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NON-LINEAR DYNAMICAL SYSTEM THEORY 
AND PRIMARY VISUAL CORTICAL PROCESSING 

R.M. SIEGEL t 
Laboratory of Neurobiology, The Rockefeller University, New York, NY  10021, USA 

The vertebrate brain consists of a large number of neurons, each with highly complex non-linear dynamics. These neurons 
communicate with each other with a complex nexus of connecting nerve axons. The current work examines the dynamical 
properties of neurons located in cat primary visual cortex from the perspective of non-linear dynamical theory. The temporal 
patterns of activation of such neurons achieved with periodic stimuli suggest that the dynamics are relatively simple and may 
be modeled using a small set of coupled non-linear equations. Predictions are made based as to the patterns of activation to be 
found in populations of neurons. 

1. Introduction 

Visual perception is the activation of a selected 
set of visual neurons distributed among multiple 
visual cortical areas. Optical illusions also initially 
activate part of such a set of neurons. The illusion 
occurs when the neurons interact to complete the 
perception [1]. 

How does one discuss the properties of a set of 
neurons? How does one describe the dynamics of 
such large numbers of cells with many different 
patterns of connectivities and highly non-linear 
interactions? The thesis advanced here is that these 
interactions in a real neural network (1) result in 
simple dynamics, (2) are restricted to a limited 
repertoire and (3) are reflected in the temporal 
activation of single cells. 

The origin of these ideas can be traced from the 
work of Hebb [2] who stated: 

"...timing has its effect in the functioning of the 
cell assembly and the interrelation of assem- 
blies: diffuse, anatomically irregular structures 
that function briefly as closed systems, and do 
so only by virtue of the time relations in the 
firing of constituent cells..." 

It has been known for many years that there are 
spatial-temporal patterns in the electroencephalo- 
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gram (EEG). As early as 1954 the role of the alpha 
rhythm, for example, was thought to regulate the 
speed of transmission of information [3]. Hebb 
was unique for his time in that he attempted to 
describe how temporal patterns might be formed 
and what their role might be at the single neuron 

level. Experimental evidence for the temporal pat- 
terns in single cells has been accumulating over 
the past twenty years [4-14] although it is only 
recently that a theoretical description of the source 
of such patterns in the neural substrate has 
emerged. 

In particular, Freeman and co-workers [15] have 
found evidence at the multi-neuronal level for 
oscillatory activity in the olfactory bulb. Freeman's 
major contribution is that he began to describe 
these temporal and spatial patterns in terms of 
non-linear distributed circuits. In this work they 
utilize the idea of a chaotic system as one from 
which many different possibilities can emerge. 

However, a criticism of their work is that the 
basis of these oscillations at the single neuron 
level is still hidden. This viewpoint for studying 
the brain is important and has yielded many con- 
crete and widely accepted results about processing 
in various regions of the brain during the past 
thirty years. In the brain the activity of the single 
unit encodes all the "messages" or "information" 
that can be passed onto another neuron due to the 
"all or none" nature of the conducted action 
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potential in nerve axon. The information in popu- 
lation responses, such as those recorded with the 
local field potential method [15] or the EEG [16], 
are transmitted along many separate axons. There- 
fore the temporal code inherent in the single neu- 
ron's activity must be understood. 

More recently two groups have demonstrated 
oscillatory activity in single neuron recordings [17, 
18]. Both these groups see a strong 40 Hz fre- 
quency component in primary visual cortex in the 
cat. The appearance of these temporal patterns 
correlate nicely with the presentation of the visual 
stimulus. These two groups speak of these oscilla- 
tions as reflecting "coherence" of the population 
of neurons, in much the same manner as the early 
EEG clinicians. Eckhorn et al. [18] have shown 
that two different cortical regions (V1 and V2) will 
oscillate together. These results are evidence for 
large numbers of cells working together. 

Theoretical examination of the properties of 
net-like neuronal structures using excitatory con- 
nections showed that cortex was capable of sus- 
taining waves of activity across its surface [19]. 
Later work added inhibition to this model show- 
ing that varied stable and unstable patterns could 
be found in a neural tissue [20]. The spatial distri- 
bution of neurons has been incorporated into these 
models and chaotic behavior has been formally 
described [21, 22]. 

