR(θ, τ)=log[p(θ, τ)/p(Blank, τ)]. If
the probability that angleθ evokes a spike is greater than that of a blank screen, then the sign
of R is +. If the probability that angleθ evokes a spike is less than that of a blank screen, then
the sign ofR is −. If all angles evoke a response above what a blank does, thenR(θ) will have
a positive value for allθ. A visual neuron equally well excited by stimuli of all orientation
angles would produce a constant, positiveR(θ).

We can estimate several useful features of the tuning curveR(θ, τ), as shown inFig. 8.
These include: (a) the orientation angle of the peak response,θpref, and its magnitudeR(θpref,
τ), (b) the orientation angle and magnitude of the minimum response,θmin andR(θmin, τ), (c)
the angle orthogonal toθpref, denotedθortho, and its magnitudeR(θortho, τ), (d) the “modulation
depth” of the tuning curve as a function of timeτ, A(τ) = R(θpref, τ) − R(θmin, τ), and (e)
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Fig. 8. Analysis of the log probability functionR(θ, τ).

the dynamic half-bandwidth defined by half the width of the tuning curve at the “half-height”
which is equal to 1/2[R(θpref, τ) − R(θortho, τ)]. The orientation modulation depthA(τ) is a
global measure of orientation selectivity because it is comparing the values of the tuning curve
at two widely separated values of the angleθ. The bandwidth is a local measure of selectivity
around the peak of the tuning curve.

The shape of the orientation tuning curveR(θ, τ) changed with time,τ. This dynamic
behavior has a number of important properties that are revealed inFig. 9for two representative
V1 neurons. The black curves inFig. 9are graphs ofR(θ, τ) at the time offsetτpeak when the
orientation modulation depthA(τ) reaches its maximum value. The red and blue curves are
graphs ofR(θ, τ) at the two times bracketingτpeakat whichA = 0.5×Apeak. The red curve was
measured at the development timeτdev, the earlier of the two times when the modulation depth
first rises from 0 to 0.5 × Apeak; the blue curve was taken at the declining timeτdec when the
response had declined back fromApeakto 0.5×Apeak. One striking feature of these curves is that
the dynamic tuning curve at the earlier time,R(θ, τdev), had a large positive pedestal of response,
a sign of global excitation early in the response. This is just what one might predict from the
analysis of feedforward models of V1 orientation selectivity (e.g.,Hubel & Wiesel, 1962),
if indeed the earliest responses measurable were predominantly feedforward excitation. But
then, as the response evolved in time, the maximum value ofR(θ, τ) at the preferred orientation
grew only a little, while the responses at non-preferred orientations declined substantially.
ThusFig. 9demonstrates that the maximum orientation modulation depth occurred at a time
when inhibition had suppressed non-preferred responses. Because such inhibition suppressed
all responses far from the preferred orientation, we infer that it was global (untuned) inhibition.
It is also reasonable to infer that tuned excitation near the preferred orientation counteracted
the global inhibition to maintain the peak value ofR(θ, τ). While this kind of evidence for
global inhibition was apparent in most V1 neurons we studied, a significant fraction of the
cells exhibited a different kind of inhibition, as shown in responses of the cell illustrated in
the lower panel ofFig. 9. For this cell, atτdec the tuning curveR(θ, τdec) had the shape of
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Fig. 10. Average dynamics of the modulation amplitude, minimum and orthogonal response in macaque V1.

a “Mexican hat” meaning thatR(θmin, τdec) < R(θortho, τdec). We interpret this to mean that
there was also tuned inhibition in such neurons, that is, inhibition that does not extend out to
orientations far from the preferred. Both the hypothesized inhibitions, global and tuned, would
have to be relatively rapid in time course to have the effects on the tuning curve seen inFig. 9
at the time of peak selectivity.

While orientation bandwidth often has been the focus of interest in previous research, it
is rather the global shape of the orientation tuning curve at all orientations that differentiates
between different theoretical mechanisms. Therefore, we studiedR(θmin, τ), R(θortho, τ) and the
modulation depthA(τ) in V1 neurons. The average behaviors ofR(θmin, τ), R(θortho, τ) andA(τ)
averaged over a population of 242 V1 neurons are depicted inFig. 10. The modulation depth,
A(τ), normally increased to reach a peak and then declined back to baseline over a time course of
50 ms. An important feature is the positive sign ofR(θmin,τ) andR(θortho,τ) early in the response,



164 D. Ringach, R. Shapley / Cognitive Science 28 (2004) 147–166

Fig. 11. (A–C) Examples of the dynamics of spatial frequency tuning in macaque V1 (Bredfeldt & Ringach, 2002).

indicating that, on average, V1 cells tended to respond toall orientations early in the response.
Another important feature of the data was the sharp downward change in time course of
R(θmin,τ) andR(θortho,τ) before A(τ) reached its peak value. This is evidence for rapid inhibition
and also for the likely influence of inhibition on the magnitude of orientation modulation depth.
Eventually bothR(θmin, τ) andR(θortho, τ) declined to negative values meaning that later in the
response orientations far from the preferred orientation were suppressive not excitatory.

9. Reverse correlation mapping of spatial frequency selectivity and its dynamics

A final example of how reverse correlation was applied to the study of V1 neurons is the
measurements of spatial frequency dynamics byBredfeldt and Ringach (2002). Here, a se-
quence of gratings having random spatial frequency and spatial phase (but fixed orientation) is
presented to a cortical neuron. One can then calculate the relative probability that each of the
spatial frequencies appeared in the input sequence a few milliseconds before the neuron spiked.
This study found that a large proportion of V1 cells show inseparable responses in spatial fre-
quency and time (seeFig. 11). In several cases, tuning becomes more selective over the course
of the response, and the preferred spatial frequency shifts from low to higher frequencies. Many
responses also showed suppression at low spatial frequencies (Fig. 11), that correlates with
the increases in response selectivity and the shifts of preferred spatial frequency. The shift in
preferred spatial frequency from low to high spatial frequencies was later replicated byMazer,
Vinje, McDermott, Schiller, and Gallant (2002)using similar methods in the awake monkey.
These findings showed that it is incorrect to interpret the behavior of V1 as a bank of spatial
frequency filters with labeled lines. Instead, spatial frequency information is multiplexed over
time over the same line, in a fashion suggestive of coarse-to-fine processing of the visual image.
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10. Conclusions

Cross-correlation provides a powerful method for studying neuronal signal processing.
When neurons and neural networks act as if they were linear systems, cross correlation with
noisy inputs allows one to measure the impulse response, or the spatio-temporal impulse re-
sponse, and in that way to characterize the neuron or neural network completely. Spiking
neurons allow experimenters to calculate the cross correlation function quickly and efficiently
using the algorithm of reverse correlation, or spike triggered averaging. This technique has
opened new windows into the dynamic function of neural networks in the brain, and it has
great possibilities for future research. The method is also applicable to situations where a sys-
tem is linear except for its last state that may include a static nonlinearity (Chichilnisky, 2001;
Nykamp & Ringach, 2002). The resulting reverse-correlation kernels can be evaluated by cal-
culating the proportion of explained variance in the data (DeAngelis et al., 1993). If only a
small portion of the variance is explained, it is likely that the data cannot be well approximated
by a linear-nonlinear system and further methods of analysis may be required (seeReid et al.,
1997; Victor, 1992).
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