
Neural population coding of sound level adapts to
stimulus statistics
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Mammals can hear sounds extending over a vast range of sound levels with remarkable accuracy. How auditory neurons code

sound level over such a range is unclear; firing rates of individual neurons increase with sound level over only a very limited

portion of the full range of hearing. We show that neurons in the auditory midbrain of the guinea pig adjust their responses to the

mean, variance and more complex statistics of sound level distributions. We demonstrate that these adjustments improve the

accuracy of the neural population code close to the region of most commonly occurring sound levels. This extends the range of

sound levels that can be accurately encoded, fine-tuning hearing to the local acoustic environment.

The auditory system is required to code sounds that vary enormously
in level. Accurately assessing the overall level of a sound has important
survival value, for example, in judging the distance of a sound source,
the urgency of an alarm call or the fitness of a competitor. Furthermore,
if sound level is represented accurately, then the levels within an
ongoing sound can be better discriminated, aiding analysis and
recognition of the sound. At the threshold of hearing (approximately
0 dB sound pressure level (SPL) in humans), the ear drum may move
by only a fraction of the width of an atom; some natural environments
are characterized by similarly low levels of sound, averaging only a few
dB SPL1. In comparison, groups of vocal animals can generate sounds
of more than 109-fold higher average intensity (90 dB SPL)1–3, whereas
the upper limit of human hearing is met by sounds that are twelve
orders of magnitude higher in intensity (120 dB SPL) than sounds that
are just audible. Over this vast range of levels, the auditory system
achieves remarkable accuracy in detecting changes in sound level:
humans can hear changes in level of about 1 dB across most of the
full range of hearing4–6.

In order for sound level coding to be achieved using neural firing
rates, firing rates must change with level across the full range of hearing.
However, the majority of primary auditory nerve fibers have low
thresholds to sound stimulation, with firing rates that saturate at low
to middle sound levels, giving neural dynamic ranges (the range of
levels over which firing rates change) of just 35 dB or so7,8. Even by
including the smaller population of fibers with higher thresholds and
nonsaturating responses, it does not seem that neural firing rates can
account for the accuracy of coding over the full range of hearing9. As
the limited neural dynamic range does not cover the range of levels over
which hearing operates (the so-called ‘dynamic range problem’10)
mechanisms must exist that extend the range of coding beyond that
observed in auditory nerve firing rates. To this end, several adjuncts to a
rate code for sound level have been considered9. However, the means by

which neural responses are normally assessed as a function of sound
level bears little resemblance to the demands placed on auditory
neurons under natural listening conditions. Traditionally, firing rate
versus sound level functions are obtained using sounds separated by
long silent intervals, randomized in presentation order, such that
consecutive sounds can vary enormously in level11–14. Conversely,
although natural sound levels can vary extensively over the long
term, over short time periods, within a given environment, they
more often fluctuate over a relatively limited range1.

Neurons throughout the auditory system are subject to adaptive
processes, causing a change in response over time during sustained
input to the neuron. A possible function of these adaptive processes is
to tailor the neural code to match the local sensory environment. We
hypothesize that the neural code for sound level is flexible enough to
take account of the time-varying distribution of natural sound levels,
such that coding is context-dependent, allowing an efficient represen-
tation of auditory stimuli. We have examined the ability of auditory
neurons in the inferior colliculus, the major midbrain nucleus in the
ascending auditory pathway, to adjust their coding for sound level to
take account of stimulus statistics. Our results show that the responses
of inferior collicular neurons are rapidly adjusted according to the
statistical distribution of sound levels presented. These adjustments
alter the coding properties of the neural population such that coding
accuracy is increased near the most commonly occurring sound levels.

RESULTS

We presented a diotic (identical in each ear) white noise to anesthetized
guinea pigs for B7 min, during which time the sound level was set
every 50 ms to a new value drawn randomly from a defined distribution
(Fig. 1a,b). The full range of sound levels presented was 21–96 dB SPL.
The distribution of sound levels consisted of one or more regions of
probable levels, referred to as stimulus ‘high-probability regions’, from
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which levels were selected with 0.8 overall probability (Fig. 1c). The
remaining levels were selected with an overall probability of 0.2.