Recently there has been a surge in interest in 
the dynamics of systems that are composed of 
large numbers of non-linear elements [23-25]. 
Many of these non-linear systems exhibit generic 
behaviors. One such well known behavior is pe- 
riod-doubling bifurcations as a function of some 
control parameter. As the parameter is varied, 
periodic oscillations occur which can turn chaotic. 
Such behavior is a universal property and particu- 
lar universal constants can be derived [26]. 

The present work will explore the possibility 
that the cortical tissue, with its non-linearities and 
large number of cells will also exhibit such simple 
behavior. The strength of this non-linear ap- 
proach, if successful, is that further quantitative 
predictions as to the temporal-spatial behavior of 

real neural networks can be made without detailed 
examination of the underlying circuitry. And it is 
these same spatial-temporal patterns many neuro- 
physiologists would agree underlie sensation, 
perception, motor control and other cognitive 
functions. 

Therefore it is suggested here that the dynamics 
seen in the theoretical models [19, 20] and in the 
experimental measurements [15, 17, 18] all can be 
explained as particular instances of a non-linear 
dynamical system which may be modelled inde- 
pendent of the detailed underlying circuitry. These 
universal dynamics may be seen as the "lingua 
franca" of cortical tissue. 

In order to test this possibility, techniques from 
non-linear dynamical systems are used to study 
single unit activity of single cells in cat primary 
visual cortex. The phase plots and parameter sen- 
sitivities obtained suggest that the cortical mantle 
has interesting temporal patterns with features in 
common with known non-linear dynamical sys- 
tems and has orderly transitions in temporal activ- 
ity. 

2. Methods 

2.1. Data collection 

Recordings were made from primary visual cor- 
tex (area 17) of the cat using standard methods 
[27]. In brief, the cat was anesthetized with sodium 
pentothal (20 mg/kg  i.v. (intravenous), supple- 
ment as needed i.p. (intraperitoneal)) and para- 
lyzed with succinylcholine (10 m g / k g / h  i.v.). The 
EEG, heart rate, and expired CO 2 were monitored. 
The eyes of the cat were dilated with atropine, 
then refracted with contact lenses to focus on a 
tangent screen at 100 inch. A craniotomy was 
performed at Horsey-Clarke coordinates - 5  mm 
AP. The dura was resected and standard tungsten 
electrodes were used to record from single neurons 
along the medial bank of area 17. The signal was 
ac amplified and bandpass filtered at 300-3000 
kHz. Single action potentials were discriminated 



R.M. Siegel/Non-finear dynamical system theory and vision 387 

on their amplitude and time course. The amplified 
signal was also sent to an audio monitor which 
permitted the experimenter to listen to the neu- 
ron. 

The receptive fields of the cells were first plotted 
using a hand held projector. Then a bar of light 
was projected onto the screen and a high-speed 
shutter was used to turn the light on and off (fig. 
1). Timing pulses for the shutter (Uniblitz Co.) 
were obtained from Wavetek 191 waveform gener- 
ator. 

The time of the onset of the shutter and the 
time of the occurrences of single spikes were col- 
lected using Heurokon M68020 VME board with 
a precision of 0.1 ms. This system was attached to 
a Sun 3/160,  which transferred the data from the 
slave CPU system to a disk. Data were analyzed 
after the experiments using either the Sun 3/160 
or an IBM PC with custom written software. 

2.2. Analysis 
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Fig. 1. Schematic representation o f  the recording situation. 
Stimuli were projected onto a tangent screen which was at a 
distance of 100 inch from the cat 's eye. The receptive field was 
first mapped using a hand held projector and is marked by the 
open rectangle. Then an illuminated stimulus bar (shaded 
rectangle) was projected at the optimal angle for the cell. A 
shutter attached to a square wave generator was used to turn 
the st imulus on and off. The stimulus timing, which always had 
a 50% duty cycle, is illustrated at the lower right. The stimulus 
period was defined as the time between successive stimulus 
onsets. A few sample spikes are schematically displayed below 
the stimulus trace. The plus signs indicate the time of st imulus 
onset and are again seen in fig. 2. 

