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Preface

Quantitative computational and theoretical approaches are today an essential
part of brain research worldwide. The core challenge addressed in this book
lays in solving the jigsaw of accumulating biological data, increasing the
portfolio of computational models and levels of analysis, reproducing the
activity, and interpreting the function of brain circuitry. Momentous advances
in the guise of theoretical developments and empirical discoveries occurred at
a steady pace during the last few decades, ranging from fundamental aspects
of neuronal excitability to the collective electrical activity and plasticity of
neuronal networks, leading to adaptation, learning, and behavior. As we write
this preface, the brain sciences have built up knowledge to the point where
the simulation of the entire brain is a credible endeavor. Recently, large-scale
international collaborative research initiatives, backed up by unprecedented
governmental funding in Europe and in the USA, further popularized and
disseminated the use of computers and of mathematical descriptions to
simulate and understand brain function and dysfunctionwhile complementing
experimental techniques. Synthetic approaches to brain explanation now
cover the entire spectrum of temporal and spatial scales of brain activity, from
few ions to large patches of neural fabric. Bridging across scales and filling
knowledge gaps, there is a substantial and wide-reaching body of theoretical,
empirical, and descriptive work. This book epitomizes the development of
computational explorations of brain function from the most fundamental
levels to large-scale brain simulations.

Our intended audience is formed by both seasoned and fresh brain re-
searchers who are interested in contemporarymethods of representing biolog-
ical brains as simulatable models. The book sees computational neuroscience
as a guiding framework for an integrative understanding of the biophysical
origins of neural phenomena. There is an emphasis on the physical levels
of description, with a deep appreciation for empirical data on one end, and
for mathematical consistency at another. The chapters provide modern and
authoritative accounts of central topics in the theoretical and computational
description of brain structures. For all of them this book should provide
precious reference material to grasp confidently the foundational aspects in
this constantly developing and important discipline.

Providing a guiding thread for the book is the understanding that brain
phenomena must inevitably be tackled from different perspectives, which
have complementary explanatory sets that overlap at the edges. Ideally, a
description of a neural structure at a certain level has, as boundary conditions,
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vi Preface

the descriptions of the abutting levels. And ideally, phenomena at the next
level of description “emerge” from the underlying levels. That is to say, self-
organizing patterns at one scale should be understood as collective result from
a multitude of elemental operations in the levels beneath. We would like
to evolve descriptions of neural phenomena that provide continuity across
different levels of analysis in the same way as atoms give rise to ocean
waves. For a trite instance, we could cite how activity measurements in
EEGs originate ultimately from synaptic potentials. This belief, which is
based on inferences informed by physical theory, is only one of the many
“interfaces between theories” which can grant us confidence in the choice of
our abstractions and simplifications. Such as in physics, a great challenge in
computational neuroscience is to ensure that theories at one scale resolve and
provide boundary conditions for the next. For the modern computational neu-
roscientist, it is gratifying to see that the tenacious work of many researchers
brings levels of consilience (to use Edward Wilson’s appropriate neologism)
to neuroscientificwork. In addition to interfaces that have already been spelled
(such as how mean-field theories underlie whole brain models, and how
molecular dynamics should lead to synaptic transmission as a consequence),
we are often able to spot the gaps across interfaces, which translate into
opportunities and potentially new avenues of study. In the remainder of this
preface, we describe what we see as the thread weaving across the chapters,
cross-linking them, and evincing further opportunities.

Continuity across levels of description is a momentous set of epistemic,
mathematical, computational, and empirical elements. Tools, data, and the-
ory allowing for linking across levels magnify parameter uncertainty, and
therefore provide enticing experimental opportunities. Intuitively, the range
of scales we speak of traverses the following path:

Physiology of neurons and synapses → Spiking and transmission →
Local field potentials (physical/substrate) and mean-field approximations
(mathematical treatment) → Large-scale anatomy → Whole brain modeling

More specifically:

• Subcellular physiological modeling of ion channels and synapses can be
used to sanity-check, validate, and justify assumptions of dendritic and
cellular levels. These models started to tackle the nanoscopic domain with
incredible resolution, allowing us to build physically accurate models of,
for example, vesicle release and uptake (Chaps. 1 and 2).

• At the next logical level, synaptic models that abstract the processes of
vesicle formation, uptake, and exhaustion linking with habituation and
facilitation can provide accurate dynamical pictures of short-term plasticity
(Chap. 5). A subcellular understanding provides boundary conditions to
spatial and temporal integration of synaptic processes (Chap. 2).

• Albeit not losslessly, the spiking patterns of highly complex compartmen-
tal physiological models can be distilled into much simplified and largely
equivalent spiking models. Despite the many simplifications undergone,
and in fact due to them, these models have powerful explanatory potential
and can provide close fits to spiking data (Chap. 3).

http://dx.doi.org/10.1007/978-3-030-89439-9_1
http://dx.doi.org/10.1007/978-3-030-89439-9_2
http://dx.doi.org/10.1007/978-3-030-89439-9_5
http://dx.doi.org/10.1007/978-3-030-89439-9_2
http://dx.doi.org/10.1007/978-3-030-89439-9_3
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• Energetic, metabolic, and information processing constraints to neural
networks require an understanding of the link to the support network
provided by the glial cells. Development of our understanding of glial
function is going to be essential for future models of the interaction
between neural networks and non-neural substrates (Chap. 4).

• Providing a fundamental interface between the activity of spiking neu-
rons and population activity are mean-field theories. These depart from
homogeneous populations of neurons driven by common input to produce
mathematically consistent models of mean fields, which provide not only
a powerful abstraction to study the dynamics of populations, but the
communication between them as well, and to top it off, it offers a link
with artificial intelligence and connectionist approaches, justifying the use
of saturating non-linearities (Chaps. 5 and 6).

• With parsimonious and compelling assumptions, the cross-membrane
ionic activity of morphological models leads to models of electrical fields
of the brain underlying the measured signals from extracellular recordings,
to local field potentials, to EEGs (Chap. 7).

• Whole brainmodeling is the epitome of holistic integration,where anatom-
ical and dynamical data are effectively combined to offer human scale brain
modeling, promising patient-specific predictions of network dynamics in
epilepsy and promising fundamental insights in the understanding and
treatment of dynamical dysfunctions such as ataxia or Parkinson’s disease
(Chaps. 8, 9, 10, and 13).

• Brain dynamics implies functional consequences at the level of the organ-
ism, and computational neuroscience must also explain the links between
brain dynamics and complex cognitive function. Modeling specific organs
in their functional context is imperative for understanding their interactions
with other areas. In other words, computational neuroscience must bring
together large-scale models of entire brain areas with their empirically
measured consequences (Chaps. 11 and 12).

Granting common ground across these approaches is the understanding
that dynamical systems theory can serve as a weaving thread across scales.
Dynamical systems tenets figure prominently as foundation formany chapters
in that the dynamical analysis of phenomena provides inlays that bridge across
neural variability and constancy. The substrates of the brain abide by the rules
of physics, and therefore, at least at the level of qualitative and quantitative
predictions, there are substantial connectors across different levels of analysis.
With the success of such approaches and the incremental gap filling drive
of brain researchers, criticism of large-scale models subsides. Opportunities
for synergy between these research threads and empirical work abound.
Opportunities for interfaces that only now begin to be tackled are enticing.
Instances such as the integration between glial cells and neural network
energetics, or the influence of diffusive pharmacological elements modeled
via molecular approaches, are only two of a host of possible combinations,

http://dx.doi.org/10.1007/978-3-030-89439-9_4
http://dx.doi.org/10.1007/978-3-030-89439-9_5
http://dx.doi.org/10.1007/978-3-030-89439-9_6
http://dx.doi.org/10.1007/978-3-030-89439-9_7
http://dx.doi.org/10.1007/978-3-030-89439-9_8
http://dx.doi.org/10.1007/978-3-030-89439-9_9
http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://dx.doi.org/10.1007/978-3-030-89439-9_13
http://dx.doi.org/10.1007/978-3-030-89439-9_11
http://dx.doi.org/10.1007/978-3-030-89439-9_12
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bound to give us the next generation of integrative and holistic models of brain
phenomena. The modern neuroscientist who is attuned to these developments
has the best departing point for building bridges and breaking ground.

Trieste, Italy Michele Giugliano
Rotterdam, The Netherlands Mario Negrello
Milano, Italy Daniele Linaro
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1Modeling Neurons in 3D
at the Nanoscale

Weiliang Chen, Iain Hepburn, Alexey Martyushev, and Erik De
Schutter

Abstract

For decades, neurons have been modeled
by methods developed by early pioneers in
the field such as Rall, Hodgkin and Huxley,
as cable-like morphological structures with
voltage changes that are governed by a series
of ordinary differential equations describing
the conductances of ion channels embedded
in the membrane. In recent years, advances
in experimental techniques have improved
our knowledge of the morphological and
molecular makeup of neurons, and this has
come alongside ever-increasing computational
power and the wider availability of computer
hardware to researchers. This has opened up
the possibility of more detailed 3D modeling
of neuronal morphologies and their molecular
makeup, a new, emerging component of the
field of computational neuroscience that
is expected to play an important role in

W. Chen · I. Hepburn · A. Martyushev · E. De Schutter
(�)
Computational Neuroscience Unit, Okinawa Institute of
Science and Technology Graduate University, Okinawa,
Japan
e-mail: w.chen@oist.jp; ihepburn@oist.jp;
alexey.martyushev@oist.jp; erik@oist.jp

building our understanding of neurons and
their behavior into the future.

Many readers may be familiar with 1D
models yet unfamiliar with the more detailed
3D description of neurons. As such, this
chapter introduces some of the techniques
used in detailed 3D, molecular modeling,
and shows the steps required for building
such models from a foundation of the more
familiar 1D description. This broadly falls
into two categories; morphology and how
to build a 3D computational mesh based
on a cable-like description of the neuronal
geometry or directly from imaging studies,
and biochemically how to define a discrete,
stochastic description of the molecular
neuronal makeup. We demonstrate this with a
full Purkinje cell model, implemented in 3D
simulation in software STEPS.

