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Propagation of Correlated Activity through Multiple Stages
of a Neural Circuit
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The timing of spikes can carry information, for instance, when the temporal pattern of firing across neurons results in correlated activity.
However, in part because central synapses are unreliable, correlated activity has not been observed to propagate through multiple
subsequent stages in neural circuits, although such propagation has frequently been used in theoretical models. Using simultaneous
single-unit and multiunit recordings from two or three vocal control nuclei of songbirds, measurement of coherency and time delays, and
manipulation of neural activity, we provide evidence here for preserved correlation of activity through multiple steps of the neural circuit
for song, including a basal ganglia circuit and its target vocal motor pathway. This suggests that these pathways contain highly function-
ally interconnected neurons and represent a neural architecture that can preserve information about the timing of firing of groups of
neurons. Because the interaction of these song pathways is critical to vocal learning, the preserved correlation of activity may be
important to the learning and production of sequenced motor acts and could be a general feature of basal ganglia– cortical interaction.
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Introduction
Neuronal circuits transmit information using action potentials,
but it remains controversial whether neural coding in the CNS
involves only the rate of spike firing or, additionally, the timing of
spikes (Singer and Gray, 1995; Theunissen and Miller, 1995;
Shadlen and Newsome, 1998). One way in which the timing of
neuronal firing can carry information is in the temporal relation-
ship of spiking across individual neurons, resulting in correlated
activity (Abeles, 1991; Murthy and Fetz, 1996; Riehle et al., 1997;
Dan et al., 1998). Such activity can be more effective at driving
neurons downstream (Usrey et al., 2000).

A limitation of correlated activity as a longer-range signaling
mechanism is that correlation has only been observed within
single brain areas or between areas that are monosynaptically (or
at most disynaptically) connected or that receive direct input
from a common source (Frostig et al., 1983; Tarnecki and Zuraw-
ska, 1989; Gochin et al., 1991; Mason et al., 1991; Eggermont,
1992; Bi and Poo, 1999). For instance, there are clear correlations
between retina and thalamus and between thalamus and primary
visual cortex (V1) but not between retina and V1 (Usrey et al.,
1998, 2000). The absence of correlation between more widely

separated stages of circuits is thought to reflect the weakness and
unreliability of most cortical synapses (Shadlen and Newsome,
1998; Stevens and Zador, 1998), leading to rapid dissipation of
correlation after more than one or two steps in a chain (Fig. 1a).
In addition, the combination of sparse connectivity between cor-
tical neurons and inadequate sampling of these neurons may
prevent the detection of long-range correlations in cortical areas.
This lack of experimental evidence contrasts with the use of prop-
agating correlations in network models. Theoretical investiga-
tions of the transmission of synchronized firing in cortical net-
works have shown that correlation can travel through a network
if synapses are very strong (Abeles, 1982, 1991); correlations can
persist if the temporal dispersion of synaptic firing is low, the
pool of synchronized neurons is large, or both (Diesmann et al.,
1999; Stroeve and Gielen, 2001).

Here we provide a direct experimental demonstration of sig-
nificant correlated activity across multiple areas of a neural net-
work, suggesting a propagating correlation as proposed in mod-
els. This occurs in the songbird vocal control system, which
mediates learning and production of the bird’s complex vocal
behavior. The “direct motor” pathway for song is required for
singing throughout life (Nottebohm et al., 1976; Vu et al., 1994),
whereas a basal ganglia feedforward loop, the anterior forebrain
pathway (AFP), is critical for song learning and modification
(Fig. 1b) (Bottjer et al., 1984; Sohrabji et al., 1990; Scharff and
Nottebohm, 1991; Williams and Mehta, 1999; Brainard and
Doupe, 2000). By recording simultaneously from two to three
nuclei in this neural circuit and measuring and manipulating the
association of activity between neurons, we reveal correlated ac-
tivity that propagates over multiple synapses throughout the cir-
cuit, particularly the basal ganglia loop. These results suggest that
this circuit contains large pools of highly functionally intercon-
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nected neurons, whose joint firing enables correlation of activity
to persist through many levels. Such propagating correlations
could convey timing information relevant to the learning and
production of temporal sequences. Moreover, because an intri-
cately interconnected network of neurons is a property of corti-
cal– basal ganglia circuitry in many animals (Graybiel, 1998; Kin-
caid et al., 1998; Bolam et al., 2000; Parent et al., 2000; Bar-Gad
and Bergman, 2001), the capacity to preserve neuronal correla-
tion across multiple steps may be a general feature of information
transmission in basal ganglia– cortical networks.

Materials and Methods
Electrophysiology. Experiments were conducted on 21 adult male zebra
finches (�120 d after hatching) raised in our breeding colony (Solis and
Doupe, 1999). Their songs were recorded before the experiment, and the
birds were prepared for electrophysiological recording, as described by
Solis and Doupe (1999). Birds were anesthetized with 20% urethane
(50 –75 �l, i.m.; Sigma, St. Louis, MO), and body temperature was main-
tained at 38°C. Stereotaxic coordinates for the robust nucleus of the
archistriatum (RA) were chosen such that the electrode path avoided
HVc. Extracellular activity was recorded using tungsten (0.7–3 M�)
electrodes.

Extracellular activity of the lateral magnocellular nucleus of the ante-
rior neostriatum (LMAN) and RA was recorded simultaneously (40 –350
trials per site); in some experiments, HVc activity was also recorded
simultaneously with LMAN and RA activity. In the first of four three-
nucleus experiments, for technical reasons, we consecutively recorded
the activity of two nuclei at a time from a set of HVc, LMAN, and RA sites,
whereas in subsequent experiments, all sites were recorded simulta-
neously. In a subset of experiments in which all three nuclei were re-
corded, HVc activity at and around the recording site was silenced when
the correlated activity between LMAN and RA showed two well separated
peaks and when all sites were auditory (see below). HVc activity was
disrupted by injecting 2 mM kynurenate (180 nl to 5 �l, pH 7.4 in 0.1 M

phosphate buffer), a broad-spectrum glutamate receptor antagonist
(Collingridge and Lester, 1989), with 10% biotin dextran amine (BDA)
and Pontamine sky blue for evaluation of drug location and spread;
kynurenate has the advantage over other short-acting drugs, such as
lidocaine, of blocking synaptic activity but sparing fibers of passage. The
tips of the injection and recording electrodes were 5– 40 �m apart in
depth and 10 –150 �m apart in the horizontal axis.