Two standard neurophysiological and one novel 
analysis were performed on the interspike interval 
data. Interspike interval histograms, which are the 
distribution of times between spikes, and post- 
stimulus time histograms, which show the cor- 
relation between the stimulus and spike, were 
computed. "Return  maps" of the i th and the 
(i + 1)th interspike interval were plotted as de- 
scribed in further detail below. 

3. Results 

3.1. Single cell response 

The effect of the flashed stimulus on one neuron 
is described using both the standard techniques of 
neurophysiology and techniques derived from 
non-linear dynamical system theory. The first cell 
to be described (fig. 2) was a complex cell; it was 
responsive to the onset of the stimulus. 

The raw data from the first 40 s of the 20 min of 
recording is first shown. The plus sign indicates 

the stimulus onset; the vertical bar indicates the 
time of spike occurrence. Stimuli were presented 
at 271.5 ms intervals. A burst of action potentials 
can be seen following each stimulus. By plotting 
the distribution of interspike intervals, it can be 
seen that there is a major periodicity at approxi- 
mately 270 ms. There are also peaks at 175, 540, 
and 1080 ms. The latter two values are roughly 
integer multiples of the driving period. These slow 
frequencies can be attributed to the cell not being 
activated by one or more stimuli in a row. 

The 175 ms peak is not directly attributable to 
any linear or non-linear processing thought to 
occur in single cells (e.g. a potassium conduc- 
tance). Furthermore as will be seen below, these 
periodicities were dependent on the stimulus. 

Post-stimulus time histograms were also con- 
structed averaging the cell's response to each stim- 
ulus. Such histograms are often used to classify 
single visual neurons. For example, the present 
cell is called an "on-cell" because of the response 
to the onset of the stimulus. Other cells are called 
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Fig. 2. Standard analysis of the interspike interval data. (A) The first 40 s of a 20 min recording session are shown. The plus sign 
indicates the s t imulus onset; the vertical bar indicates the actual time of spike occurrence. Occasional bursts can be seen in this 
presentat ion of the data  which tend to occur after the st imulus onset. (B) The interspike interval histogram is formed by counting the 
number  of spikes that occur with different interspike intervals. (C) The post-st imulus time histogram is computed by computing a 
histogram of the time of spike occurrence relative to the st imulus onset. More formally it is a cross-correlogram of the point processes 
that constitute the stimulus and the spike train. The 270 ms peak shown correspond to the period of the stimulus. 

"of f  cells", which respond to the off-set of the 
stimulus or " tonic"  cells which have sustained 
responses [27]. 

The third and final analysis to be performed 
was the generation of "return maps". The motiva- 
tion for these plots in the present work comes 
from non-linear dynamical theory where similar 
graphs from continuous time systems reveal tem- 
poral patterns which are not seen in the raw data. 
Such reconstructions in continuous time systems 
have been shown to embody the complete dynam- 
ics of the system under study [28]. Poincar6 sec- 
tions can be taken through these phase trajectories 
which can show fractal structure [26]. If the re- 
peated stimulation of the cell was to lead to a 

temporal pattern of activation, then the return 
maps of the interspike interval should show inter- 
esting structure. 

It can be seen that the return map of the 
interspike interval has a number of features (fig. 
3). No such features were seen when the cell was 
spontaneous active (c.f. fig. 5a, 5b). Furthermore 
these patterns are reminiscent of the spatial return 
maps from coupled map lattices [23]. The origin of 
some of these features is trivial; some require 
deeper explanations. First there is the density close 
to the origin. It is caused by the rapid firing of the 
neuron. In this particular cell, there is no apparent 
structure at the shorter intervals, however with 
other cells (fig. 4) there are some relationships 
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Fig. 3. "Return map" computed by plotting the ith interspike 
interval against the (i + 1) th interval. A number of regions with 
concentrations of points can be seen. These correspond to 
attractors. See text for details. 

between the interspike intervals. This pattern indi- 
cates that there are mechanisms which regulate the 
relationships between intervals at the onset of a 
burst as action potentials. There are two possible 
choices for such mechanisms-ei ther  an intrinsic 
property of the neuron (e.g. refractory period) or a 
network property. 

There is also a clear repeating structure both 
vertically, horizontally and parallel to the lines: 

I i+ I i + l = k T ,  

where T is the period of stimulation, I i is the ith 
interspike interval and k is 1, 2 or 3. 