Keywords

3D modeling · Molecular modeling ·
Nanoscale · Stochastic · STEPS

© Springer Nature Switzerland AG 2022
M. Giugliano et al. (eds.), Computational Modelling of the Brain, Cellular Neuroscience,
Neural Circuits and Systems Neuroscience 1359, https://doi.org/10.1007/978-3-030-89439-9_1
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4 W. Chen et al.

1.1 Introduction

Most single neuron models currently being used
combine discretized cable models with Hodgkin-
Huxley type equations. This approach, employed
by the popular software package NEURON
(Hines and Carnevale 1997) and others, is based
on mathematical methods developed 60–70
years ago when computing power was limited.
Wilfrid Rall (1964) proposed the widely used
compartmental modeling method, which is based
on a spatial discretization of the linear cable
equation.

Although compartmental modeling allows
simulation of complex 3D morphologies of
dendrites and axons in reasonable detail, the
underlying equations ignore many 3D aspects by
computing the changes in membrane potential
in a branched 1D cable. Also, by reducing the
morphology to connected cylinders, it is very
difficult to represent small structures such as
spines accurately (Fig. 1.1). In practice, most
such models ignore spines completely and have
a spatial resolution of about 10 μm in length.
This is a fair approach when experimental data
is obtained with conventional light microscopy,
but the advent of super-resolution microscopy
and its application to living neurons (Sigal et al.
2018) creates an abundance of data obtained at
the nanoscale. It is therefore timely to develop
methods to simulate neurons in 3D at the
nanoscale.

In this chapter, we describe our recent
implementation of 3D neuron modeling in the
stochastic simulator, STEPS (Hepburn et al.
2012), and provide instructions on how to port
a 1D NEURON model to a 3D one in STEPS.

The STEPS simulator is based on the Stochastic
Simulation Algorithm (Gillespie 1977), extended
for space by supporting tetrahedral meshes with
diffusive flux between mesh elements (Hepburn
et al. 2012).

1.2 Stochastic Modeling

1.2.1 The Stochastic Simulation
Algorithm for Molecular
Simulation

1.2.1.1 Background
The field of stochastic molecular simulation
arose from two fundamental observations about
molecular interactions in neurons and other
cells: (1) Molecules exist as non-continuous,
discrete (whole-number) populations, (2) the
interactions between molecules are probabilistic.
Deterministic modeling effectively negates
stochastic effects, and this approximation
suffices when molecular populations are
large but breaks down when populations are
relatively small. We will introduce just the
basic concept of stochastic simulation. For a
more specialized discussion of the theory, we
point the reader to the wealth of literature
that covers the topic (e.g. Simoni et al. 2019;
Székely and Burrage 2014; Gillespie 2007 for
reviews).

In a dilute, well-mixed system, there exist a
number of ways in which molecules can interact
with each other. We will term reaction ‘channels’
R. Consider the reaction Rj that represents a bi-
molecular interaction between molecules A and

Fig. 1.1 The NEURON
approach describing
neuronal dendritic
geometry by cylinders (a)
compared to realistic
geometry represented in a
neuronal mesh in STEPS
(b) (modified from Chen
and De Schutter 2017)
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B inside a cell:

Rj : A + B → C

Since A molecules and B molecules are mov-
ing randomly in space, and the interaction be-
tween any given reactant A-B pair may proba-
bilistically be elastic or reactive depending on
their energies upon meeting, one cannot predict
the exact point in time that any given A-B pair
will meet and react. We can only state with some
certainty the probability that each pair will react
within some time interval. This leads us to define
a propensity function for Rj:

aj(x)dt = the probability that one Rj reaction
will occur in the next (infinitesimally small) time
period dt, where x describes the current system
state, the current populations of reactants. It can
be observed that the time of the next reaction Rj

is a random exponential variable of mean (and
standard deviation) aj.

This description can be extended for types of
reactions involving a single molecular species
such as A → B where it is assumed that the
transition from A to B is also probabilistic and
determined by quantum effects and thermal fluc-
tuations.

1.2.1.2 Implementation
For M reaction channels, we can define a variable
a0, the sum of all aj at the given system state:

a0 (x) =
M∑

j=1

aj (x) (1.1)

a0(x)dt defines the probability that a reaction
will occur somewhere in the system in the next
infinitesimal time step dt, and for each reaction
channel, the value aj(x)/a0(x) gives the probability
that the next reaction is a ‘j’ reaction.

There are different algorithms for simulating
the time evolution of the system exactly, such as
the next reaction method and the direct method
(Gillespie 1977). The direct method makes use of
the observation that the period of time to the next
reaction anywhere in the system, τ, is itself a ran-
dom exponential variable of mean (and standard

deviation) a0 and so τ is assigned by a random
number on the uniform interval, r1, as such:

τ =
(

1

α0 (χ)

)
ln

(
1

r1

)
(1.2)

The reaction type is randomly chosen by a
second random number, r2, and based on their
weighted propensity, as such:

J = smallest integer satisfying:

j∑

j ′=1

aj ′(x) > r2a0(x) (1.3)

The simulation algorithm randomly assigns
the next reaction time and next reaction type by
Eqs. (1.2) and (1.3), updates any affected propen-
sities and the zero propensity and continues until
some desired end time.

1.3 Converting 1D Deterministic
Models into 3D Stochastic
Models

1.3.1 Morphology as a 3DMesh

STEPS supports simulations of a wide range of
neuronal structures, from sub-cellular organelles
to single neuron morphologies, with voxel res-
olution as low as 50 nm. Consequently, a great
diversity of morphology reconstruction solutions
exists, and multiple factors need to be considered
when determining the mesh generation pipeline.

The most critical factor is the data origin of the
neuronal structure. At the micrometer scale, sub-
branch or complete neuron cell models in tradi-
tional computational neuroscience commonly use
morphologies acquired from light microscopic
(LM) imaging and point tracing reconstruction.
In recent years, full cell reconstruction from elec-
tron microscopic (EM) imaging has also become
possible, allowing extremely detailed modeling
of a complete neuron down to individual den-
dritic spines. At the nanometer scale, traditional
sub-cellular simulations often use less biolog-
ically realistic, highly simplified morphologies
derived from publication statistics. Thanks to re-
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cent advances in EM imaging and automated
reconstructing technologies, as well as global col-
laboration on data repositories, it is now possible
to acquire realistic EM reconstruction of many
sub-cellular organelles and use them in modeling
and simulation. In the following sections, we will
discuss the LM and EM cases separately, and
demonstrate the typical pipeline, challenges that
are commonly encountered, and solution applica-
tions for each case.

While the detailed pipeline steps and the sup-
porting software may differ, both cases follow the
general pipeline:

• Data acquisition and curation of the neuronal
structure reconstruction

• Surface mesh generation and post-processing
from the curated data

• Volume mesh generation from the processed
surface mesh

• Element annotation and region coupling

1.3.1.1 From LM Imaging
to Tetrahedral Mesh

LM imaging provides a wide field of view that
is capable of capturing an entire neuron mor-
phology. However, the image resolution is often
too low to capture the details of small structures
such as spines. Because of these characteristics,
the morphology reconstruction from LM images
commonly adopts the point tracing approach and
stores the reconstructed morphology using the
SWC format (Cannon et al. 1998). In essence, the
SWC format represents a neuron as a set of trees
defined in Graph Theory. Each line in a standard
SWC file contains a sample point of the neuron
with a list of data items, including the sample
index, the neuronal structure identifier, the spatial
coordinates and the radius of the sample point,
and the index of the parent sample.

In addition to collaboration with experimen-
tal laboratories, researchers can acquire SWC
neuron reconstructions from public repositories,
for instance, NeuroMorpho.Org (Ascoli 2006),
which hosts more than a hundred thousand neu-
ron reconstructions from experimental labs across
the globe. Another widely used repository is the

Allen Brain Atlas (Jones et al. 2009), hosted by
Allen Institute for Brain Science.

While SWC morphology data can be directly
imported and used in traditional cable-theory
based neuroscience simulators, such as NEURON
(Hines and Carnevale 1997) and MOOSE (Ray
and Bhalla 2008), it cannot be used directly in
mesh-based simulators like MCell (Kerr et al.
2008) and STEPS (Hepburn et al. 2012). To make
use of this type of reconstruction data in a STEPS
simulation, a surface mesh and subsequently a
volume mesh need to be derived and generated
from the point samples.

From our experience, most of the acquired
reconstructions need to be curated before mesh
generation as issues often arise from the data.
To illustrate these issues, we first discuss how a
neuron morphology can be interpreted from the
SWC data.

One feasible interpretation of the dendritic and
axonal data is polynomial spline curves, which
can be inflated according to the sample radii
to form the neuron membrane surfaces. An ex-
ample application of this solution is AnaMorph
(Mörschel et al. 2017). It should be noticed that
the spline curve interpretation of the SWC mor-
phology is significantly different from the typical
approach used in traditional cable-theory-based
simulators, which may result in issues when com-
paring simulation data between simulators. An-
other solution is to interpret each segment of the
reconstruction, that is, two connected point sam-
ples, as one or several geometry primitives such
as spheres, cylinders, or truncated cones. Using
this approach, the whole SWC reconstruction can
be interpreted as the Boolean union of geometry
primitives, to which Constructive Solid Geometry
(CSG) techniques can be applied. Different from
the spline curve approach, this solution provides
a natural segment coupling between the mesh
model and the cable-theory model, so it is pre-
ferred in multi-scale modeling. The Constructed
Tessellated Neuronal Geometries (CTNG) solu-
tion (McDougal et al. 2013) is an application of
this approach.