In all experiments, neuronal signals were amplified and filtered be-
tween 300 Hz and 10 kHz. Using a window discriminator, single units
(Fig. 1c) or small clusters of the largest units (2–5 units; see Fig. 1d,e) were
isolated. Single units were judged to be adequately isolated on the basis of
uniformity of waveforms and the presence of a refractory period in the
distribution of interspike intervals (ISIs), although a small number of ISI
violations (range, 0.001–2%) indicated that a low percentage of other
units were sometimes included. Spike arrival times and waveform data
were collected using a data collection program developed by Michael
Lewicki and Larry Proctor (California Institute of Technology, Pasadena,
CA), Frederic Theunissen (University of California, Berkeley, CA), and
Cooper Roddey (University of California, San Francisco, CA). Electro-
lytic lesions were made at some recording sites, and verified by Nissl
staining of brain sections, silver staining of brain sections, or both. Brain
sections were processed for BDA to visualize the approximate spread of
kynurenate.

Auditory stimulation. The bird was placed in a double-walled anechoic
sound-attenuated chamber with stimuli presented from a speaker cali-
brated to broadcast sound with a mean peak intensity level of 75 dB,
positioned 23 cm away from the bird. The frequency response in the
chamber was flat (�6 dB) within the range of 500 Hz–10.5 kHz. Search
stimuli included the bird’s own song (BOS), tutor song (typically the
father’s song), and a broadband white noise burst (100 or 300 msec
duration). Stimulus types included songs of other zebra finches, white-
crowned sparrow songs, and 300 msec pure tone bursts (1– 4 kHz). Ver-
sions of the BOS and tutor song whose temporal order had been manip-
ulated were included (Solis and Doupe, 1997). The duration of song

stimuli varied from 1.2 to 2.6 sec. Multiple and single units were defined
to be auditory when the average firing rate during at least one stimulus
type was significantly different ( p � 0.05, paired t test) from the spon-
taneous firing rate collected for 4 sec occurring immediately before stim-
ulus onset. Stimuli were interleaved with 6 – 8 sec of interstimulus
interval.

Data analysis. Data analyzed for correlation were from pairs or triplets
of recording sites that were auditory and confirmed to be in the desired
song nucleus. To quantify correlated activity, we calculated the coher-
ency function (Rosenberg et al., 1989). The coherency of two sets of
spikes was calculated during spontaneous activity (a 2 sec period imme-
diately before stimulus presentation) from all trials and during evoked
activity in response to the BOS (Fig. 2e,f ). To calculate the coherency, we
first calculated the cross-correlation (Fig. 2a– d) (Perkel et al., 1967) and
cross-covariance functions (Fig. 2c,d) (Perkel et al., 1967; Aertsen et al.,
1989). We used a time bin size of 10 msec and looked at time delay values
of up to 1 sec. Full details of the data analysis are outlined in the
Appendix.

In brief, the coherency function is calculated by normalizing the cross-
covariance of two spike trains by the autocovariance of both spike trains.
The coherency is a unit-less number and is bounded by �1 (perfect linear
anticorrelation) and 1 (perfect linear correlation); 0 indicates indepen-
dence. The coherency function offers two advantages over the cross-
correlation function as a measure of correlated activity. First, because we
derive it from the cross-covariance function, the coherency function
corrects for correlated firing that is attributable to correlated changes in
the mean firing rate, such as those during evoked activity. The cross-
covariance measures only the correlation between deviations from the
time-varying mean firing rates; it is calculated by subtracting the shuffle
corrector from the cross-correlation (Fig. 2c,d). The importance of using
the cross-covariance when analyzing stimulus-driven activity, such as
that driven by the BOS in our experiments, is clearly illustrated by how
large the shuffle corrector function is in Figure 2c.

The second advantage is that the coherency normalizes for the tempo-
ral structure of firing within each neuron (given by the autocovariance),
which could contribute to correlation of activity that does not reflect true
synaptic interaction between the two neurons. For example, this normal-
ization removes additional or artificially wide peaks in the cross-
covariance functions that are likely attributable to bursting or other tem-
porally structured firing within each neuron. The comparison of the
cross-covariance functions (Fig. 2c,d) with the coherency functions (Fig.
2e,f ) illustrates the importance of correcting for the autocovariance func-
tions, both for assessing the true magnitude of association (Fig. 2g,h) and
for removing correlation peaks attributable solely to the temporal struc-
ture of firing within each recording site.

For all the cross-covariance and coherency measures, the sampling
error was estimated using the jackknife resampling technique (Thomson
and Chave, 1991). In brief, for experimental data based on n trials, one
estimates n values of the cross-covariance measures, each based on n � 1
trials, with a different trial deleted each time. The variance in the estimate
is then obtained. Pairs of cells are considered to be significantly corre-
lated if peaks in the coherency exceed three times the SD, which corre-
sponds to a 99% confidence level.

We fit the coherency function within the �100 to �100 msec time
delay window with a sum of 2 Gaussians. Goodness of fit was estimated
by calculating the regression between the fit and actual data points (an R 2

value) but was also assessed by visual inspection. Fits that had R 2 � 0.7
were excluded. However, when it was clear that the coherency function
only had one peak (“single-peak” coherency functions), that is, when the
amplitude of one of the Gaussians was very close to zero (mean ampli-
tude � SD for multiunit activity: spontaneous, �0.001 � 0.004; n � 5 of
9; evoked, �0.001 � 0.001; n � 2 of 3) or when the constraint to fit with
two Gaussians resulted in one Gaussian fitting nonexistent data (n � 4 of
9 for spontaneous; n � 1 of 3 for evoked), we refit the coherency function
with only one Gaussian. The peak amplitude of each Gaussian “ampli-
tude,” the time delay at this peak “time delay,” and half-width at 1 SD
(“width”) were measured. These parameters were measured directly
from the data in cases in which the width of a peak was �10 msec. We
quantified strength of correlation as average coherency strength, calcu-
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lated as the square root of the area under the
coherency square normalized by the bin size.
The details of the calculation of strength are
described in the Appendix.

There were several broad types of LMAN–RA
coherency functions that were classified as
follows (although these types might actually
form a continuum). Coherency functions with
two peaks were defined as “well separated”
when the absolute value of the difference be-
tween the time delays of the two peaks was
larger than the sum of their widths (e.g., Figs.
3a,b, 4b). Cases in which the coherency func-
tion clearly only had one peak (described
above) were defined as a single peak; an exam-
ple is shown in Figure 7b. On the basis of the
criterion of good fit (see above), there were two
other types of “two-peaked” functions. Func-
tions with two peaks that were both significant
but did not meet our criterion for being well
separated in time were called not well separated
or “two nonseparable” peaks (Fig. 7a). There
were also functions in which two peaks were
well fit, and one was significant, but the other,
although clearly nonzero, was below our con-
servative significance threshold; we called these
“single peak with shoulder.” Because these two-
peaked functions looked very different (in
shape and peak timing) from the functions with
a single peak, we classified them separately from
the rest of the coherency function types. In ad-
dition, because these functions appeared simi-
lar to each other and were in the minority, we
grouped them together and called them “two
nonseparable/single peak with shoulder” func-
tions for data presentation.