The vertically and horizontally oriented clusters 
of points are arranged at intervals equal to the 
base period. They arise from the neuron failing to 
fire from a given presentation of the stimulus. 
Some intervals approximately equal to the driving 
period are followed predominately by intervals at 
the same period. This cluster represents an 1 :1  
relationship between the stimulus and response 
respectively. In some cells, there are phase locking 
patterns of 2 :1 ,  3 :1  where one burst of action 
potentials occurs for every 2 or 3 stimuli. 
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A projection of this two-dimensional distribu- 
tion onto one dimension results in the major peaks 
seen in the interspike interval histogram. The 
source of the peak in the interspike interval his- 
togram at 175 ms can now be seen to be the result 
of a density of points clustering about a portion of 
the diagonal line given by eq. (1). Part of this 
diagonal line is stimulus driven and part is related 
to the temporal dynamics of the system. 

The stimulus driven portion of the signal can be 
understood by example. Suppose every time the 
stimulus is turned on, a short burst of spikes 
occurs. Now imagine that a spike occurs at ran- 
dom in the interval between the two stimuli. This 
would result in points evenly distributed on the 
line given by eq. (1) with k = 1. 

The basic diagonal structure is a result of the 
driving stimulus. What is interesting is that the 
spike data are not evenly distributed among 
the diagonals given by eq. (1). In this example, the 
points are clustered at part of the diagonal. Some 
process is permitting the neuron to fire with a 
particular clustering of interspike intervals. In the 
parlance of non-linear theory, the clusters seen in 
figs. 3, 4 and 5 are attractors. 

Other neurons have other clusters of interspike 
interval sequences (figs. 4, 5). (These clusters can 
also be constructed in three-dimensional return 
maps.) These attractors are stable over long peri- 
ods; some neurons show the same patterns for the 
full 1.5 h tested. These attractors do not appear to 
be linked to the slow electrical waves in EEG that 
arise when the animal is anesthetized. Further- 
more, these attractors change very systematically 
with the stimulus period. 

3.2. Sensitivity to period of stimulation 

It was noted during the course of these experi- 
ments that these patterns could easily be heard on 
the audio monitor. Small changes in the stimulus 
period resulted in a change in the response of the 
cell from sounds like a " trot t ing" to a "galloping" 
horse. Did these patterns change in some orderly 
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Fig. 4. Sensitivity of the return map to a 36 ms change in stimulation period. (A) The return map for a stimulation period of 166 ms. 
Note the multiple densities which represent attractors. Close to the origin (<  50 ms), finer patterns can be seen. The main diagonal 
intercepts the two axis at the driving period. There is a second weak diagonal band that intercept the axis at about twice the driving 
period. Other complex patterns of point densities can be seen. (B) Increasing the stimulus period by 36 ms leads to a large change in 
the return map patterns even though there only is a small change in the overall firing rate. Note the asymmetries in the return map. 

way as function of stimulus period? The depen- 
dence of the neural response on the stimulus pe- 
riod was therefore examined. Fig. 4 shows the 
phase plots for a neuron different from that in 
figs. 2 and 3 with the stimulus periods of 166 and 
200 ms. This neuron was of the complex type; it 
had almost no spontaneous activity. These partic- 
ular stimulus periods were chosen due to the com- 
plexity of the auditory patterns. The "return map" 
also showed numerous complex periodicities. (This 
cell had the most complex patterns observed in 
the 20 cells in 5 cats studied.) 

This sensitivity to stimulus period was then 
studied in greater detail by varying the stimulus 
period over a wide range. An example of such an 
experiment for a third cell is depicted in fig. 5 
Spontaneous firing, and three stimulus periods are 
shown. No patterns are seen when the cell is 
spontaneously firing. Decreasing the stimulus pe- 
riod lead to additional periodicities and changes in 
the return map pattern. 