The SWC data structure nicely captures the
tree-like morphology of the dendritic and ax-
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onal segments that are mostly radially symmetric
along the direction vectors, however, it is widely
considered inadequate for soma reconstruction.
Multiple representations of soma segments ex-
ist in publicly accessible SWC reconstructions,
mostly of which simplify the soma to a single
sphere. A small proportion of reconstructions also
use multiple short cylinders to outline the soma
morphology. Because of this, we advise the mod-
elers to consider the importance of the soma
morphology to the research project in advance,
as it significantly limits the choice of morphology
data and reconstruction software.

Another issue commonly encountered is seg-
ment intersection, where the primitive or spline
curve interpretations of two distant branches col-
lide with each other. In cable-theory-based sim-
ulators, this is not an issue as the collision of
the virtual cables does not affect any simulation
result. But it is critical to mesh-based simulators,
as the collided segments create an unrealistic
pathway shortcut where molecules can diffuse
through, leading to erroneous results. Figure 1.2
gives an example where two intersected segments
are highlighted.

As the spline curve intersections have been
discussed extensively (Mörschel et al. 2017), here
we focus on the CSG case. For practical reasons,

Fig. 1.2 SWC reconstruction of a Purkinje neuron with
complete dendritic tree, soma and initial axon segment,
acquired from (Zang et al. 2018) and visualized using
neuTube (Feng et al. 2015). Two examples of intersected
segments are highlighted in the zoom-in window. The
intersections were detected using Solution 1.1

here we define that an intersection is illegal if
it introduces an unrealistic shortcut for diffusion
between two distant branches. It should be noted
that the majority of intersections are in fact le-
gal, as any three consecutively connected point
samples in the SWC morphology form two prim-
itive segments that intersect at the middle point.
On the other hand, intersections between two
segments that originate from distant subbranches
are likely illegal. Many illegal intersections come
from imaging defects and human errors during the
reconstruction process, which could be prevented
with clear protocols and careful curation. In prac-
tice, however, defective SWC reconstruction data
may be the only accessible resource. Here we fo-
cus on this scenario and give a general solution for
detecting and resolving this issue using publicly
available software packages.

We first define i as the sample index of a
point in the SWC reconstruction.Accordingly,we
can also define the neuronal structure identifier,
coordinates, and radius of i as typei, xi, yi, zi, ri,
and parenti as the index of its parent sample. As
the SWC format does not allow multiple parents,
we can define Segi as the primitive representation
of a segment formed by i and parenti without
ambiguity. If parenti = −1 then i is the root
sample point, and the segment is interpreted as a
single sphere. We also define AABBi as the axis-
aligned minimum bounding box of Segi.

In theory, it is possible to perform a pair-wise
intersection detection on each CSG primitive in
the interpretation, but this is often computation-
ally expensive due to the massive number of sam-
ple points. The following solution adopts both
the spatial index and graph theory techniques to
speed up the detection process.

Solution 1.1 Intersection Detection for SWC
morphology
1. Generate the spatial index

Define S_Index as a R-tree spatial index,
For each sample point i

(continued)



8 W. Chen et al.

Solution 1.1 (continued)
Insert (key, value) pair (i, AABBi) to

S_Index

2. Generate the intersection set

Create Intersectedk as an empty set for each
sample point k,

For each sample point i

Provide AABBi as the input of a query
to S_Index, andAABB_intersectedi as
the list returned by S_Index, in which
each element j represents a segment
Segj where AABBj intersects AABBi

For each element j in AABB_intersectedi

If i <= j and Segi intersects Segj

Insert j to Intersectedi, also insert
i to Intersectedj

Primitive intersection problems in three-
dimensional space have been researched
extensively in Computer Graphics (Schneider
and Eberly 2003; Ericson 2005), with various
support from geometry libraries. For some
primitives such as spheres and cylinders, it is
trivial to compute the intersection from their
implicit functions. However, it could be more
challenging for other primitives like truncated
cones. In this case, the modeler can also try to
approximate the complex primitive with a set of
simpler primitives, for example, using spheres
to linearly interpolate a capped truncated cone
and apply the solution to the approximation.
Alternatively, the complex primitive can be
represented as polygon boundaries, to which
intersection detection solutions for boundary
representation (BREP) can be applied.

All intersected segment pairs need to be fur-
ther examined to determine if they are legal. Here
we utilize solutions in Graph Theory for the task.
GivingG as an undirected graph, for every sample
point i in the reconstruction, an edge e(i, parenti)
is inserted into the graph. For each intersecting

segment pair Segi and Segj, we retrieve the short-
est topology path between i and j fromG, denoted
as path(i, j). The length of path(i, j), L(i, j), is
called the geodesic distance between i and j in
G, which indicates how close the two points are
topologically. We can categories the intersection
scenarios as in Solution 1.2. If the intersection
between Segi and Segj is potentially illegal, we
annotate them by modifying the type identifiers
of sample point i and j to a unique value and write
them along with the rest of the morphology data
to a new SWC file. The relabeled morphology
can then be visualized and curated using SWC
editing tools such as neuTube (Feng et al. 2015),
where nodes with the unique identifier can be
highlighted to reveal potentially illegal intersec-
tions (Fig. 1.2). For STEPS simulation, it is often
important to maintain the length of each segment
in the SWC data so that the volume and surface
area of the morphology can be kept consistent,
whilst the relative positions between subbranches
are less crucial to the simulation result. In this
case, an applicable strategy for curating an in-
tersected subbranch is to rotate the subbranch
around its root sample point so that the rotated
subbranch no longer intersects with the rest of
the SWC tree. In detail, the following operations
in Solution 1.3 are performed on every sample
point p of a problematic subbranch B, giving p0
as the root of this subbranch and (x, y, z)p as the
coordinates of p.

Solution 1.2 Different intersection scenarios
1. Parent-child intersection: if L(i, j) = 1,

the intersection is always legal.
2. If L(i, j) = 2, and

• Initial branching intersection: if par-
enti = parentj, the intersection is al-
ways legal.

• Zigzagging: if parenti != parentj, the
intersection is legal only if the middle
sample point k intersect with both
sample point i and j. Otherwise the
intersection is potentially illegal.

(continued)
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Solution 1.2 (continued)
3. Distant intersection: if L(i, j) > 2, the

intersection is legal only if for each sam-
ple point k in path(i, j), k is in either
Intersectedi and Intersectedj. Otherwise
the intersection is potentially illegal.

Solution 1.3 Branch rotation operations
1. Translation: (x‘, y‘, z‘)p = (x, y, z)p −

(x, y, z)p0
2. Rotation: Giving α, β and γ as the

corresponding rotation angles for axis x,
y and z, and the axis-based rotation ma-
trices defined below, apply the rotation
matrices to p, that is, (x“, y“, z“)p =
Rx(α)*Ry(β)*Rz(γ)*(x‘, y‘, z‘)p.

Rx (α) =
⎡

⎣
1 0 0
0 cosα sinα

0 −sinα cosα

⎤

⎦

Ry (β) =
⎡

⎣
cosβ 0 −sinβ

0 1 0
sinβ 0 cosβ

⎤

⎦

Rz (γ ) =
⎡

⎣
cosγ sinγ 0
− sinγ cosγ 0

0 0 1

⎤

⎦

3. Inverse Translation: (x“‘, y“‘, z“‘)p =
(x“, y“, z“)p + (x, y, z)p0

Once the reconstruction is curated, it can
be used to generate a watertight, manifold
surface mesh, and in some cases, the tetrahedral
volume mesh as well. The modeler may
choose specialized applications to generate the
mesh from a predefined interpretation such as
AnaMorph and CTNG mentioned above. One
should be aware that both applications seem to be

outdated; thus extra coding may be required.
Alternatively, many general mesh generators
support Python/C++ scripting that allows
automatic CSG primitive creation and mesh gen-
eration. Popular free applications include Blender
(https://www.blender.org), Gmsh (Geuzaine and
Remacle 2009), and CGAL (https://www.cgal.
org/). However, this process often involves pair-
wise Boolean union operations on a massive
number of primitive objects, which could be
extremely time-consuming. It may be more
practical to first divide the morphology into
multiple sub-branches and generate the surface
meshes separately, then perform polyhedron
Boolean union operations on sub-branch surface
meshes. Some applications may not support
volume mesh generation, in this case, the surface
mesh can be used as the input of volume mesh
generators such as TetGen (Si 2015) and TetWild
(Hu et al. 2018) to generate the tetrahedral mesh.

STEPS currently supports importing of three
tetrahedral mesh formats: Abaqus .inp format,
Gmsh version 2 ASCII format and Tetgen
.node/face/ele format. If the mesh generator
outputs a mesh with an unsupported format,
format converters such as meshio (https://github.
com/nschloe/meshio) can be used to convert
the file. Alternatively, the steps.utilities.meshio
module also provides a generic mesh element
class and example import functions in Python
so that STEPS users can write their importers if
needed.

For research, it is often also necessary
to port the electrophysiological model from
NEURON to STEPS, so that results from both
models can be compared and reused. The
steps.utilities.morph_support module provides
support for automatic grouping and mapping
between STEPS tetrahedral mesh elements and
NEURON sections for this purpose.

1.3.1.2 From EM Imaging
to Tetrahedral Mesh

Compared to LM imaging, EM imaging provides
significantly more detailed morphology recon-
structions because of its high resolution. How-
ever, traditionally it was mostly used for sub-
cellular reconstructions due to its small field of

https://www.blender.org
https://www.cgal.org/
https://www.cgal.org/
https://github.com/nschloe/meshio
https://github.com/nschloe/meshio
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view and the significant amount of manual ef-
fort required. Recently, progress has been made
on full neuron reconstruction with EM imaging
thanks to advances in automatic image stitch-
ing and segmentation technologies (Turaga et al.
2010; Kaynig et al. 2015; Ronneberger et al.
2015). Unfortunately, EM reconstructions in the
public domain are significantly less accessible
than LM reconstructions. In many cases, recon-
struction data needs to be acquired via collabora-
tions. Some data may also be available on request
in publications. The Cell Image Library (Orloff
et al. 2012) is a publicly accessible database with
substantial EM imaging data. A small number of
mouse retinal cell reconstructions are also avail-
able from the EyeWire project (Kim et al. 2014).