Topographical alignment of LMAN and RA re-
cording sites. The LMAN–RA coherency func-
tions with two well separated peaks were
grouped into five categories according to the
topographical alignment of the corresponding
LMAN–RA sites as described by Johnson et al.
(1995), with category values that ranged from 1
to 3, indicating poor to perfect topographical
matches. The groups were as follows: (1) the LMAN recording site was
within a compartment that was not adjacent to the LMAN compartment
that sends projections to the RA recording site (n � 2 pairs of sites); (2)
the LMAN recording site was within the compartment adjacent to the
LMAN compartment that projects to the RA recording site (n � 14); and
(3) the LMAN recording site was within the compartment that sends
projections to the RA recording site (n � 4). The two intervening cate-
gories (1.5; n � 2; and 2.5; n � 6) corresponded to cases in which the
LMAN site straddled the two compartments used to define the lower and
higher categories. Our recorded sites sampled from all five categories.

Results
LMAN and RA activity are robustly correlated and show two
correlation peaks
We recorded simultaneously from LMAN and RA of 21 anesthe-
tized adult zebra finches (Fig. 1b), collecting spontaneous and
song-evoked extracellular activity from 20 single-unit pairs of
LMAN and RA song-selective auditory neurons (Fig. 1c) and
from 40 pairs of small clusters of neurons (2–5 units; Fig. 1d,e).
We then analyzed the relationship of RA firing relative to LMAN
spikes. First, to increase the likelihood that our analysis reflected
functional synaptic connectivity rather than simply shared re-
sponsiveness, we calculated the cross-covariance of RA and
LMAN activity by subtracting the shuffled cross-correlation from

the raw cross-correlation (Fig. 2c,d). This corrects for correlated
activity attributable to events occurring identically across all trials
(in particular, the stimulus) and normalizes for mean firing rate
(Perkel et al., 1967; Aertsen et al., 1989) (see Materials and Meth-
ods). We then calculated the coherency function of LMAN and
RA activity. Coherency is a measure of neuronal interaction in
which the cross-covariance function of two sets of spikes is nor-
malized by the autocorrelation of each spike train (Rosenberg et
al., 1989) (see Materials and Methods). Normalization removes
the influence of the temporal structure of firing within each in-
dividual spike train (Fig. 2c–f) and is especially important for song
neurons, which burst both spontaneously and in response to a tem-
porally complex and repeating sequence of sounds (Fig. 1c–e). The
strength and timing of neuronal interaction were quantified from
Gaussian fits of the coherency function (see Materials and Methods).

Coherency analysis revealed correlated activity between
LMAN and RA, as indicated by a significant positive peak in the
coherency function in more than half of the LMAN–RA single-
unit (su) and multiunit (mu) pairs, both during spontaneous
activity (12 of 20 su pairs and 29 of 40 mu pairs) and during
presentation of the bird’s own song (“evoked activity”; 6 of 20 su
pairs and 22 of 40 mu pairs). Figure 3, a and b, illustrates the
similarity between the significant positive peaks in single-unit

Figure 1. Simultaneous recording of LMAN and RA activity. a, Schematic of a serial chain of individual neurons in the CNS, with
uniform probability of the presynaptic neuron eliciting a response in the postsynaptic neuron (p). Because individual spikes only
successfully cause downstream neurons to fire a small fraction of the time, the response probability decreases exponentially as
activity travels downstream; i.e., p(A � D) is very small. b, Schematic of the anatomy of the song system showing the descending
motor pathway for song and the AFP. The diagram on the right is a simplified representation of the song system that emphasizes
the anatomical connections between nuclei investigated in this study. c– e, Raster plots of trials of LMAN (trial numbers in gray)
and RA (bold) activity that showed two well separated peaks in their LMAN–RA coherency function. Trials with the same number
were recorded simultaneously. Below each raster plot in c and e is an amplitude-versus-time representation of the bird’s own song
stimulus. c, Single-unit spike rasters. Each vertical tick represents an action potential corresponding to the isolated single-unit
waveforms shown (n � 100 each, randomly selected; vertical bar represents 1 msec, and horizontal bar represents 100 �V). d,
Raw multiunit waveform activity. The horizontal lines in trials marked 1 indicate a representative window discriminator level used
to collect spike activity from small clusters (2–5 units) of neurons. Trials 1 and 2 are during spontaneous activity, and trials 3 and
4 are during evoked activity. Boxed sections highlight instances in which RA activity increased before and after an LMAN spike. e,
Multiunit (2–5 units) spike rasters derived from small clusters of units like those in d. Calibrations: c, 500 msec; d, 100 msec; e, 1 sec.
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and multiunit data, differing only in strength (for other types of
functions, see below and Fig. 7). The types and basic features of the
coherency functions derived from spontaneous and evoked multi-
unit activity were also similar (Fig. 3c,d); we will therefore primarily
present data derived from spontaneous activity. Significant
peaks with features (described below) similar to those of co-
herency peaks were also observed in cross-covariance and
cross-correlation functions (for an example, see Fig. 2).

Of the LMAN–RA mu and su pairs that exhibited significant
correlated activity, the majority (20 of 29 for mu and 10 of 12 for
su) were well fit by two Gaussian functions (R 2 � 0.93 � 0.05 for
mu and 0.90 � 0.08 for su) and therefore had not one but two
peaks in their coherency functions (Figs. 3a,b, 4b, 7a). Both peaks
were highly significant (more than three times jackknife SD; see
Materials and Methods) for 18 of 20 mu pairs and 7 of 10 su pairs.
The two peaks had distinct time delays: one peak had a positive

time delay, indicating an increase in RA
firing probability after LMAN spikes
(LMAN-leading-RA peak; thick dashed
line), whereas the other had a negative
time delay, indicating an increase in RA
firing probability before LMAN spikes
(RA-leading-LMAN peak; thin dashed
line). Most of the mu and su pairs of
significant peaks were well separated in
time (15 of 18 for mu and 6 of 7 for su).
That is, the distance between the LMAN-
leading-RA and RA-leading-LMAN peaks
(the absolute value of the difference in
time delays) was greater than the sum of
the half-widths of the two peaks (also see
Materials and Methods, Figs. 3, 7). The
timing of each kind of well separated peak
was similar for mu and su pairs, and the
two peaks differed significantly from each
other in their time delay in both su and mu
recordings (mu, 8.2 � 3.2 vs �52.6 � 11.7
msec; p � 0.001; su, 10.2 � 2.6 vs �47.8 �
10.1 msec; p � 0.05, Wilcoxon signed rank
test).