Adjustments of neural responses to the mean sound level

We first examined the effect of the mean sound level on neural rate-
level functions, using a sound-level distribution with a single high-
probability region of width 12 dB (Fig. 1c). Neural responses were
recorded to level distributions with four different high-probability
regions, centered at 39, 51, 63 or 75 dB SPL, referred to hereafter as
the 39-, 51-, 63- and 75-dB stimuli. For each level distribution, the
mean spike count of the neuron to each sound level was calculated, and
the resulting rate-level function was plotted.

‘Baseline’ rate-level functions (Fig. 1d–g, gray) show the mean spike
count to 50-ms noise bursts, separated by 300-ms intervals, at sound
levels randomly selected from a flat distribution over 21–96 dB SPL.
Sound stimulation of this form is typically used to record rate-level
functions of auditory neurons11–14. In contrast, when rate-level func-
tions were recorded using the fluctuating noise stimuli, which give each
sound level a local statistical context, three observations were com-
monly made (Fig. 1d–g). First, rate-level functions shifted along the
abscissa when the position of the high-probability region was changed.
This shift resulted in a change in the threshold sound level. The largest
change in threshold from the baseline function was approximately
35 dB. Notably, when the high-probability region was positioned below
a neuron’s baseline threshold, no neuron shifted its threshold to sound
levels below its baseline threshold (see Fig. 1f). Second, the shifts in
rate-level functions often resulted in neurons’ thresholds lying within
the range of sound levels encompassed by the high-probability region
of the stimulus. Third, increasing the mean sound level often reduced
the maximum spike rate and the slope of the rate-level functions,
particularly over higher sound levels.

Adaptation of the population code to the mean sound level

We first investigated whether the adjustments in rate-level functions to
different sound-level distributions improve coding of those level

distributions by single neurons. We calculated the Fisher information, a
measure of coding accuracy15, for rate-level functions of single neurons
obtained for different sound-level distributions (Fig. 2a). Assuming an
optimal decoder, higher Fisher information reflects higher coding
accuracy; that is, a more accurate representation of the sound level
and thus a higher capacity to discriminate nearby sound levels. An
intuitive approximation of Fisher information is the square of the slope
of the rate-level function divided by the spike count variance. Thus,
Fisher information is high when the spike count variance is low and
when the spike count changes steeply with changes in sound level. As
the variance in the neural spike counts that we recorded from inferior
collicular neurons tended to be low when the spike counts themselves
were low, the maximum Fisher information was typically at sound
levels just above the threshold of the rate-level function. In some cases,
this placed the peak Fisher information close to the high-probability
region of the relevant stimulus distribution (Fig. 2a), suggesting that
the function of the adjustments in rate-level functions might be to
improve the accuracy of coding over this region.

However, the rate-level functions of different neurons were diverse,
and the peak Fisher information for individual neurons often did not
cover the entire high-probability region of the stimulus, nor was it
always adjusted to be close to that region. To understand the implica-
tions of the adjustments in rate-level functions for sound-level coding,
it is necessary to examine responses across populations of neurons.
Evidence from many levels and modalities of the vertebrate nervous
system suggests that information is represented by the activity of
neuronal populations16. An estimate of the coding accuracy for the
neural population was obtained by summing the Fisher information
functions of the individual neurons. This analysis assumes that
correlation in spiking noise between neurons is low. Although data
concerning such correlations in the auditory system are scarce, correla-
tion in spiking noise is known to be low between auditory nerve
fibers17, and recent data suggest this to be the case also in the inferior
colliculus18 (see also C.V. Seshagiri & B. Delgutte, Assoc. for Research in
Otolaryngology Abstr. 685, 2003).
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Figure 1 Adjustments in responses of inferior collicular neurons to the mean sound level. (a) Level variations over 5 s of stimulus with high-probability region

centered at 63 dB SPL. (b) Stimulus waveform (200 ms shown). (c) Level distribution for stimulus with high-probability region centered at 63 dB SPL.