The morphology reconstruction process with
EM images involves multiple procedure steps.
Reviews and guidance on this subject are widely
available in the literature (Peddie and Collinson
2014; Borrett and Hughes 2016). Here we focus
on how the acquired data can be further processed
for STEPS simulation.

The reconstruction data from EM imaging is
usually in one of the following formats: contour
stack, labeled voxels, or surface mesh. If the
received data is a contour or labeled voxel recon-
struction, a preliminary surface mesh needs to be
generated from the data first. Many EM imaging
and reconstruction applications support surface
mesh exporting for post-processing, for instance,
IMOD (https://bio3d.colorado.edu/imod/), ilastik
(https://www.ilastik.org/), and TrackEM2 (Car-
dona et al. 2012). As most of the reconstruc-
tion applications have their own data structures
and formats, it is recommended to first check
if surface mesh exporting is supported by the
original software before considering the alter-
natives. One alternative example is VolRoverN
(Edwards et al. 2014),which supports both IMOD
and TrackEM2 contours as the input. In the case
where the reconstruction is presented as labeled
voxels, solutions such as Marching Cubes can
be used to generate the triangular surfaces, for
example, the solution for ilastik (https://github.
com/ilastik/marching_cubes). Due to the fine res-
olution of the image source as well as the com-
plexity of the target morphology, it is rare to see

the use of the CSG approach for realistic EM
reconstruction.

Canonically, the surface meshes generated
from EM tracing applications are mostly used for
visualization rather than simulation. Many issues
may exist with these meshes and need to be
resolved before they can be used for tetrahedral
mesh generation and simulation. Here we list
some critical issues with EM reconstructed
meshes:

• Watertightness. The mesh cannot have any
holes on the surface.

• Manifoldness. The surface mesh needs to be
2-manifold, that is, any arbitrarily small piece
of the surface is topologically equivalent to
a disk. Common non-manifold examples in-
clude an edge shared by more than two faces, a
vertex shared by two faces but not by any edge,
or adjacent faces with their normals pointing to
the opposite directions.

• Self-intersection. Any facet of the surface
mesh should not collide with another facet.

• (For reconstructionwithmultiple components)
The surface mesh of each component should
not collide with the surface of other compo-
nents.

• Optimized. The surface mesh needs to be op-
timized before tetrahedralization. We will dis-
cuss the mesh optimization problem in a later
section.

In addition to manual mesh editing, many
mesh editing tools such as Blender (https://
www.blender.org) and Meshlab (http://www.
meshlab.net/) provide semi-automatic utilities
for finding and fixing mesh elements with these
issues. In recent years, automatic solutions such
as VolRoverN (Edwards et al. 2014), GAMer2
(Lee et al. 2020), and TetWild (Hu et al. 2018)
have also been introduced with various degrees
of success. These solutions are often capable of
fixing and optimizing the problematic mesh with
minimal human effort, usually by adjusting a
couple of parameters. Due to the complexity of
the EM reconstruction, it is highly recommended
to try these automatic approaches first before any
attempt to edit the mesh manually.

https://bio3d.colorado.edu/imod/
https://www.ilastik.org/
https://github.com/ilastik/marching_cubes
https://github.com/ilastik/marching_cubes
https://www.blender.org
https://www.blender.org
http://www.meshlab.net/
http://www.meshlab.net/
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For morphology that can be reconstructed by
a single surface mesh, once the surface mesh is
fixed and optimized, the tetrahedral mesh can be
generated using volume mesh generators such as
TetGen (Si 2015), Gmsh (Geuzaine and Remacle
2009). These volume meshing engines are fre-
quently integrated into the automatic mesh re-
pairing and optimization solutions such as the
ones mentioned above, therefore it is often pos-
sible to generate a simulation-ready tetrahedral
mesh from a problematic surface mesh automati-
cally.

If the reconstruction has multiple components,
for example subcellular structures such as the
endoplasmic reticulum (ER) within the cytosol,
the surface mesh of each component needs to
be fixed and optimized first. The processed
surface meshes can then serve as the boundaries
of different regions in the tetrahedral mesh.
Multi-region tetrahedral mesh generation from
triangular boundaries is currently less supported
by mesh generators. Noticeable applications
for this problem include TetWild (Hu et al.
2018), GAMer2 (Lee et al. 2020) and the 3D
Mesh Generation module in CGAL (https://doc.
cgal.org/latest/Mesh_3/index.html), although
some C++ coding is needed for CGAL. In
many cases, while multiple surface boundaries
can be used to regulate the tetrahedralization,
the tetrahedrons in each subregion are not
properly labeled so that an extra element
annotation step may be required. We will
discuss this issue and the solution in the next
section.

1.3.1.3 Advanced Topics in Mesh
Generation

Modeling with realistic morphology reconstruc-
tion has always been a technological challenge
as the complexity of the morphology requires
careful consideration of many details that may be
skipped in simplified models. Here we discuss
some important advanced topics based on our
previous experiences. It should be emphasized
that the importance of a specific modeling detail
highly depends on the research question itself. It
is the modeler’s responsibility to determine how

much effort needs to be devoted to each aspect of
the model.

MeshQuality Control Mesh quality control is a
broad topic. First of all, geometry approximations
exist in almost every step of the morphology
reconstruction process due to the limitations of
the geometry interpretation and mesh generation
solutions, and measurements of the same mor-
phology may differ significantly at each step. It
is recommended to monitor these measures, for
example, the surface area and volume of the mor-
phology, throughout the reconstruction pipeline
and apply for compensations when necessary.
In practice, such compensation can usually be
applied either on the scaling of the mesh itself
or to the parameters of the biochemical model,
such as molecule concentration and channel den-
sity. Figure 1.3 demonstrates the geometry dif-
ferences between a cable representation and a
STEPS mesh representation of the same SWC
data, which leads to the substantial surface area as

Fig. 1.3 The difference between a cable representation
(top) and a tetrahedral mesh representation (bottom) of
the same SWC data. In the mesh representation the gap at
the joint sample point is filled by a sphere with the same
diameter as the SWC sample point. The sphere is then
merged with the two connected segments. This change
ensures smooth molecule diffusion between segments, but
consequently leads to different surface area and volume
measures compared to the cable representation. Geome-
tries are generated and visualized using Trelis 16.5 (Trelis
2020)

https://doc.cgal.org/latest/Mesh_3/index.html
https://doc.cgal.org/latest/Mesh_3/index.html
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Table 1.1 Surface area and volume differences between
the cable and mesh representations of the same SWC data
in Fig. 1.3

Cable
representation

Mesh
representation

Surface area(μm2) 20.809 20.648

Volume(μm3) 6.601 6.587

well as volume differences (Table 1.1). While the
individual segment difference is moderate, it can
be cumulated and affect the result in a simulation
that involves a large number of segments if no
compensation is applied.

Next, both tetrahedron quality and size can
significantly affect the performance and accu-
racy of STEPS simulations. Many general quality
measurements are available in the literature, for
example, the Radius-Edge Ratio of a tetrahedron.
These measurements are often used as the metrics
for automatic mesh optimization, and the results
can usually be output to text for examination. The
modeler also has to pay attention to the mesh
element size, as the suitable tetrahedral size in
a STEPS simulation is mainly governed by the
reaction-diffusion properties of the biochemical
model. Numerical considerations place a lower
bound on subvolume size (Isaacson 2009), effec-
tively limitingmesh resolution. This lower-bound
is model dependent but in tests is often in the
range 50–100 nm (Hepburn et al. 2012).

Element Filtering and Annotation with Arbi-
trary Boundaries
In research projects, it is often required to filter
and annotate a subset of tetrahedrons in the mesh
that are within a given boundary. This is trivial
if the tetrahedral subregions are annotated in the
supported mesh file. In this case, the STEPS
indices of the tetrahedrons in each region are
stored during importing, which can be used to
create compartments in STEPS. Sometimes the
intermediate layer mesh elements such as tri-
angles and edges may not be included in the
mesh file, so the indices of membrane triangles
need to be derived from the tetrahedron owner-

ships. The steps.utilities.meshctrl module facili-
tates these operations.

It is usually more challenging to filter mesh
elements if no labeling information is provided in
the mesh data, or the filter boundary is defined
after the mesh generation and cannot be repre-
sented using simple geometries such as spheres.
Here we describe a general solution provided in
STEPS utilities and demonstrate its usage.

The first step of our solution is to create wa-
tertight surface meshes of arbitrary boundaries.
We first import the surface mesh of the recon-
struction morphology to Blender as a visual aid.
If the boundary is also represented as a surface
mesh, it can be imported to Blender as well.
Alternatively, a boundary surface mesh can be
created using various Blender functions such as
the Extrusion tools. As both the morphology and
the filter boundaries are presented in Blender, we
can inspect their positions and make necessary
changes. Once this is done and we are satisfied
with the boundary surface meshes, they are ex-
ported to individual files.

Giving Tetmesh as the tetrahedral mesh of the
reconstructed morphology and Trimeshn = 0 to N−1

as the N watertight triangular boundary meshes
exported above, we can label each desired sub-
region in Tetmesh using a sign vector defined as
below.