In addition to the similarity in time de-
lays of mu and su coherency peaks, the
mean widths of the LMAN-leading-RA
peaks (mu, 11.8 � 3.3 msec; su, 15.0 � 7.5
msec) and RA-leading-LMAN peaks (mu,
24.0 � 10.2 msec; su, 19.0 � 13.3 msec)
were not significantly different between
mu and su coherency functions. However,
the strength of the coherency between
LMAN and RA activity of the small multi-
unit clusters was significantly higher than
that of su pairs both for LMAN-
leading-RA peaks (mu, 0.14 � 0.05; su,
0.08 � 0.02; p � 0.01, Mann–Whitney U
test) and for RA-leading-LMAN peaks
(mu, 0.10 � 0.04; su, 0.06 � 0.02; p � 0.05,
Mann–Whitney U test). Because the mu
correlation functions were strikingly simi-
lar to su coherencies but were overall
stronger, in most experiments we recorded
and analyzed both small multiunit clusters
of neurons and single units.

The topographical organization of the
LMAN projection to RA (Johnson et al., 1995) did not appear to
influence the coherency; there was no correlation between the
degree of topographical match between recording sites and the
strength of either LMAN–RA coherency peak (range of R values
for both mu and su, �0.236 to �0.274; p � 0.2; see Materials and
Methods).

The LMAN-leading-RA correlation peak is consistent with
the known excitatory connection from LMAN to RA (Okuhata
and Saito, 1987; Bottjer et al., 1989; Mooney, 1992) (Fig. 1b). In
contrast, the RA-leading-LMAN correlation peak was unex-
pected. This increase in RA firing probability before LMAN
spikes could reflect RA driving LMAN activity via the dorsolateral
nucleus of the medial thalamus (DLM) (Vates et al., 1997). How-
ever, the projection from RA to DLM is very weak in zebra finches
(Vates et al., 1997) and seems unlikely to explain the very long
time delay of the RA-leading-LMAN peak (40 –50 msec). We

Figure 2. Calculation of coherency function. All functions are from the activity of one pair of LMAN–RA sites during presenta-
tion of BOS (Evoked; a, c, e, g) and spontaneous (b, d, f, h) activity. a, b, Raw cross-correlograms of RA activity around an LMAN spike
at time delay of 0, normalized by the mean firing rate of RA. c, d, Cross-correlation (thick line) and cross-covariance (thin line) of
RA activity relative to LMAN spikes. Note that during evoked activity, presentation of the BOS stimulus contributes to the corre-
lation of activity between LMAN and RA; i.e., there is a significant “shuffle corrector” (dashed line), which represents correlations
attributable to responses to the BOS (or any event that occurs identically across trials). e, f, Coherency of RA activity relative to
LMAN spikes. Insets show the autocovariance of LMAN and RA activity. Note that during both evoked and especially spontaneous
activity, the temporal structure of firing within LMAN and RA causes LMAN and RA activity to be correlated over hundreds of
milliseconds (wide peaks), which can be observed in the cross-correlation and cross-covariance functions c and d. This correlation
can also be seen as wide pedestals in the LMAN and RA autocovariance functions and is removed by normalization in the coherency
function. g, h, Scattergrams of strength of association between LMAN and RA activity quantified using coherency and cross-
covariance measures. Both strengths were calculated in the same manner (see Materials and Methods), and wide peaks were
excluded from calculations. Open symbols represent peaks with a negative time delay, and closed symbols represent peaks with
a positive time delay. Dashed lines represent unity lines. R2, Coefficient of determination. The scattergrams show that the
cross-covariance function can overestimate the degree of correlated activity between LMAN and RA.
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hypothesize that the correlation represents
common excitatory input to both areas
from HVc, with RA receiving the input
earlier than LMAN. Such a source of
strong common input could result in an
increase in RA firing probability before an
LMAN spike (Fig. 4a).

Correlation of activity among LMAN,
RA, and HVc
If the RA-leading-LMAN correlation peak
reflects common input to LMAN and RA
from HVc, activity should also be corre-
lated not only between HVc and RA but
also between HVc and LMAN, two areas
separated by a minimum of three synapses
(Fig. 4a). A significant correlation of activ-
ity between such widely separated brain
areas would be unusual, so we tested this
directly by recording simultaneous activity
from small clusters in all three nuclei. We
found that in all experiments in which the
LMAN–RA coherency function had two
well separated peaks (Fig. 4b; n � 5), there
was indeed significant coherency of activ-
ity between HVc and LMAN (Fig. 4d; n �
5 of 5) as well as between HVc and RA (Fig.
4c). [HVc–RA cross-correlation was also
noted by Dave et al. (1998) and observed
between HVc and RA bursts by Hahnloser
et al. (2002).] The short positive time delay
of the HVc–RA peak (5.5 � 3.1 msec) is as
expected from the direct excitatory projec-
tion from HVc to RA, whereas the long
positive time delay of the HVc–LMAN
peak in these recordings (59.0 � 14.6
msec) is consistent with the indirect con-
nection, across many synapses, from HVc to LMAN.

If the RA-leading-LMAN peak is attributable to common in-
put to LMAN and RA from HVc, the time delay of this peak
should be predictable from the difference in time delays of the
simultaneous HVc–RA and HVc–LMAN coherency peaks (Fig.
4a). Despite the variability of the time delays of each peak be-
tween recording sites, within each set of recording sites, the tim-
ing of the RA-leading-LMAN peak was strikingly well matched to
the time difference between the co-occurring peaks (Fig. 4e).
Moreover, the mean timing of well separated RA-leading-LMAN
peaks from all experiments (�52.6 � 11.7 msec; n � 15) is well
predicted by the mean time delays of the HVc–LMAN and HV-
c–RA peaks described above.

The correlation of HVc with Area X provides further support
for transmission of neural correlation through the AFP: in seven
of eight HVc–Area X spontaneous multiunit activity pairs, we
found a significant increase in Area X firing probability after
spikes in HVc. The shorter time delay and higher strength of these
HVc–Area X coherency peaks (8.0 � 6.0 msec and 0.19 � 0.06,
respectively) compared with all HVc-leading-LMAN peaks
(42.6 � 25.7 msec and 0.11 � 0.04, respectively; n � 10; p � 0.05,
Mann–Whitney U test) are consistent with the propagation of
correlated activity from HVc first to Area X and eventually to
LMAN.

Figure 5 compares the time delays and strengths of coherency
between directly and indirectly connected song nuclei. The mean

time delays of these peaks (Fig. 5a) are consistent with the ana-
tomical connections, with much longer time delays for indirectly
than directly connected nuclei. However, despite the fact that the
HVc-leading-LMAN and RA-leading-LMAN coherency peaks
reflect correlated activity across multiple stages of the song cir-
cuit, their strength of association (Fig. 5b) is not markedly less
than the association between directly connected areas (0.11 �
0.04 and 0.10 � 0.04 vs 0.27 � 0.04 for HVc–RA, 0.19 � 0.02 for
HVc–area X, and 0.14 � 0.05 for LMAN–RA). Thus, the strength
of these multistage correlations does not show the exponential
falloff of correlations expected across a serial chain of individual
neurons (Fig. 1a).