(d–g) Each panel shows rate-level functions of one neuron for four different sound level distributions, plus the baseline function (gray). Colored functions in

all figures obtained with high-probability regions at 39 dB SPL (green), 51 dB SPL (blue), 63 dB SPL (red) and 75 dB SPL (cyan). Filled circles and thick

lines on abscissa indicate midpoint and extent of the high-probability region of each stimulus.
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We compared the population Fisher information for neurons
adjusted to pairs of different sound-level distributions (Fig. 2b–g).
Within each comparison, the Fisher information was obtained for
exactly the same population of neurons. Across all these paired
comparisons, adjustments of rate-level functions to a given distribution
improved sound-level coding just above the midpoint of the high-
probability region of that distribution. For example, comparing the
Fisher information curve for the 39-dB stimulus to that for the 75-dB
stimulus (Fig. 2b), the most commonly occurring sound levels in the
39-dB stimulus were coded best by responses adjusted to that stimulus.
Conversely, for the 75-dB stimulus, the most commonly occurring
levels were coded best by responses adjusted to the 75-dB stimulus.
Finally, we calculated the population Fisher information for 31 neurons
from which responses to all four sound level distributions were
obtained (Fig. 2h).

Adaptation to stimulus variance

Natural environments may present the auditory system not only with
changes in the mean sound level but also with changes in the extent of
sound level fluctuations1. Adaptation of inferior collicular neurons to

sound level variance of pure tones has been reported in the cat19.
However, the effect of sound level variance on neural rate-level
functions and on the accuracy of the code for sound level has not
been examined. We therefore investigated the effect of extending the
range of common sound levels in the distribution by comparing
responses to sound-level distributions with high-probability regions
12 dB and 24 dB in width, centered at 63 dB SPL (Fig. 3a).

The rate-level functions of some neurons varied with the width of
the high-probability region (Fig. 3b). However, changes in rate-level
functions with increasing width of the high-probability region were
typically not marked (Fig. 3c). Despite this, the Fisher information
curve for the population of neurons was slightly wider when neural
responses had adjusted to the wider (24 dB) range of common sound
levels (Fig. 3d). For both widths, the region of highest coding accuracy
was positioned just above the midpoint of the high-probability region;
the adjustments of neural responses to the wider high-probability
region resulted in a marked increase in Fisher information at the
edges of the region of high coding accuracy. The high-probability
region was widened on both sides by 6 dB, and the resulting Fisher
information curve widened by a similar magnitude. No change was
observed in the Fisher information curve when the width of the high-
probability region was increased for the stimulus centered at 51 dB SPL
(data not shown), possibly because the wider range of (lower) sound
levels in this stimulus extended the distribution significantly below the
neurons’ baseline thresholds.

Adaptation to stimulus bimodality

Finally, we examined how inferior colliculus neurons encode stimuli
with more complex sound level distributions. In ‘bimodal’ stimuli,
sound levels were selected from a distribution with two high-
probability regions, centered at 51 and 75 dB SPL or at 39 and 63 dB
SPL (Fig. 4a).
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Figure 2 Adjustments in neural responses improve population coding

accuracy near the mean sound level. (a) Rate-level functions of one neuron

for stimuli with high-probability regions at 39 and 63 dB SPL, and

corresponding Fisher information functions (dotted lines). (b–h) Population

Fisher information. In this and all figures, the total population Fisher

information has been divided by the number of neurons in the population to

facilitate comparison between plots. (b) High-probability regions at 39 and

75 dB SPL (n ¼ 34 neurons); (c) 39 and 63 dB SPL (n ¼ 35); (d) 51 and
75 dB SPL (n ¼ 50); (e) 63 and 75 dB SPL (n ¼ 42); (f) 51 and 63 dB

SPL (n ¼ 54); (g) 39 and 51 dB SPL (n ¼ 38); (h) all four sound level

distributions (n ¼ 31).
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Figure 3 Neural adjustments to stimulus variance. (a) Level distribution for

stimulus with wider (24 dB) high-probability region (compare to Fig. 1c).
(b,c) Each panel shows rate-level functions of one neuron for two widths of

the high-probability region of the stimulus, 12 dB (gray) and 24 dB (black).