Giving N boundary meshes
Trimeshn = 0 to N−1, we define the Sign
Vector of a subregion V = [v0, v1, . . . ,
vN−1], for n from 0 to N−1

V[n] = ‘+’, if the region elements are out-
side Trimeshn

V[n] = ‘−’, if the region elements are
within or on Trimeshn

V[n]= ‘*’, if the region elements’ positions
do not associate with Trimeshn

Provided the STEPS Tetmesh object, the
list of boundary mesh files as well as the
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subregion sign vectors, the PolyhedronROI
toolkit (https://github.com/CNS-OIST/STEPS_
PolyhedronROI) can automatically locate
the suitable mesh elements for each labeled
subregion and store them as Region of Interest
(ROI) in the STEPS simulation. Each STEPS
ROI is associated with a user-defined id string
that can be used in many ROI-based functions
implemented in STEPS, for example, to modify
or compute the molecule concentration of the
ROI elements.

We use a spine morphology with an ER
membrane and a manually created post-synaptic
(PSD) boundary as the example to demonstrate
the usage of this solution. The spine and ER
surface meshes are acquired from (Chen and
De Schutter 2014) and used to generate the
tetrahedral mesh in GAMer2, while the PSD
boundary mesh is created by extruding a small
list of triangles on the spine surface in Blender.
We export the spine, ER and PSD boundary
meshes and define them as Trimesh0, Trimesh1
and Trimesh2. Some subregions that are of
interest to research can be defined accordingly,
for instance, Cytosol ([‘−’, ‘+’, ‘*’]), ER
([‘−’, ‘−’, ‘*’]) and PSD ([‘−’, ‘+’, ‘−’]).
Figure 1.4 illustrates the boundary surface
meshes in Blender and the corresponding
tetrahedral ROIs visualized using the STEPS
visualization toolkit. It should be noticed that
while the boundary of the ERROImatches the ER
surface mesh perfectly, since the PSD boundary
is not used to regulate the mesh generation of
the morphology, only a rough boundary can be
established.

1.3.2 3DMembrane Potential

1.3.2.1 Passive Parameters
Based on the theory of compartmental modeling
(Rall 1964), one does not expect differences for
the passive parameters, the specific capacitance
(Cm), specific membrane (Rm) and specific ax-
ial resistance (Ra), between a NEURON and a
STEPS model. In practice, however, some re-
tuning of passive parameters may be necessary.
As shown in Fig. 1.3, it is not trivial to per-

fectly match the surface area of the mesh used in
STEPS to that of the corresponding cable struc-
ture used in NEURON. Any mismatches will
lead to different input resistance values in the
STEPS model, but this can be corrected by ap-
plying proper scaling factors to Cm and Rm to
compensate for surface area mismatch. Unfortu-
nately, differences in axial currents, which can
also be caused by the elliptical cross-section of
many dendrites (Kubota et al. 2011) instead of the
circular one assumed in cable theory, cannot be
easily compensated.

More challenging is porting a NEURON
model to a new morphology based on EM
reconstruction, especially if it is a spiny neuron.
The neuron model probably used spine compen-
sation (Holmes 2009): the missing spines in the
morphology were compensated by expanding
the surface area of spiny parts of the dendrite.
In most such models, the spine compensation is
a tuned parameter, which was never validated
against a model with spines. Therefore, a full
model including spines may have substantially
different input resistance values compared to one
with spine compensation, requiring extensive
retuning of passive parameters.

1.3.2.2 Voltage on Tetrahedral Meshes
Voltage can be solved directly on a tetrahedral
mesh by constructing simultaneous difference
equations between coupled mesh elements and
solving the resulting sparse matrix (Hepburn et
al. 2013). Solving on tetrahedral meshes directly,
as opposed to a cable-like approximation, allows
realistic neuronal geometries to be supported
automatically, negating any errors arising from
conversion to cable-like structures (Lindsay et
al. 2004). This approach automatically captures
morphological features that may be important
such as high-resistance dendritic spine necks
but has a disadvantage of extra computation
compared to cable-equation approaches due
to the high voltage resolution. While scalable
libraries such as PETSc (Balay et al. 1997) can
be used to achieve a good performance, such as
the PETSc-EField solver implemented in parallel
STEPS, the reaction-diffusion computation and
the membrane potential computation often

https://github.com/CNS-OIST/STEPS_PolyhedronROI
https://github.com/CNS-OIST/STEPS_PolyhedronROI
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Fig. 1.4 Multiple region mesh generation and element
annotation. Left: ER boundary surface mesh (red) and
PSD boundary surface mesh (blue) in relation to the
spine surface mesh (wireframe). The ER boundary surface
is used to generate the tetrahedral mesh together with
the spine surface mesh, using the multiple region mesh
generation solution in Sect. 1.3.1.2. The PSD boundary

surface is not used to generate the tetrahedral mesh, but
used to identify PSD subregion tetrahedrons. Right: The
spine with ER (red) and PSD (blue) ROIs visualized using
the STEPS visualization toolkit, note that the PSD ROI
boundary does not match the PSD boundary surface mesh
in the left panel perfectly

exhibit a great difference in scalability. This
problem can be resolved by splitting the
computation cores into Reaction-Diffusion (RD)
cores and EField (EF) cores so that overall
high scalability can be achieved. Figure 1.5
shows the performance difference when varying
the RD-EF core ratio in a full Purkinje cell
complex spike simulation with 500 cores,
using the RD-EF splitting parallel STEPS
implementation. As a comparison, we also report
the performance of the same model simulated
using the default parallel STEPS implementation
without core splitting. Our results suggest that
with 500 computing cores, a splitting ratio of
approximately 460:40 between the RD cores
and EF cores achieves the best performance,
showing a substantial speedup compared to the
non-splitting solution.

1.3.3 MarkovModels of Ion Channel
Gating

Given the descriptions of membrane currents that
are typically used in conductance-based model-
ing, how can such a description be represented
in a way that is suitable for discrete, stochastic
modeling? The most common approach is to rep-
resent ion channels by a Markov model, in which
the ion channel is described as a discrete set of
subunits that can exist in a number of states, with
weighted, voltage-dependent transitions between
states. Markov models of ion channel gating rely
on the assumption that ion channels are memory-
less; that is that the probability of state transitions
depends only on the state itself and the local en-
vironment in terms of the voltage and not on how
the channel got to the state or the amount of time
spent in that state. As such, stochasticmodeling of



1 Modeling Neurons in 3D at the Nanoscale 15

Fig. 1.5 Performance difference when varying the RD-
EF core ratio in a Purkinje cell complex spike simulation
with 500 cores. Performance results are averaged from five
series of simulations and the standard deviations are also

reported. Blue column results are simulated using RD-EF
splitting parallel STEPS, and the green column results are
from non-splitting parallel STEPS. The best performance
is achieved with splitting ratio of approximately 460:40

Markov channel gating can itself be thought to be
an approximation to more detailed channel model
descriptions such as, for example, fractal models
where transition rates are time-dependent (Jones
2006). However, Markov gating has been shown
to describe experimental ion channel behavior
better than fractal and diffusion models in some
studies (e.g McManus et al. 1988; Sansom et al.
1989), whereas others suggest fractal models are
a better fit (e.g Toib et al. 1998). Even in the
latter case, however, Markov models can usually
be adjusted for a good fit simply by adding more
states to the model.

Under memoryless assumptions, the ion chan-
nel description for a two-state system can be
written as such:

I
kf→ A

I
kb← A

Where I represents some ‘inactive’ state
and A some ‘active’ state. Such a simple
model to fit a complete channel description
is rare, but under Markov assumptions, a full
channel state model can be constructed by a
combination of such transitions taking into
account all ‘subunits’ of the channel. Let us
look at the well-known example of the m3h
kinetics of the Hodgkin and Huxley (1952)
Na+ channel with corresponding voltage-
dependent rate constants αm βm, and αh βh,
and develop an intuitive understanding of how
the Markov description is derived from the
original kinetics. This technique may then be
applied to develop Markov models from other
common channel descriptions from the literature,
including ligand-activated channels (Anwar et al.
2013).
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The original Eqs. 1.4–1.6 inHodgkin andHux-
ley (1952) are:

gNa = m3hgNa (1.4)

dm

dt
= αm (1− m) − βmm (1.5)

dh

dt
= αh (1− h) − βhh (1.6)

If one examines the Na+ conductance in the
original Hodgkin-Huxley formalism, gNa, the
conductance is described as a fraction of maximal
conductance (gNa) which varies on the interval 0–
1 as m3h, or m.m.m.h (Eq. 1.4). This implies there
are four distinct ‘subunits’ of the Na+ channel
that operate independently (termed ‘particles’
by Hodgkin and Huxley), which, however, have
to co-activate to produce a conductance. Three
of the subunits happen to behave identically to
one another, so they can all be referenced by
the same term ‘m’, and one behaves differently
corresponding to the term ‘h’. We can therefore
construct four subunits for the Na channel, which
can either be closed (C) or open (O) (arbitrarily
labeled 1, 2, 3, 4 with 1, 2 and 3 related to the ‘m’
value and 4 related to the ‘h’ value):

1 : C
αm(V )→ O, O

βm(V )→ C

2 : C
αm(V )→ O, O

βm(V )→ C

3 : C
αm(V )→ O, O

βm(V )→ C

4 : C
αh(V )→ O, O

βh(V )→ C

By defining the value m as the proportion of
subunits in the open state and 1−m in the closed
state, the contribution to dm/dt from the open
state is −βmm and αm(1−m) from the closed
state. So we can see the kinetic equivalence to
Eqs. 1.5 and 1.6 from the Hodgkin Huxley for-
malism.