In 6 of 10 HVc–LMAN pairs analyzed, a coherency peak with
a short negative time delay was also observed (Fig. 4d; �5.4 � 4.0
msec). This peak could result from common input to both nuclei
or from a direct excitatory connection from LMAN to HVc. Al-
though a connection from LMAN to HVc would provide an in-
triguing source of additional feedback to the motor pathway, no
such direct anatomical projection has been observed thus far in
the zebra finch, although it has been suggested in canaries (Not-
tebohm et al., 1982).

A second peak with a long positive time delay in the HVc–RA
coherency function, which would indicate an HVc-locked increase
in RA firing probability attributable to LMAN activity, might have
been expected but was not observed. The lack of this peak presum-
ably reflects the large temporal jitter between LMAN and HVc spikes

Figure 3. Coherency of RA activity relative to LMAN spikes indicates robust correlated activity at the multiunit (a) and single-
unit ( b) levels, and during spontaneous ( c) and evoked ( d) activity. In a and b, the LMAN–RA coherency function shows two
significant peaks (amplitude � significance level of �3 � jackknife SD): LMAN-leading-RA (thick dashed line) and RA-leading-
LMAN (thin dashed line). td, w, Time delay and width, respectively, of each peak. The horizontal line within each peak in a and b
represents the width of each peak. c, d, Mean of all LMAN–RA coherency functions with two well separated peaks (see Materials
and Methods), derived from multiunit activity. LMAN3RA, LMAN-leading-RA; RA3 LMAN, RA-leading-LMAN.

5754 • J. Neurosci., July 2, 2003 • 23(13):5750 –5761 Kimpo et al. • Propagating Correlations Across a Song Circuit



(Fig. 4, compare c, d), as well as the slightly lower magnitude of the
HVc–LMAN and LMAN-leading-RA correlations compared with
HVc–RA coherency (Fig. 5b). Both of these effects would weaken
such a second peak and spread it out over many time delays so that a
much larger number of trials would be required to detect it.

Correlation of LMAN and RA activity attributable to common
input: effect of disrupting HVc activity
As a direct experimental test of our hypothesis, we examined the
effect of disrupting HVc activity on the correlation of LMAN and
RA activity. If the RA-leading-LMAN peak is attributable to
shared input from HVc, it should be greatly decreased by this
manipulation, whereas the direct LMAN-leading-RA correlation
should persist (as long as some spontaneous activity remains in
LMAN). We recorded simultaneous multiunit activity from
HVc, LMAN, and RA of anesthetized adult zebra finches before
and during silencing of HVc activity at and around the recording
site with a broad-spectrum glutamate receptor antagonist,
kynurenate (Collingridge and Lester, 1989) (n � 3; see Materials
and Methods). This agent should broadly inactivate the many
glutamate receptors in HVc (Dutar et al., 1998) but should spare
fibers of passage.

During HVc inactivation, the RA-
leading-LMAN coherency peak decreased
markedly, whereas the LMAN-leading-RA
peak was only slightly diminished. Figure 6a
shows an example from one experiment. To
quantify the total change in LMAN–RA co-
herency attributable to HVc inactivation, we
calculated the change in area under the co-
herency; group data are shown in Figure 6b.
In all cases, the LMAN-leading-RA peaks
remained significant, whereas none of the
RA-leading-LMAN peaks were significant
during disruption of HVc activity. HVc in-
activation was always accompanied by loss of
HVc spontaneous activity recorded at the
HVc electrode (88% decrease in firing rate;
range, 69–98%). The changes in coherency
occurred despite a 52% decrease in sponta-
neous activity of LMAN (range, 14–74%)
and relatively little change in spontaneous
activity in RA (15% decrease; range,
12–17%), presumably reflecting the high in-
trinsic firing rates of RA neurons (Dave et al.,
1998; Spiro et al., 1999). Because the level of
RA activity remained high after HVc inacti-
vation, the RA-leading-LMAN correlation
peak should have persisted if it depended
primarily on connections from RA to
LMAN via DLM, but it did not. These inac-
tivation results thus provide strong direct ev-
idence that the RA-leading-LMAN peak is
primarily caused by the common input from
HVc directly to RA and indirectly to LMAN
via the AFP.

LMAN–RA and HVc–LMAN
correlations vary in parallel and
are labile
Although most correlation functions
showed two well separated and significant
peaks, occasional LMAN–RA coherency

functions were well fit by two peaks, but these peaks were not well
separated in time (Fig. 7a), one of them was not significant, or
both. When there was only one significant peak, the nonsignifi-
cant “peak” fit was always a shoulder to the left of the significant
peak. Because these coherency functions appeared similar to each
other and were few in number, we grouped them as “two non-
separable peaks/single peak with shoulder” (mu, n � 5; su, n �
4). In some cases, coherency functions were well fit by only one
Gaussian, indicating that the function exhibited only a single
peak (mu, n � 9; su, n � 2; Fig. 7b; for definitions of the different
types of functions, see Materials and Methods).

Among the two nonseparable/single peak with shoulder func-
tions, it was the timing and strength of the RA-leading-LMAN
peak that appeared to vary and to give rise to the different types of
coherency functions. When the two peaks were not well separated
in time, the time delay of the RA-leading-LMAN peak was shifted
closer to zero (mu, �20.9 � 23.5 msec; n � 4 of 5; su, �36.4 �
10.2 msec; n � 2 of 4) than when the two peaks were well sepa-
rated; when there was only one significant peak (mu, n � 1 of 5;
su, n � 2 of 4), it was always the RA-leading-LMAN peak that was
not significant. In contrast, the LMAN-leading-RA peak in two
nonseparable/single peak with shoulder functions was always sig-

Figure 4. Coherency among LMAN, RA, and HVc activity. a, Hypothesis: the RA-leading-LMAN peak is caused by common input
from HVc. A presynaptic spike from HVc (gray) arrives in RA earlier at a shorter time delay T(HR) than in LMAN at time delay T(HL).
The equation on the right describes our prediction of the time delay of the RA-leading-LMAN peak, T(LR�), derived from T(HR)
and T(HL). T(LR�), Time delay between LMAN and LMAN-driven RA spikes; T(LR�), time delay between LMAN spikes (at time
delay of 0) and HVc-driven RA spikes. Note the similarity of the right plot to the highlighted sections of Figure 1d. b– e, Coherency
functions from simultaneously recorded LMAN, RA, and HVc multiunit spontaneous activity. Conventions are as in Figure 3. b,
LMAN–RA coherency function with two well separated peaks. c, Coherency function of RA activity relative to HVc spikes (at time
delay of 0) shows a peak with a time delay of �0, indicating increased RA firing probability after HVc spikes. d, Coherency function
of LMAN activity relative to HVc spikes (at time delay of 0) exhibits two peaks, one with a negative and the other a positive time
delay, indicating increased LMAN firing probability before and after HVc spikes, respectively. e, Regression plot of predicted and
measured time delays of the RA-leading-LMAN peaks, T(LR�), when all three correlations were measured. R, Correlation
coefficient.
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nificant, and had a time delay (mu, 7.1 � 7.5; n � 5 of 5; su,
10.9 � 6.2 msec; n � 4 of 4) similar to that in well separated
functions.