(d) Population Fisher information for stimuli centered at 63 dB SPL, with

high-probability regions of width 12 dB and 24 dB (n ¼ 25).
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Individual rate-level functions did not show any obvious tendency to
adjust to both high-probability regions in response to bimodal stimuli.
However, when the population Fisher information for bimodal stimuli
was compared with that for the corresponding unimodal stimuli, we
found that the region of highest coding accuracy was adjusted so as
to incorporate both high-probability regions. In the case of the 51- to
75-dB SPL stimulus, two regions of high accuracy were apparent in the
population Fisher information, with a dip in accuracy between them;
these regions of high accuracy corresponded to the louder ends of each
of the two high-probability regions (Fig. 4b). This double-peaked
Fisher information curve appeared to result, largely, from some
neurons positioning the thresholds of their rate-level functions near
one of the high-probability regions, and others positioning their
thresholds near the other high-probability region, thereby dividing
the neural population’s resources. These divisions were observed within
animals (Fig. 4c). Rate-level functions of neurons with high baseline
thresholds tended to shift to the louder high-probability region; rate-
level functions of neurons with low baseline thresholds tended to shift
to the quieter high-probability region (data not shown). Most sound
levels presented at high probability within a bimodal stimulus were
coded less accurately than the same sound levels presented at high
probability within a unimodal stimulus. However, most sound levels
presented at high probability within a bimodal stimulus were coded
more accurately than the same sound levels presented at low prob-
ability within a unimodal stimulus. These results indicate that the
neural population did not simply adapt to the mean sound level (which
lay between the two high-probability regions of the bimodal stimuli)
but rather could apportion its coding resources so as to take account of
a more complex stimulus distribution.

Time course of neural adaptation

The time course of neural coding adjustments was examined by
plotting rate-level functions separately for consecutive 5-s segments
of the 63-dB (12-dB width) stimulus. For
most neurons, rate-level functions were
adjusted rapidly to a final, stable position,
reproducible in response to subsequent sti-
mulus segments. The time taken for the rate-
level function to stabilize was assessed by
calculating the root-mean-squared (r.m.s.)
difference between the rate-level function
from each 5-s segment and the average rate-
level function from the final 50 s of the
stimulus (Fig. 5a,b). Single exponential
decay functions were fitted to the r.m.s. data
for each neuron (Fig. 5b).

The time taken for neural responses to
stabilize varied between neurons (Fig. 5c),
with a median time constant of 3.2 s
(n ¼ 50). Most neurons’ rate-level functions

clearly differed from their baseline function within the first 5 s of
presenting the stimulus (Fig. 5a); for 20/50 neurons, the rate-level
function from the first 5 s was already very similar to the average
function from the final 50 s, such that the r.m.s. data showed no
apparent decay. The rate-level function of only one neuron did not
stabilize but was continually adjusted throughout the 7 min of
stimulus presentation.

Neural sensitivity to changes in sound level

Our data demonstrate the extent to which a neuron’s stimulation
history influences its response to the current stimulus. Thus, the
neuron’s response will be a function of the current sound level
and past sound levels. One of the simplest possible functions
that might provide for the shifting rate-level functions is one in
which neural responses are determined not by the absolute sound
level, but by the difference between the current and immediately
preceding sound level (the ‘step size’), regardless of the sound level
distribution. For this reason, we examined whether firing rate
versus step size functions were invariant with sound level distribution
(Fig. 6a–c).

We found that few neurons’ firing rates were dependent on step size
in a manner independent of the distribution of sound levels. The rate
versus step size functions of such neurons were broadly aligned across
different sound level distributions, although never invariant (Fig. 6a).
However, for most neurons, rate versus step size functions differed
considerably in threshold and shape between sound level distributions
(Fig. 6b,c), as did the rate-level functions. Thresholds of individual
neurons to step size varied by up to 30 dB between different sound level
distributions (Fig. 6b), and, for some distributions, firing rates were
relatively insensitive to step size (Fig. 6c). Thus, a simple dependence of
neural responses on level step size, such that responses were invariant
with the sound level distribution, did not account for the neural
adaptation we observed.
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DISCUSSION

Our data demonstrate that although auditory rate-level functions show
a restricted dynamic range, the range of sound levels over which the
dynamic range lies is mutable. Neural responses were rapidly adjusted in
a manner that tended to improve coding of the most probable sound
levels by the neural population. There was a slight bias of coding
accuracy towards levels louder than those occurring most commonly.
This may arise because the brain needs not only to encode the ongoing
noise stimulus, or the ambient environment, but also to be prepared for
encoding any additional stimuli that may be encountered. Further,
although rate-level functions shifted in an approximately parallel
manner over some mean sound levels, parallel shifts were not main-
tained across all mean levels. This suggests that the neural code is not
invariant with mean sound level, but rather that it retains some
information about overall level, which is consistent with evolutionary
demands for some representation of overall level. It is possible that mean
sound level–independent representation occurs at stages in the auditory
pathway higher than the inferior colliculus, such as auditory cortex.