The full state diagram of this Na channel
consists of 16 states: CCC-C, CCO-C, COO-
C, OOO-C, COC-C, OCC-C, OOC-C, OCO-C,

CCC-O, CCO-O, COO-O, OOO-O*, COC-O,
OCC-O, OOC-O, OCO-O. This is cumbersome
to work with, but noting equivalency between
each ‘m’ subunit and that kinetically it does not
matter which of the ‘m’ states is active or inactive
allows us to simplify the model (Fig. 1.6). For
example, effectively CCO-C == OCC-C ==
COC-C) and so we can label this as one state, the
‘m1h0’ state to denote one active ‘m’ subunit and
an inactive ‘h’ subunit. The transition rates are
determined by calculating how many transitions
from the full 16 state model are represented,
e.g the m0h0 > m1h0 transition consists of three
possible routes each with rate αm, and so the rate
of this transition is 3αm.

Since this is equivalent to the combined two-
state description, the kinetics of the original HH
kinetics are preserved in the Markov model,
meaning that the Markov model may be used in a
stochastic simulation as a faithful representation
of the original ion channel description.

1.3.3.1 Calculating the Number of Ion
Channels in a Stochastic
Simulation

A relatively simple calculation is required to
calculate the required number of ion channels
when converting a cable-equation typemodel into
a discrete, stochastic description. For example, in
NEURON, channel maximal conductance, ḡ, is
specified in units of S/cm2. For equivalency,
we desire an effective conductance of ḡ in
the stochastic simulation. To do this, we first
need to introduce a new parameter, the single
channel conductance, gchannel, which can be
estimated from the literature: for example, a
value of typically 20 pS is used for Hodgkin-
Huxley Na+ and K+ channels (Hille 2001).
The number of channels we need to inject in
the discrete, stochastic simulation, nchannel, for
some membrane surface area, areamembrane, is
then simply:

nchannel = (ḡ/gchannel) × areamembrane

To ensure equivalency with the original model
if reconstructing a stochastic model from a NEU-
RONmodel or equivalent, it can be better practice
to use the effective surface area of the NEU-
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Fig. 1.6 Kinetic gating
scheme of the
Hodgkin-Huxley Na
Channel

RON compartments (cylinder surfaces) in the cal-
culation rather than in the representative mesh
structure to reduce the effect of morphological
discrepancies in the reconstruction.

1.3.3.2 Stochastic Channel Activation
Applying the SSA algorithm (or a close variant
thereof) to our Markov description of channel
gating in a mesh reconstruction of the neuronal
geometry, we can start to investigate stochastic
gating effects. In stochastic modeling, discrete
ion channel populations are simulated with each
ion channel effectively existing in one of a num-
ber of closed or open states. Each individual ion
channel therefore acts as a binary unit in terms
of conductance. A channel is either fully con-
ducting or not conducting; there is no continuous
transition between those two extremes. Individ-
ual ion channels differ in their activation time
and can flicker between open and closed states
(Fig. 1.7) so that smooth activation is only seen in
the ensemble average. This is the origin of noise
in stochastic models. Such stochastic gating de-
scriptions agree qualitatively with experimental
investigations into individual ion channel activa-
tion (Hille 2001).

1.3.3.3 Ligand-Gating
Ligand-gated channels can be easily incorporated
into the Markov framework. Each channel
subunit must be able to react with intracellular

or extracellular species such as Ca2+. This can
be achieved by specifying interactions with
compartment-specific species or, in STEPS,
specify a compartment for a reactant that may
appear in multiple compartments, i.e. a channel
may be activated by intracellular calcium but not
extracellular calcium to realistically represent the
region-specific features of ligand binding and
channel activation. Similar state diagrams can
be constructed for the voltage-gated channels
for channels that are ligand-gated or both ligand
and voltage gated, with some state transitions
involving ligand binding or release. For example,
the state diagram of the BK-type Ca2+ activated
K+ channel of Anwar et al. 2012, which has a
single voltage-dependent gate and four binding
sites for Ca2+ ions is shown in Fig. 1.8.

1.3.4 3D Calcium Dynamics

Calcium is a vital intracellular messenger, and
therefore Ca2+ dynamics requires careful atten-
tion in neuronal modeling. Calcium interactions
can be modeled at different levels of detail, from
effectively 1D modeling that is supported in the
whole cell or network simulators or detailed 3D
modeling that is supported in simulators such as
STEPS. But whatever the layer of abstraction, the
vital components that determine the calcium con-
centration are: Ca2+ entry through voltage-gated
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Fig. 1.7 A Markov K+
channel is stochastically
activated by the SSA
algorithm. Different rows
in the top panel show the
different activation of
individual ion channels
whereas only the ensemble
average of hundreds of
channels (bottom panel)
shows a relatively smooth
activation

Fig. 1.8 Kinetic gating scheme of the BK-type KCa channel

Ca2+ channels, intracellular diffusion, and inter-
action with buffers and pumps. The approach to
modeling these phenomena depends on whether
one is applying a 1D or 3D modeling approach.
1D approaches offer the advantage of far greater
simulation speed compared to detailed 3D mod-
els, yet all 1D approaches forfeit some level of

accuracy in comparison to detailed 3D models
(Anwar et al. 2014). Moreover, explicit represen-
tation of spines in 3Dmodels will introduce spine
calcium concentrations that can deviate substan-
tially from those in the dendrite (Sabatini et al.
2002).
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1.3.4.1 1DModeling
Voltage-Gated Calcium Channel Currents
Calcium entry is best modeled with the Goldman-
Hodgkin-Katz (GHK) flux equation (Goldman
1943; Hodgkin and Katz 1949). The large
difference in intra- and extracellular Ca2+
concentration produces a non-linear relationship
between current and voltage (Hille 2001), which
is not captured in an Ohmic description. In effect,
the channel conductance is not constant and
varies with voltage, an effect that is stronger
the higher the concentration gradient (which
varies as intracellular calcium varies). Modeling
the constant permeability takes these effects into
account accurately (Hille 2001; Hepburn et al.
2013). Permeability values can be found from the
literature (e.g Anwar et al. 2012) and should be
used to model the ionic flux by the GHK flux
equation.

Diffusion in the NEURON Simulator In NEU-
RON, each compartment may be divided into
concentric shells with diffusion occurring in the
radial direction between shells. Diffusion is mod-
eled as a first-order process with rates calculated
depending on how the shells are defined (Anwar
et al. 2014).

Calcium Interaction with Buffers and Pumps
Differential equations are constructed and solved
deterministically for calcium interaction with
both pumps and buffers:

The kinetic scheme for interactions with buffer
is the reversible reaction:

Ca2+ + buff er

k1f

�
k1b

{
buff er;Ca2+}

And for interaction with pumps is of
Michaelis-Menten type kinetics:

Ca2+ + pump

k2f

�
k2b

{
pump;Ca2+} kext→ pump

The extraction of Ca2+ from the cell is not
specifically part of the kext reaction because cal-

cium concentration is often assumed constant out-
side the cell.

This leads to differential equations of the form,
for example for Ca2+:

d
[
Ca2+

]

dt
= −k1f

[
Ca2+

]
[buff er]

+k1b

[{
buff er;Ca2+

}]

−k2f

[
Ca2+

]
[pump]+ k2b

[{
pump;Ca2+

}]

which are then solved deterministically by a
numerical method such as forward or backward
Euler, Runge-Kutta, or other.

1.3.4.2 3DModeling in STEPS
Voltage-Gated Calcium Channel Currents
Calcium entry may also be modeled with
the GHK flux equation in STEPS (Hepburn
et al. 2013). Similarly, as for single-channel
conductance for Ohmic currents discussed
previously, a single-channel permeability (units
m3s−1) is a required argument in STEPS and can
be derived from literature, with channel numbers
calculated following similar arguments as in
Sect. 1.3.3.1. The single channel permeability
can also be estimated by the STEPS software
from conductance values (Hepburn et al. 2013).
The full equation that each channel in STEPS
effectively solves, then, takes a similar form
to the GHK flux in NEURON but with single-
channel currents and permeability (Hepburn et
al. 2013).

STEPS solves theGHK ionic fluxwithin every
membrane triangle in the mesh in which one or
more corresponding channels reside. The flux is
solved within the SSA as a pseudo first-order
reaction with values derived from the local envi-
ronment; that is, the local ionic concentrations in
tetrahedrons on either side of that membrane tri-
angle. This fluxmay optionally result in a discrete
entry of the ions involved, which is important for
signaling molecules such as calcium.

Diffusion in STEPS STEPS computes diffusive
flux between tetrahedral elements by a finite vol-
ume method (Hepburn et al. 2012) and solves
either within the SSA framework in a serial solver
or by a multinomial method in parallel (Hepburn
et al. 2016; Chen and De Schutter 2017). It should
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be noted that only ligands residing in tetrahedrons
next to the membrane are available to activate
ligand-gated channels.

Calcium Interaction with Buffers and Pumps
The same kinetic scheme is used for specifying
calcium interactions with buffers and pumps, but
the reactions are solved stochastically within the
SSA framework (Sect. 1.2.1.2). This is also true,
importantly, for Ca2+-activation of channels such
as BK-type KCa channel (Sect. 1.3.3.3). An im-
portant difference between STEPS andNEURON
is that in STEPS, KCa channels bind Ca2+ ions
and therefore affect the Ca2+ concentration.

1.4 Examples of 3DModels

A typical spatial simulation in STEPS involves
the following steps:

1. Create the biochemical model, including the
channel models, using the steps.model mod-
ule.

2. Prepare the mesh of a 3D cell reconstruction
(as discussed in Sect. 1.3.1)

3. Create a Tetmesh object by importing the tetra-
hedral mesh using the steps.utilities.meshio
module.

4. Generate ROIs, compartments and patches in
the Tetmesh object using various supporting
modules in steps.utilities.

5. (Optional) If it is a parallel simulation,
partition the Tetmesh using either the
steps.utilities.geom_decompose module or
the steps.utilities.metis_support module.

6. Provide both the biochemical model and the
labeled Tetmesh to create a simulation solver.
Currently available spatial solvers include the
serial stochastic Tetexact solver, the serial de-
terministic TetODE solver, and the parallel
stochastic TetOpSplit solver.