The timing and strength of the RA-leading-LMAN peak also
varied in parallel with the correlation of activity in the AFP. In
experiments in which we simultaneously recorded the activity of
small clusters of neurons from LMAN, RA, and HVc, the timing
of the RA-leading-LMAN peak covaried with that of the HVc-
leading-LMAN coherency peaks but not with the timing of the
HVc-leading-RA peaks (Fig. 7c). Single LMAN–RA peaks are as-
sociated with HVc–LMAN peaks with short time delays; two
nonseparable/single peak with shoulder LMAN–RA peaks are as-
sociated with HVc–LMAN peaks with intermediate delays; and
two well separated LMAN–RA peaks are associated with HVc–
LMAN peaks with long time delays. In addition, when there were
no significant LMAN–RA peaks, the HVc–LMAN coherency
function also lacked significant peaks, whereas the HVc–RA co-
herency function consistently exhibited a significant peak. Thus
the multistage correlation through the AFP appears to be the
more labile of the two correlations that generate the RA-leading-
LMAN correlation.

Discussion
Preservation of correlated activity across several song nuclei
The results of this study show that correlation of activity is well
preserved across multiple synapses in the song system, particu-
larly through the entire basal ganglia– dorsal forebrain circuit.
The strength of association between directly connected song nu-
clei was in the same range as those of direct cortical and subcor-

tical connections (0.02– 0.20; Abeles et al., 1993; Vaadia et al.,
1995; Eggermont and Smith, 1996; Alonso and Martinez, 1998).
Strikingly, the coherency strength between song nuclei separated
by three or more synapses was also of the same order of magni-
tude as that of the direct connections. This is surprising because
experimentally, correlation of activity between neurons that are
not directly connected or do not share direct common inputs is
usually weak (Frostig et al., 1983; Gochin et al., 1991; Mason et al.,
1991; Eggermont, 1992). Similarly, theoretical discussions have
predicted correlations to be negligible across more than one or
two central synapses (Perkel et al., 1967; Fetz and Cheney, 1980;
Abeles, 1982). However, these studies examined brain areas and
model networks that are predominantly connected in series. The
probability of detecting correlated activity between indirectly
connected neurons in a serial and sparsely distributed functional
connectivity (Fig. 8a) would be low. The robust correlations
across multiple synapses observed here speak strongly against
such a sparse, parallel model. Rather, the functional connectivity
of the song circuit is more likely to resemble models with conver-
gence and divergence of connections as well as extensive intrinsic
connectivity (Figs. 8b,c; Abeles, 1991; Diesmann et al., 1999; Stro-
eve and Gielen, 2001). Such an architecture, in which each cell has
numerous chances to drive target neurons as well as to receive
inputs, compensates for the unreliability of individual connec-
tions, and can preserve or restore a degree of correlation within
each downstream nucleus. Our data thus suggest that informa-
tion in the song system is processed by a highly functionally in-
terconnected network of neurons, which could preserve the tem-
poral relationship of firing of neuronal assemblies across
multiple synaptic steps.

Anatomical and electrophysiological data support such an ar-
chitecture for the song system. The temporal profile of auditory
responses to the bird’s own song in anesthetized animals appears

Figure 5. Distribution and mean of time delays ( a) and average strengths ( b) of coherency
peaks in the song system. Data shown for the LMAN-leading-RA, HVc-leading-LMAN, and RA-
leading-LMAN peaks are those that correspond to LMAN–RA coherency functions with well
separated peaks. All peaks were derived from spontaneous activity. Each symbol represents
data from one pair of sites; bars indicate the mean for each type of coherency peak, and error
bars indicate SE.

Figure 6. The RA-leading-LMAN peak is greatly decreased when HVc activity is disrupted. a,
LMAN–RA coherency function before and during disruption of HVc activity. The shaded area
represents the extent of decrease in coherency as a result of HVc inactivation. Note that there is
not a significant RA-leading-LMAN peak during HVc disruption. b, Average percentage of area
under coherency curve retained during disruption of HVc activity. Error bars indicate SE.
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to be similar across large areas within HVc (Sutter and Margo-
liash, 1994) and within LMAN (Doupe, 1997) and thus may be
synchronized. Synchronization has been directly observed be-
tween the bursting spikes (spike rates �100 Hz) of RA-projecting
HVc neurons and HVc interneurons (Hahnloser et al., 2002).
HVc has broad intrinsic connectivity, and its projections to RA
and Area X are widely divergent (Fortune and Margoliash, 1995;
Vates and Nottebohm, 1995; Foster and Bottjer, 1998). Within
the AFP, however, projections are topographically organized, in-
cluding the LMAN projection to RA (Johnson et al., 1995; Luo et
al., 2001). We found nonetheless that the topographical align-
ment of the LMAN and RA recording sites did not affect the
strength of LMAN–RA correlation. This suggests that additional
connections between topographical compartments, such as the
horizontal connections within LMAN (Boettiger and Doupe,
2001) or interneurons within RA that synchronize the activity of
RA neurons (Spiro et al., 1999), act to preserve the correlation of
activity.

The correlation studies here provide new experimental evi-
dence for functional connectivity that can preserve correlated
firing across many stages of a processing network. One model for
such connectivity, the “synfire chain model” proposed by Abeles
(1991), postulates that faithful transmission of synchronized fir-
ing requires strong, reliable synapses with a very small temporal
jitter at each synapse. More recent feedforward models using
assemblies of interconnected “integrate-and-fire” neurons also
predict propagation of correlated activity but with less depen-
dence on spike precision and synaptic strength and, rather, on
numbers of shared inputs and lateral interconnections (Dies-
mann et al., 1999; Stroeve and Gielen, 2001). Our results support
the idea of propagating correlations as in these models but also
reveal gradual weakening and widening of the correlation peaks
as we record from increasingly separated stages, consistent with
the many sources of noise and variability in real biological syn-
aptic networks (Shadlen and Newsome, 1998). Despite the jitter
of spike timing we observed in parts of the song circuit, especially
the AFP, the degree of functional interconnectivity must be ex-
tensive enough for a significant correlation of activity to persist
across song nuclei even as its timing broadens.