To further quantify these effects, a finer explo- 
ration of the dependence of the stimulus period 

was performed. The stimulus period was set at 
some value for 2 -3  min duration and then changed 
to a new value. The data is displayed by plotting 
the interspike interval against the stimulus interval 
(fig. 6A). In order to get a better representation of 
the interspike interval density, a small random 
value was added to the stimulus period prior to 
plotting. Such a plot reveals that at critical values, 
new multiples of the stimulus period are added to 
the interspike intervals. These data were also plot- 
ted using a normalized ordinate (fig. 6B) by divid- 
ing the interspike interval by the stimulus interval. 
In this representation, a value of "1" on the ordi- 
nate means that the cell was firing at an exactly 
the same interval as the stimulus period, "2"  is 
twice the stimulus period, etc. The interspike in- 
terval is now seen to be phase locked to the 
stimulus with patterns of 2 : 1, 3 : 1, 4 : 1 . . . . .  8 : 1. 
(Some cells also show 1:2,  1:3,  1:4,  etc.) It 
appears from the qualitative picture of fig. 6 that 
there is a systematic increase in interspike inter- 
vals at multiples of the stimulus period. Similar 
effects were seen in five other cells suggesting that 
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Fig. 5. Return maps  for spontaneous and three different st imulus periods of a cat visual neuron. (A) Spontaneous activity. The 
spikes occur in bursts,  but  there is no pattern to the sequence of bursts  that occur. (B) 1000 ms st imulus period. At this s t imulus 
period, there begins to be some structure in the return map. Most  of  the points  fall below the line given by eq. (1) with k = 1/2.  (C) 
200 ms st imulus period. The temporal pattern becomes more complex; an attracting cluster at around (175, 25 ms) emerges. As well, 
the cell begins to have longer interspike intervals at multiples of the st imulus period. (D) 100 ms st imulus period• More complex 
patterns are seen. The attracting cluster stays at the same relative position in the graph relative to the driving period. Longer 

multiples of  the driving period are seen. 

the change in temporal dynamics for these neu- 
rons is restricted to a particular repertoire. 

In order to quantify these effects, normalized 
interspike interval histograms were created for 
each of the stimulus periods. In these plots the 
spike count was divided by the total stimulus 
duration since different durations were used for 

each stimulus period. This spike count per stimu- 
lus duration, defined here as the "density", was 
then plotted as a function of stimulus period (fig. 
7A). Multiple peaks can be seen that correspond 
to the duster  of points seen in fig. 6B. 

The relationship of the peaks to the normalized 
interspike intervals was next investigated. A geo- 
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(A) A series of overlaid interspike interval density plots for the 26 different stimulus periods used are shown. The abscissa is the 
interspike interval divided by the stimulus period; the ordinate is the spike density (see text). Successive peaks at up to seven times 
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obtained (r  2 of 0.98). Similar plots are found for other stimulation periods. 
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metric function Y= AB x was a good fit for all the 
different stimulus periods used. Similar relation- 
ships were seen in other cells. The significance of 
these relationships with respect to underlying dy- 
namics however remains an open question as there 
is little dynamical theory at present that addresses 
the dynamics of systems of this degree of complex- 
ity (see section 4). 

4. Summary and discussions 

The present work seeks to apply the theory and 
methodology from the study of non-linear dynam- 
ical systems to single unit activity in the brain. 
The underlying principle of this approach is that 
the dynamics of a large number of neurons (pre- 
sumably determined by as many as 104 non-linear 
coupled differential equations) is not highly com- 
plex but can be simple. (The value of 104 is a 
conservative estimate of the number of cells in a 
local column that are interconnected and excludes 
all the equations that arise from the cable and 
membrane properties of excitable tissue.) 

The present data are supportive of these claims. 
Interesting patterns are obtained by plotting adja- 
cent interspike intervals. These patterns are sensi- 
tive to the period of the stimulus. These patterns 
exhibit multiple steady states which are not expli- 
cable based on standard membrane phenomena. 
Single neurons, when driven by periodic stimuli, 
do not show patterns of this type [29]. Preliminary 
work also indicates a sensitivity to the orientation 
of the bar, which is thought to be a result of 
interactions amongst neurons. These patterns are 
robust, repeatable and can be maintained over 
long periods of recording. It is suggested that the 
patterns seen in the return maps result from the 
network properties of the visual cortex. 

It is remarkable that these patterns are quite 
similar to spatial return maps in coupled map 
lattices [23]. In these models, 100-1000 quadratic 
maps, given by Xi+ a = a X i ( 1 -  Xi), are coupled 
together. When the dynamics are explored by al- 
tering the coupling and the map parameter a, 

orderly changes in the dynamics are seen. These 
models have multiple attractors where the attrac- 
tors are distributed across the lattice. It will be 
interesting to determine if periodic forcing of these 
coupled lattices can lead to patterns similar to 
those presented here from cerebral cortex. Also 
some of these analytical techniques developed for 
these lattices can be applied to neural data. 