7. Initialize the solver state by distributing the
molecules according to the model.

8. Run the simulation and gather results using the
solver APIs.

We provide two examples to demonstrate the
use of STEPS for 3D neuron modeling.

1.4.1 Stochastic Calcium Spikes

In 3Dmodeling, ion channels effectively act as in-
dividual units, which are activated stochastically.
The first significant stochastic effects described
in ion channels were to produce spontaneous
spiking (Chow and White 1996), and later in-
vestigations showed significant divergence with
stochastic modeling, particularly in small neu-
ronal structures such as thin dendrites and spines
(Faisal et al. 2008).

In addition, ion channels sense their local envi-
ronment in 3Dmodeling, and this local stochastic
calcium activation of channels plays an impor-
tant role in a broader context. In hybrid mod-
els in which some channel types were modeled
deterministically and some stochastically, it was
observed that the Ca2+-activated channels con-
tributed far more towards observed Ca2+ burst
variability than only voltage-activated channels in
a partial dendrite Purkinje cell model (Anwar et
al. 2013, Fig. 1.9).

Anwar et al. also observed that individual
channels sense a unique activation profile due
to stochastic Ca2+ dynamics, and these produce
greater variability and spatial bias in activation.
It is an important avenue of future research to
determine how significant such effects are in
neuronal activity with full, realistic 3D models of
neurons.

1.4.2 Full Purkinje Neuron

Simulations of large parts of neurons (e.g.
Anwar et al. 2013) or complete neurons (Fig.
1.10) require extremely long run-times in
serial simulation and, therefore, it is advised
to run these in parallel mode (Chen and De
Schutter 2017). As shown above, most of the
components are interchangeable between the
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Fig. 1.9 Comparing four different channel types, Anwar
et al (2013) observed that the Ca2+-activated channels (c
and d) caused far greater calcium burst shape variability

(insets) by stochastic activation compared to only voltage-
gated channels (a and b)

serial and parallel simulations, including the
biochemical model, the tetrahedral mesh and
the subregion configurations, with the main
difference being the solver class, as well as
the extra mesh partitioning step for the parallel
simulation. At the moment, STEPS provides two
partition solutions for different modeling needs.
The steps.utilities.geom_decompose module
provides a simple grid-based partitioning, which
is suitable for regular morphologies such as
cuboids. For more complicated morphologies
like the Purkinje dendritic tree, Metis (Karypis
and Kumar 1999) can be used for better
results. The steps.utilities.metis_support provides
functions for exporting element connectivity
to Metis format, as well as importing Metis
partitioning data back to STEPS. Metis
partitioning is performed automatically in the
Reaction-Diffusion splitting parallel STEPS
implementation.

Another significant difference is the preferable
data access methods.While being used frequently
in serial simulations, the use of elementary data
access functions is strongly discouraged due to
the massive amount of mesh elements usually
involved in parallel simulations, instead, ROI-
based and batch data access functions provided
in the STEPS solver API are recommended.

Here we show initial simulations of a climbing
fiber evoked complex spike in a full Purkinje neu-
ron model as an example of a large-scale parallel
STEPS simulation on a high-performance com-
puter cluster (Figs. 1.10 and 1.11). The Purkinje
model is converted from the published NEURON
model in Zang et al. (2018). The morphology
is reconstructed from the NEURON morphol-
ogy data and curated using the solution in Sect.
1.3.1, and the tetrahedral mesh is generated us-
ing TetWild. The complex spike is evoked by
activating 500 climbing fiber synapses uniformly
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Fig. 1.10 Complex spike simulation in a STEPS model
of the Purkinje cell during the first dendritic spike. Top:
membrane potential, full voltage trajectory in the smooth
dendrite shown in inset. Bottom: calcium concentrations
in a constant volume under each surface triangle. For

calcium concentrations a truncated color scale was used to
highlight lower concentrations, maximum dendritic con-
centration was approximately 10 μM, truncated at 3 μM.
Simulation was run on 160 cores with a run-time of 5.5 h,
using STEPS 3.6 without core splitting

Fig. 1.11 Detail of calcium concentrations from same
simulation as in Fig. 1.10 but now focusing on the second
dendritic spike which shows a larger variability in calcium

concentrations between different runs (inset shows 8 runs
at the dendritic branch indicated). Same truncated color
scale as in Fig. 1.10



1 Modeling Neurons in 3D at the Nanoscale 23

distributed on soma and smooth dendrite with an
exponential rise of 0.3 ms and decay of 3 ms. The
resting membrane potential is −61 mV, and the
onset of stimulus occurs at time 1 ms.

Data is recorded using batch functions at high
spatial detail, with voltage recorded from ev-
ery surface mesh triangle and Ca2+ concentra-
tions recorded from everymesh tetrahedron. Volt-
age is then directly plotted per surface triangle.
Ca2+ requires further processing for visualiza-
tion, with the concentration from cytosol tetra-
hedrons neighboring each surface triangle in an
approximate spherical volume of 1μm3 chosen to
represent the visualized surface triangle.

Figure 1.10 shows a qualitatively good match
of the membrane potential and Ca2+ concentra-
tions with those in the NEURON model (Zang et
al. 2018). Figure 1.11 shows the results in more
detail, highlighting the nanoscale spatial vari-
ability in Ca2+ concentrations and the additional
stochastic variability between different runs.
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2Modeling Dendrites
and Spatially-Distributed Neuronal
Membrane Properties

Spyridon Chavlis and Panayiota Poirazi

Abstract

The first step toward understanding the brain
is to learn how individual neurons process in-
coming signals, the vast majority of which ar-
rive in their dendrites. Dendrites were first dis-
covered at the beginning of the twentieth cen-
tury and were characterized by great anatomi-
cal variability, both within and across species.
Over the past years, a rich repertoire of active
and passive dendritic mechanisms has been
unveiled, which greatly influences their inte-
grative power. Yet, our understanding of how
dendrites compute remains limited, mainly be-
cause technological limitations make it dif-
ficult to record from dendrites directly and
manipulate them. Computationalmodeling, on
the other hand, is perfectly suited for this task.
Biophysical models that account for the mor-
phology as well as passive and active neuronal
properties can explain a wide variety of exper-
imental findings, shedding new light on how
dendrites contribute to neuronal and circuit
computations. This chapter aims to help the in-
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terested reader build biophysicalmodels incor-
porating dendrites by detailing how their elec-
trophysiological properties can be described
using simple mathematical frameworks. We
start by discussing the passive properties of
dendrites and then give an overview of how
active conductances can be incorporated, lead-
ing to realistic in silico replicas of biological
neurons.
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2.1 Introduction

Dendrites are thin protrusions of neurons that
extend from the cell body and receive electrical
or chemical signals from other neurons. These
signals can be received by multiple dendrites at a
time and travel toward the cell body (soma) of the
neuron, where they are integrated. Upon reaching
a threshold, this integrated signal traverses the
neuronal axon as all-or-none electrical impulses
known as Action Potentials. Dendritic trees come
in all shapes and sizes: short or long, simple- or
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multi-branched, apical, and basal. Moreover, the
densities of ion channels and the local membrane
properties can differ along the dendritic tree of the
same neuron. These differences determine how
individual dendrites process incoming signals and
how efficiently they transmit them to the soma.

Researchers were always fascinated by the
elaborate structure of dendrites. Camillo Golgi
and Santiago Ramón y Cajal were the first to
describe dendritic morphology near the end of
the nineteenth century. However, it was just 50
years ago that scientists managed to record from
these structures directly. Technological advances
allow us to record from neurons, dendrites, and
spines and make it possible to manipulate their
activity and thus unravel their functional role
during behavior. For example, such experiments
established that the passive and active dendritic
properties enable them to act as coincidence de-
tectors (Larkum et al. 1999, 2009; Stuart and
Häusser 2001), as they spike when two or more
synchronous inputs occur on the same dendritic
branch. In addition to this relatively simple oper-
ation, dendrites enhance the computational power
of individual neurons (Poirazi et al. 2003; Gidon
et al. 2020) and play a crucial role in learning and
memory, where they facilitate information bind-
ing (Legenstein and Maass 2011; Kastellakis et
al. 2016) and enhance learning (Frank et al. 2018)
and storage capacity (Poirazi andMel 2001; Tzili-
vaki et al. 2019). Moreover, during development,
animals raised in rich sensory environments have
more extensive dendritic trees and more spines,
associated with better learning. Finally, recent
studies in behaving animals have confirmed the
vital role of dendrites during spatial navigation,
sensory processing, motor learning, and percep-
tion.

While technological advances have greatly im-
proved our understanding of dendrites primarily
in principal neurons, most dendritic properties of
different cell types remain elusive due to their
anatomical and biophysical heterogeneity. Mod-
eling provides an excellent alternative to exper-
imental investigations, enabling an in-depth and
systematic study of dendritic properties in com-
puto that can, in turn, guide in vivo experiments
in directions of interest. Marked by the seminal

work of Wilfrid Rall back in the 1950s (for a re-
view, see Segev et al. 1995), a variety of computa-
tionalmodels have been developed over the years.
Such developments enabled the simulation and
analysis of both passive and active dendritic prop-
erties. In particular, from detailed, single neuron
models to large-scale networks with elaborated or
reduced morphologies.

This chapter aims to provide a guide for mod-
eling dendrites to achieve accurate and biologi-
cally relevant models. We will start by modeling
the passive dendritic properties by treating it as
a cable that transmits information. This theoret-
ical framework, pioneered by W. Rall, provides
a clear understanding of how morphological and
electrical properties of dendrites affect the prop-
agation of signals through them. Next, we will
incorporate the active properties of dendrites into
our models. Starting from the Hodgkin–Huxley
formalism, we will discuss the mathematics used
to simulate different ionic currents distributed
along the dendritic tree.