Possible functions of preservation of spike timing
The AFP is a basal ganglia– dorsal forebrain circuit that forms an
indirect connection between a song premotor area (HVc), and a

Figure 7. HVc–LMAN coherency functions vary in parallel with the types of LMAN–RA func-
tions, whereas HVc–RA coherency functions do not. Conventions are as in Figure 3. Examples of
LMAN–RA coherency function with two peaks that are not well separated in time (a, thick and
thin dashed lines) and a single peak ( b) are shown. c, Time delays of co-occurring HVc–LMAN
and HVc–RA peaks, grouped according to their co-occurring type of LMAN–RA peaks (see Ma-
terials and Methods). Data from spontaneous (black) and evoked activity (gray) are shown. The
mean time delays of the HVc–LMAN peaks are as follows: triangles, 52.8 � 19.9 msec (n � 6);
diamonds, 5.8 � 4.5 msec (n � 4); squares, 1.4 � 0.8 msec (n � 2). Those of HVc–RA peaks
are as follows: triangles, 5.4 � 2.8 msec; diamonds, 2.8 � 2.6 msec; squares, 5.0 � 0 msec.

Figure 8. Examples of possible patterns of functional connectivity in the song system. Each
row of circles denotes neurons within a song nucleus, and each row represents a different song
nucleus. The models in a and c are extreme possibilities, whereas that in b is one of a number of
possible intermediate patterns. a, Functional connectivity organized in a parallel manner with
sparse connections between neurons. b, Convergence and divergence of inputs from the first to
the second step and subsequent sparse connections and a varying degree of short- and long-
range intrinsic connectivity within nuclei (which could be direct or via interneurons). c, Exten-
sive convergence and divergence of functional connections between nuclei and short- and
long-range intrinsic connections within each nucleus. The activity in neurons 1 and 2 is more
likely to be correlated in b or c than in a. Convergence and divergence only at some of the levels,
as in b, would still increase the likelihood of observing correlations across a network.
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primary motor area (RA) connecting directly to vocal motor neu-
rons (Fig. 1b). Activity in the AFP, which includes both singing-
related activity and sensory responses to the bird’s own song
(Hessler and Doupe, 1999; Solis and Doupe, 1999), is critical for
learning and plasticity of song output, especially in juvenile birds
(Bottjer et al., 1984; Scharff and Nottebohm, 1991; Williams and
Mehta, 1999; Brainard and Doupe, 2000). One model of AFP
function is that it modulates the strength of synapses in the motor
pathway, via a reinforcement or error signal to RA that may re-
flect how well the bird’s vocalizations match a previously mem-
orized song template (Doya and Sejnowski, 1998; Brainard and
Doupe, 2000; Dave and Margoliash, 2000; Troyer and Doupe,
2000). Our results showing a significant direct LMAN-
leading-RA correlation suggest that the AFP interacts function-
ally with the motor pathway even in adult birds. Moreover, the
RA-leading-LMAN correlation, which implies extensive inter-
connectivity within the AFP, raises the possibility that AFP teach-
ing signals are encoded in the correlated firing of ensembles of
AFP neurons. The degree of correlated activity in the AFP may
influence the extent to which the AFP can modulate RA activity.

These results also suggest that information about the overall
temporal pattern of song-related activity is preserved in the form
of correlated activity as it moves across processing steps; that is,
waves of broadly correlated activity appear to propagate through
the two song pathways, converging at RA with a time difference of
	60 msec. Such temporally offset waves of correlated activity
could be critical for learning and generation of motor sequences
or for a delayed reinforcement signal.

The striking propagation of correlated activity across the song
circuit may reflect a type of neural information processing par-
ticularly relevant to consolidation of learned patterns of activity.
Our recordings were performed in anesthetized birds, but evi-
dence suggests that activity in such animals is similar to that in
sleeping birds (Dave et al., 1998). During sleep, the pattern of
spontaneous firing of some song neurons has been reported to
show similarities to their pattern of activity during singing (Dave
and Margoliash, 2000). Similarly, hippocampal neurons show
evidence of increased neuronal correlation and replay of tempo-
ral sequences of activity from behavioral episodes during sleep
(Sutherland and McNaughton, 2000; Louie and Wilson, 2001).
These studies in both rodents and songbirds raise the possibility
that activity during the sleep state is involved in consolidation of
what was learned or experienced during waking.

Parallels to mammalian basal ganglia
Our results suggest further strong parallels between the songbird
circuitry and the mammalian cortical– basal ganglia circuits with
which it shares homology (Bottjer, 1993; Bottjer and Johnson,
1997; Luo and Perkel, 1999; Perkel and Farries, 2000). In mam-
mals, too, there are widely divergent and convergent connections
from cortical regions onto their targets in the striatum (Graybiel
et al., 1994; Kincaid and Wilson, 1996; Graybiel, 1998; Kincaid et
al., 1998; Stern et al., 1998; Parent et al., 2000). Although striatal
projections are organized in segregated channels (Middleton and
Strick, 2000), some striatal interneurons show synchronized fir-
ing that could act to link output channels (Raz et al., 1996). It has
been proposed that the anatomical connectivity of these path-
ways allows broad information sharing between subcircuits, but
the extent to which subcircuits fire independently is functionally
modulated, especially in learning or disease (Bergman et al., 1998;
Bar-Gad and Bergman, 2001; Bevan et al., 2002). The strong cor-
related activity through the AFP provides direct evidence for an
information-sharing model of connectivity within a basal ganglia

circuit for song and suggests that temporally correlated patterns
of activity may be important more generally for behaviors medi-
ated by cortical– basal ganglia circuits.

In addition, our data show that the coherency between RA and
LMAN can vary in parallel with the correlation within the AFP
and in response to alterations of HVc activity. Although some of
this variation may reflect random sampling of different preexist-
ing types of connectivity, it could also reflect active modulation of
the state of connectivity within the AFP. Marked changes in func-
tional connectivity have been observed in the mammalian basal
ganglia as a result of alterations in the level of dopamine (Raz et
al., 1996, 2001; Bergman et al., 1998; Ruskin et al., 1999). HVc,
LMAN, and Area X receive extensive dopaminergic projections
from the midbrain (Lewis et al., 1981; Bottjer, 1993; Soha et al.,
1996; Appeltants et al., 2000), and dopamine could therefore
modulate AFP correlations. The likely importance of horizontal
interconnectivity in propagation of correlations (Stroeve and
Gielen, 2001) suggests that acute or long-lasting changes in the
strength of this connectivity could dramatically affect informa-
tion transmission in such correlated circuits. Because the AFP
represents a basal ganglia–forebrain circuit specialized for one
discrete motor behavior, it may present a particularly tractable
system for assessing what function the propagation of correlated
activity plays in motor learning and behavior, as well as whether
factors such as dopamine modulate such correlation and to what
effect.

Appendix: Details of Data Analysis
Coherency function
To calculate the coherency, we first calculated the cross-
correlation (Perkel et al., 1967) and cross-covariance functions
(Perkel et al., 1967; Aertsen et al., 1989). The cross-correlation of
a spike train rB(t) relative to a second spike train rA(t) as a func-
tion of � [time delay relative to spikes in rA(t); we examined �
values of up to 1 sec] is given by:

Cross(�) � �1

T �
o

T �rA 
t�
rB
t � ���dt� , (1)

where T is the duration of the signal being analyzed, and �
 indi-
cates that the measure is averaged across all trials.