A number of mechanisms, possibly acting in combination, might
underlie the adaptive effects we have described. It is unlikely that the
middle-ear muscle reflex is involved, as this reflex is only weakly active
in guinea pigs20, is inactive in anesthetized animals21 and predomi-
nantly affects transmission of very high intensity, low-frequency
sounds22. A more likely contributing mechanism is the action of the
medial olivocochlear system, which feeds back directly to the receptor
hair cells of the inner ear, causing suppression; however, the time
constant of action of this efferent system is approximately 100 ms
(ref. 23), precluding it from fully accounting for the adaptive effects
reported here, which have a time constant of several seconds. A further
contributing mechanism is likely to be neural spike-frequency adapta-
tion, or the decline in firing rate over time during a sustained stimulus.
Such adaptation may arise through mechanisms intrinsic to the
neuron, through synaptic depression or through network interactions.
Spike-frequency adaptation is a characteristic of primary auditory
nerve fibers24,25 as well as of higher-level auditory neurons26. Thus, it
is possible that neural substrates for the changes in coding we observed
originate at low levels of the auditory system. Previous studies have
shown that rate-level functions to pure tones shift to higher sound
levels if the tones are presented in a constant level of background noise.
These effects are observed at all levels of the auditory system that have
been examined12–14,27,28. This phenomenon may share some mechan-
isms with the shifts in rate-level functions that we observed, although
the effect of such changes in rate-level functions on the population
coding accuracy for sound level has not been measured. At subcortical
levels, noise-induced changes in rate-level functions to tones are
thought to result largely from cochlear, or ‘two-tone’, suppression12,29.

Two-tone suppression is dependent on nearby
frequencies in the background noise suppres-
sing the response to the tone on the basilar
membrane. As the relative power of our wide-
band stimulus was constant across all fre-
quency components for all sound level
distributions, we can discount two-tone sup-
pression as a potential mechanism contribut-
ing to the adjustments in coding that we
describe. Our data have shown that, despite
the diversity of adaptive mechanisms that are
likely to shape inferior colliculus responses,
the concerted action of such processes seems
to function so as to improve the accuracy of
the neural code for sound level.

Neural adaptation has been attributed a number of functions. For
example, there is evidence that adaptive processes in auditory cortex
facilitate novelty detection by single neurons30. The adaptation that we
have described may be the auditory analogue of gain control processes
in the visual system31–33. These processes have been suggested to
improve coding by adjusting neural responses to the statistics of visual
stimuli. An improvement in coding resulting from neural adaptation
has recently been demonstrated for single neurons in the blowfly visual
system34,35. Our study is the first demonstration of neural adaptation,
dependent on stimulus statistics, that improves the coding accuracy of
a neural population; we have shown that the population code adapts
to the mean sound level, the variance and even bimodality. The capacity
of the auditory brain to fine-tune to the local acoustic environment
allows high accuracy in level discrimination to be maintained over a
wide range of sound levels, despite the limited dynamic range of
individual neurons.

METHODS
Physiological recordings. Extracellular recordings were made from the

right inferior colliculi of urethane-anesthetized guinea pigs, using standard

techniques26 approved by the UK Home Office. Single neuron responses

were recorded using glass-coated tungsten microelectrodes (Tucker Davis

Technologies System III). White noise (o25 kHz) was presented diotically

via sealed, calibrated earphones. Only integer dB values of sound level, between

21–96 dB SPL, were used, giving 76 sound level values in total. For a given

sound-level distribution, the level sequence and noise token were the same for

all neurons. For baseline rate-level functions, noise bursts were separated by

300-ms intervals; levels were selected randomly from a flat distribution, and

each level was presented ten times. For all other stimuli, sound was presented

in 5-s segments, separated by o0.4 s. All rate-level functions were plotted

from the mean number of spikes occurring during the 50-ms epochs corre-

sponding to a given sound level. We used a standardized neural latency of

8 ms, the minimum latency measured, so we do not assume the operation

of a system that can account for differing neural latencies. The first and second