The sensitivity of these neural patterns to the 
stimulus period are qualitatively similar to 
period-adding bifurcations seen in electronic sys- 
tems [30, 31]. Period-adding bifurcations are seen 
when a change in a parameter leads to an adding 
of a new periodicity rather than the splitting of 
periodicity into two periods (a pitchfork bifurca- 
tion). Again, it will be necessary to further explore 
these qualitative similarities with both models and 
experiments. 

The implication of this work is that the tempo- 
ral activity of a single neuron that is embedded in 
the matrix of approximately 104 neurons is rela- 
tively simple. Is it possible to reflect this temporal 
simplicity in a small set of equations? If so, it may 
not be necessary to model the visual cortex in 
complete detail in order to describe its activity. 
Rather, an emergent property of temporal dynam- 
ics can be used to describe this highly complex 
system. This is not to state that detailed physiolog- 
ical and anatomical analyses are not needed. Even 
with a high-level description such as that delim- 
ited here, it is still necessary to understand how 
the cortical circuit is formed from the constituent 
elements. 

It is of course possible to numerically determine 
the relative simplicity or complexity of the neural 
system using dimensional analysis [32] or by com- 
puting the Lyapunov exponents [33]. Technically 
there are some problems since the reconstruction 
of the attractor requires data evenly spaced in 
time and the spike data are inter-event data. The 
one published example of a computation of the 
dimension using interspike interval data for so- 
matosensory neurons [34] does not show good 
convergence of the computed dimension. (It is 
possible to perform temporal averaging to obtain 
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a continuous time series and more properly fulfill 
the requirements of dimensional or Lyapunov ex- 
ponent analyses [35].) 

However, there is a more important conceptual 
problem to be surmounted even if these sorts of 
analyses can be performed and low dimensionality 
and positive Lyapunov exponents can be deter- 
mined. Neither of these two quantities are suffi- 
cient to establish that non-linear dynamical theory 
is applicable to brain tissue [36], nor that the 
tissue is truly chaotic. Rather it will take a con- 
certed effort to first demonstrate that the dynam- 
ics of brain tissue exhibit features of non-linear 
dynamical systems (e.g. universality). Following 
that, it is then necessary to physiologically demon- 
strate that these dynamics are not epiphenomena 
but are actually used by the brain in its processing 
of the world about us. 

It was assumed at the onset of this work that 
this temporal pattern of activity is indicative of 
the more distributed nature of the cortical mantle. 
It is predicted here that similar patterns should be 
observable in the spatial dimension (i.e. across the 
cortical surface and /o r  through the cortical lay- 
ers) by plotting the interspike intervals of one cell 
against the interspike intervals of a second cell. 
Such data have been collected by a number of 
researchers [37-43] and can be easily examined to 
test this hypothesis. One supportive result for this 
prediction can be found in the work of Aertsen 
and Gerstein [14], who have demonstrated tempo- 
rally varying relationships for two cells that have 
significant cross-correlation. 

If these results are correct, then questions as to 
the underlying nature of these non-linear pro- 
cesses arise. Are these responses caused by a com- 
pletely deterministic process or by a stochastic 
process? The visual system is a biological system 
and as such will have "real" noise. Two biological 
systems where non-linear dynamical approaches 
have been applied have demonstrated that the 
presence of noise results in a removal of more 
complex phase locking patterns [44,45]. Theoreti- 
cal approaches to this problem have been initiated 
[25, 46, 47]; also ch. IV in ref. [24]. 

Finally, regardless of the underlying theoretical 
correctness of the above approach, it is also im- 
portant to note that these patterns may prove to 
be useful indicators for the classification (e.g. mor- 
phology, laminar distribution, simple, complex, 
hyper-complex and end-stopped properties) of 
neurons with different connectivities in the ner- 
vous system. In the past it has been quite difficult 
to classify a neuron's morphology based purely 
upon its response to light [48]. The current analy- 
sis may simplify this classification based upon the 
additional information that can be obtained from 
the "return map" representation of neural activ- 
ity. 
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