The cross-covariance corrects for mean firing rates in each
neuron, effectively measuring how deviations in firing rate from
the expected mean in one recording site are correlated with devi-
ations in firing rate from the expected mean in another recording
site. The cross-covariance between neurons A and B is given by:

CA�B (�)��1

T �
o

T

(rA(t)�r�A (t))(rB
t � �� � r�B(t��))dt�

�
1

T �
o

T

�rA(t)rB(t � �)
dt �
1

T �
o

T

r�A(t)r�B (t � �)dt, (2)

where r�A(t) and r�B(t) are the time-varying mean firing rates of the
neurons. Both the cross-correlation and the cross-covariance are
in units of spikes per second squared, and their absolute values
depend on the firing rates of each cell (in the case of the cross-
covariance, the mean firing rates). To obtain a normalized mea-
sure, the cross-covariance (or the cross-correlation) can be di-
vided by the variance in the firing rates of each cell, effectively
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obtaining a cross-correlation coefficient measure. The cross-
correlation coefficient is given by:

h
�� �
CA�B 
��

�� A
2 � B

2
, (3)

where

� A
2 � � 1

T �
o

T


rA
t� � r�A
t��2dt�
and similarly for �B

2. Such cross-correlation coefficients represent
a probability of firing in one cell (the “target” neuron) relative to
the firing in the “reference” cell and vary between �1 and 1, with
1 reflecting perfect correlation (and �1, anticorrelation) and
zero reflecting independence between the two trains of spikes.

When using cross-correlations to assess functional connectiv-
ity, it is critical to correct for correlated firing that simply results
from direct stimulus effects causing correlated fluctuations in
time-varying mean firing rates (i.e., neurons in two entirely un-
connected brain areas might show correlation if they both fired to
BOS). The cross-covariance corrects for these fluctuations be-
cause it measures only how trial-to-trial deviations from the
time-varying mean rates of each cell are correlated with each
other. It can be estimated by calculating the shuffle-corrected
cross-correlogram. We calculated the shuffle corrector for our
data by correlating the response from A during the ith trial (of n
trials total) with the response from B during the i � 1 trial (Fig.
2c,d). For i � n, i � 1 is set to be 1. We also calculated the average
of all permutations of the shuffled corrector and found that the
resulting distribution of the types of LMAN–RA coherency peaks,
as well as their time delays, widths, and average strengths, was
very similar to that observed when we used only one shuffle per-
mutation. We therefore used the single permutation of shuffle
cross-correlation for the data here. This shuffle corrector is an
estimate of how the mean time-varying rate in neuron A covaries
with the mean time-varying rate in neuron B across trials. In
other words, it estimates the second term on the right side of
Equation 2:

1

T �
o

T


r�A 
t�
r�B
t � ���dt.

Given the spike arrival bin window of dt (in our case, 10 msec),
the number of trials n, and Tn, the length of the signal in integer
units of dt, the shuffle-corrected cross-correlogram is then calcu-
lated by:

ĈA�B(k � dt) �
1

n
� �

i�t

n 1

Tn
�

1

dt � �
j�1

Tn

r A
i ( j)r B

i ( j�k)

��
j�1

Tn

r A
i 
 j�r B

i�1( j � k)� , (4)

where r A
i ( j) is the number of spikes recorded from neuron A

during trial i in the jth time bin and, similarly, r B
i ( j � k) in the j �

kth time bin for neuron B.
The shuffled cross-correlogram can then be normalized by the

variance of spike firing rates as described in Equation 3 to provide
a measure between �1 and 1. Note the magnitude of the shuffle

corrector function in Figure 2c, illustrating the importance of this
correction for stimulus-driven activity in particular.

Another possible source of cross-covariance between two
neurons that does not reflect true neuronal interaction between
these cells is the temporal structure of firing with each neuron.
For instance, assume that a spike in neuron A triggers a spike in
neuron B; however, neuron A is a bursting neuron and has a high
probability of firing again after it has fired once. Hence, the sec-
ond spike in the burst of A will also be correlated to the spike in B,
although the spike was actually triggered by the first spike in A. To
correct for this type of correlation, we calculated the coherency
function (Rosenberg et al., 1989) (Fig. 2e,f). The coherency func-
tion extends the normalization by replacing the variance in the
denominator of Equation 3 by the autocovariance function of
each of the two spike trains. This additional normalization takes
into account bursting or other temporally structured behavior in
either neuron A or B (or both) that would result in additional or
artificially large and wide peaks in the cross-covariance function
(see Fig. 2c–f). In practice, the coherency is calculated in the
frequency domain. The coherency is given by:

�A�B(�)�
CA�B(�)

�CA�A(�)�CB�B(�)
, (5)

where CA � B(�) is the Fourier transform of the cross-covariance
between the responses from A and B, and CA � A(�) and CB � B(�)
are the Fourier transforms of the autocovariance of activity from
neurons A and B, respectively. For plotting purposes, the coher-
ency in the time-domain is then calculated by taking the inverse
Fourier transform of Equation 5.

Strength of correlated activity
The peak amplitude or the area underneath the peak of cross-
correlation functions is often used to estimate the strength of the
correlation (Abeles et al., 1993; Cardoso de Oliveira et al., 1997;
Brecht et al., 1998; Bair et al., 2001). However, a better estimate of
the degree of association is to calculate the average strength across
all time delays within the peak. Because correlations at different
time delays are not independent in the time domain, this is a
complicated calculation but is relatively simple in the frequency
domain. To do this for the coherency, one must calculate the
square root of the average coherency square in the frequency
domain for frequencies below the Nyquist limit given by dt (the
time bin window). From Parseval’s theorem, however, the aver-
age coherency square can also be obtained in the time domain by
integrating the square of the coherency over time bins. To esti-
mate the average coherency square for each peak, the area under
the square of the coherency for that peak was divided by the time
bin dt. The area under the coherency squared was estimated from
the amplitude square of the peak multiplied by 2.5 times the
width of the peak (the factor 2.5 is required to estimate the area
under a Gaussian curve). Thus, the average coherency strength
represented by a peak is:

Average Coherency Strength � �Amplitude2 	 2.5 	 width

dt
.

The average coherency square as a measure of the association
between two time series is essentially equivalent to the correlation
coefficient between two variables and indicates the degree of lin-
ear relationship between the variability of two firing rates. Like
correlation coefficients, this measure is unitless. It should be
noted that, in general, measures of correlation strength are
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strongly dependent on the size of the time bin, and this must
taken into account when comparing such values across different
studies.

Figure 2, g and h, compares the average strength of coherency
and of the normalized cross-covariance of LMAN and RA activity
(calculated as above) for two well separated peaks. It is clear that
the cross-covariance measure can overestimate the strength of
association between LMAN and RA activity, validating our use of
the coherency as a measure of correlated activity.
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