5-s segments of each stimulus were excluded from all analyses, except analyses

of the time course of changes in neural responses. For time course analyses,

we calculated the r.m.s. difference between the rate-level function from

each 5-s segment and the average function from the final 50 s of the

stimulus. This analysis was performed for the high-probability region of the

stimulus only, because other sound levels were presented too few times

within each 5-s segment. We then fitted the r.m.s. data for each neuron

with a single exponential decay (Fig. 5b) and obtained a decay time

constant. For 20/50 neurons, the r.m.s. data were better fitted by a flat line

than by an exponential decay (F-test, P o 0.05 to accept exponential fit),

indicating that the rate-level function had already, within the first 5 s, reached

the position occupied in the final 50 s of the stimulus; the time constant

of these neurons was designated 0 s. The time constant of one neuron was

4600 s, indicating that the rate-level function had not stabilized within the

time of recording.
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Figure 6 Responses of inferior collicular neurons to changes in sound level. (a–c) Each panel shows

firing rates of a neuron during the current 50-ms epoch of the stimulus, as a function of the

difference in sound level between the current epoch and the previous 50-ms epoch, for different

sound-level distributions.
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Measuring the Fisher information of the neural population. The population

Fisher information function F(s) was used to measure the accuracy with which

sound level s was encoded by the spike counts of the recorded neural

population when s was presented in a given sound level distribution. In the

limit of a large number of neurons, the reciprocal of the Fisher information

equals the variance of the representation of s by the neural population. The

square root of this variance is proportional to the just-noticeable difference,

another common measure of coding accuracy. Correlation in spike count of

neuron pairs due to shared stimulus history was small for all stimuli. The mean

correlation coefficient averaged over sound levels, for all neuron pairs and all

stimuli, was 0.056 (s.d. across pairs ¼ 0.13). Furthermore, there is some

suggestion that correlation in intrinsic spiking noise between inferior collicular

neurons is low18 (see also C.V. Seshagiri & B. Delgutte, Assoc. for Research in

Otolaryngology Abstr. 685, 2003). Thus, it is reasonable to approximate the

Fisher information by assuming that the neurons generate spikes indepen-

dently, giving

FðsÞ ¼
X
a

faðsÞ

where fa(s) is the Fisher information function of each neuron a, for the sound

level distribution of interest. The Fisher information function of a neuron is

calculated from the probability Pa[r | s] of neuron a giving r spikes when sound

level s is presented. Hence,

faðsÞ ¼
X
r

Pa½rjs�
dlnPa½rjs�

ds

� �2

where the differential was performed by a five-point centered numerical

algorithm.

To obtain Pa[r | s] for the stimulus with the level distribution of interest, the

number of spikes was counted during each 50-ms epoch, with a standardized

8-ms neural latency. F(s) was also calculated using each neuron’s measured

latency, rather than the 8-ms latency; this had no qualitative effect on the

results. For each sound level, s, a histogram was constructed of the number of

epochs in the stimulus containing r spikes. This gave an R � 76 matrix, where

R is the maximum number of spikes in any epoch. For the high-probability

region of the stimulus, only a random sample of the epochs was used so that

the average number of epochs per dB was the same in the high-probability

region as elsewhere. For the unimodal stimuli, the number of epochs used for

each sound level averaged at 23.5. Owing to the sampling, each neuron’s Fisher

information function is the median of 20 functions, where each function was

obtained using a different sample. The matrix was convolved with a Gaussian

kernel with 0.5 spikes standard deviation and 4 dB standard deviation, in order

to remove spurious fluctuations. Finally, the matrix was converted into a

probability matrix of spike count given sound level, Pa[r | s], by normalizing the

sum of each sound level column to 1.

In addition, F(s) was calculated using an approximation of the single neuron

Fisher information fa(s) ¼ ya¢(s)2/sa(s)2, where ya¢(s) is the differential of the

spline fit to the rate-level function, and sa(s) is the spline fit to the standard

deviation as a function of sound level, for neuron a. The splines were fitted

using the BARS algorithm36. This alternative method had no qualitative effect

on the results.
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