2.2 Modeling of the Passive
Properties of Dendrites

As the neurons communicate with each other
mainly via electrical signals, a plethora of ex-
perimental and computational studies describe
their activity by characterizing their electrical
properties. Measurements of the voltage across
the membrane via intracellular electrodes have
revealed the existence of a difference in elec-
trochemical potential across the cell membrane,
called the membrane potential (Vm). In mathe-
matical terms, this difference is defined by con-
vention as the intracellular voltage (Vin) minus the
extracellular voltage (Vout)

Vm = Vin − Vout (2.1)

Voltage recordings have revealed that the rest-
ing potential (i.e., the membrane potential Vm

at rest) is around −70 mV (for most pyramidal
neurons), indicating that the cell membrane is
negatively charged on the intracellular side and
positively charged on the extracellular side. This
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Fig. 2.1 Components of the neuronal membrane. The
membrane consists of two layers, each with hydrophilic
heads (purple) and hydrophobic tails (green). The lipid bi-
layer effectively isolates the cytoplasm of the neuron from
the extracellular medium. The lipid bilayer is virtually
impermeable to ions. However, ions can traverse through

active or passive ion channels. For representation, here, the
two main populations of ions, sodium and potassium, are
illustrated. The black arrows denote the concentration gra-
dient along which ions diffuse. More K+ ions are located
inside the cell, whereas more Na+ ions exist outside the
cell

difference in polarity is due to various ions found
in different concentrations inside the cell, the
intracellular medium (cytoplasm), and outside, in
the extracellular space. The essential ions in neu-
rons are inorganic, including positively charged
ions (cations), such as sodium (Na+), potassium
(K+), calcium (Ca2+), and magnesium (Mg2+),
and negatively charged ions (anions), such as
chloride (Cl−). Additionally, various organic an-
ions (A−) exist inside and outside of the cell
membrane.

The difference in ionic concentrations and
membrane potential is mainly due to the
properties of the neuronal membrane and the
ion channels distributed along it. The neuronal
membrane consists of a 5 nm thick lipid bilayer.
As its name implies, it consists of two layers
of phospholipids, whose hydrophilic heads are
pointing toward the extracellular or intracellular
medium and their hydrophobic ends pointing
inwards, toward the center of the membrane (Fig.

2.1). The membrane acts as an insulator because
it is virtually impermeable to water molecules
and ions. Consequently, an electrical field is
generated across the membrane, similar to the
electrical field found between the plates of an
ideal electrical capacitor.

The membrane also contains channels allow-
ing the influx and efflux of ions into and out
of the cell, respectively. Usually, ion channels
have selective permeability to different ion types.
Thus, their naming follows the ion to which they
are most permeable. Ions move through these
channels along their concentration gradient, from
the high concentration side of the membrane to
the low concentration side of the membrane. The
ion channels are divided into two major cate-
gories; active (or voltage-gated) and passive. Ac-
tive channels can exist in two states, i.e., closed
and open, depending on the membrane poten-
tial, ion concentrations, or the presence of a lig-
and (e.g., specific neurotransmitters). In the open
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state, the channel is permeable to ions, whereas,
in the closed state, ions cannot traverse the chan-
nel. In contrast, the passive channels are always
open, and their permeability is independent of the
membrane potential.

Another mechanism found across the neuronal
cell membrane is the ion pumps or exchang-
ers. Ion pumps are membrane-spanning protein
structures that pump specific ions and molecules
in or out of the cell. Pumps counteract the ion
flux by pumping ions against their concentration
gradient. Each type of pump transfers a different
combination of ions. For example, the Na+-K+
pump moves three Na+ ions outside and two K+
inside the cell against their concentration gradi-
ent, at the cost of an ATP molecule.

In contrast, the Na+-Ca2+ exchanger imports
threeNa+ ions, in line with theNa+ concentration
gradient, and exports one Ca2+ ion against
the Ca2+ concentration gradient. Pumps and
exchangers need energy to operate, either
directly provided (Na+-K+ pump) or indirectly
generated (Na+-Ca2+ exchanger). The Na+-
Ca2+ exchanger derives the required energy from
the increased concentration of Na+ inside the
cell, whereas the Na+-K+ pump is an ATPase,
consuming ATP molecules to function.

2.2.1 Ionic Movement Across
theMembrane

Membrane ion channels provide a path for ions
to traverse the cell membrane. Ions travel across
themembrane by passing through transmembrane
protein molecules that form aqueous pores that
connect the interior (cytoplasm) and the exterior
of the cell. The movement of ions through these
channels is driven by two forces: chemical (dif-
fusion) and electrical (drift). To understand these
two forces, we will explore a neural membrane
that contains only K+ channels, featuring an ini-
tially high intracellular concentration (as in Fig.
2.1). In short, initially, K+ ions will passively
flow outside the cell, following their concentra-
tion gradient.

Consequently, the membrane will be charged
positively on the outside surface, and the inside

will become negatively charged. Such a charge
separation generates an electrical field across the
membrane, pointing inward (recall that electrical
charges of opposite polarity attract each other,
whereas charges of the same polarity repel each
other). Thus, the direction of the electrical field
is the opposite of the concentration gradient. At
some point, the electrical and chemical forceswill
cancel out each other; they will be equal in mag-
nitude and opposite in direction. This condition is
called the “K+ equilibrium” or reversal potential.
Next, we mathematically describe the diffusion
and electric drift forces and how we can derive
the reversal potential of an arbitrary ion, X.

Ions and molecules tend to maintain uniform
concentration in space. Thus, there will be a net
movement from areas with a high concentration
toward those with a lower concentration. This
movement is called diffusion. Fick’s first law of
macroscale diffusion gives the ion flux JX, diff ,
of an ion species X at some point x across the
membrane:

JX,diff = −DX

∂ [X]
∂x

(2.2)

where DX is the diffusion coefficient or diffu-
sivity (cm2 s−1), and [X] the ion concentration
(mol cm−3). Thus, the diffusion flux has units
of mol cm−1 s−1. ∂[X]

∂x
denotes the partial deriva-

tive of the concentration with respect to position
across the membrane, i.e. the concentration gra-
dient. The diffusion coefficient relies on the size
of the ion and the medium in which it is diffus-
ing. Typical values for K+, Na+, Cl−, and Ca2+
diffusion coefficients are given in Hille (2001).

Apart from the diffusion due to the concentra-
tion gradient, the electrical drift is also respon-
sible for the passive movement of ions across the
membrane. The movement of charged particles in
an electrical field, according to the microscopic
version of Ohm’s law, can be described by the
electrical drift, JX, drift,

JX,drif t = ϑelE = −μXzX [X]
∂V

∂x
(2.3)

where ϑel is the electrical conductivity in
mol V−1 s−1 cm−1, E ≡ − ∂V

∂x
the electrical field



2 Modeling Dendrites and Spatially-Distributed Neuronal Membrane Properties 29

in V cm−1, μX the ion mobility in cm2 V−1 s−1,
zX the (signed) ion valence (dimensionless), and
V is the membrane potential in mV.

The movement of ions along their concen-
tration gradient and electrical field can be de-
scribed as a randomwalk process. Einstein (1905)
demonstrated that the frictional resistance exerted
by a fluid medium during the electrical drift is the
same as for the diffusion at thermal equilibrium.
Accordingly, the diffusion coefficient and ionmo-
bility can be related by the equation:

DX = kBT

qX

μX (2.4)

where kB is the Boltzmann constant (1.38 •
10−23 J K−1), T the absolute temperature in K,
and qX is the charge of the X ion in coulombs
(C), which is equal to the unit charge in case of
monovalent ions like Na+, K+, and Cl−. The ion
current under the influence of both concentration
and electrical gradient (electrodiffusion) can thus
be derived by summing the diffusion and drift
fluxes, giving the Nernst–Planck equation of ion
flux (Maex 2014):

JX,total = JX,diff + JX,drif t

= −DX

∂ [X]

∂x
− DX

qxzX

kBT
[X]

∂V

∂x
(2.5)

where we have expressed the ion mobility us-
ing Einstein’s relation (Eq. 2.4). The total flux,
JX, total, is given in mol cm−2 s−1. A common form
of the JX, totalis

JX,total = −DX

(
∂ [X]

∂x
+ zXF

RT
[X]

∂V

∂x

)

(2.6)

where R is the universal gas constant
(8.315 J mol−1 K−1) and F is Faraday’s constant
(9.649 • 104 C mol−1). For the simplification
of Eq. (2.5) we have used the relationships
R = kBNA and F = qeNA = qX

zX
NA = qXNA

for univalent ions, i.e. zX = 1 (the membrane is
mainly permeable to Na+, K+, and Cl− ions).

To translate flux into a current, recall that
current is the product of ion flux and the charge

it carries. Therefore, we obtain the current den-
sity form of Eq. (2.6) by multiplying the to-
tal flux, JX, total by the total molar charge, zF,
IX = zXFJX, total, thus

IX = −zXFDX

(
∂ [X]
∂x

+ zXF

RT
[X]

∂V

∂x

)

(2.7)

The Ix is expressed per unit of area. Thus, it is
measured in A cm−2 units. A useful property is to
obtain the reversal potential of an ion X, namely
to calculate the membrane potential at which the
total flux or current of ion X is zero. Solving the
Eq. (2.7), one can obtain the Nernst equation for
the ionic equilibrium or reversal potential.

IX = 0⇐⇒− zXFDX

(
∂ [X]
∂x

+ zXF

RT
[X]

∂V

∂x

)

= 0 ⇐⇒ ∂ [X]

∂x
= −zXF

RT
[X]

∂V

∂x

The last equation is a simple ordinary differen-
tial equation, where we can obtain its solution by
integration in parts, from x1: inside to x2: outside
of the membrane.

∫ V (x2)

V (x1)

dV = RT

zXF

∫ [X](x2)

[X](x1)

d [X]

[X]
⇐⇒Vout − Vin

= − RT

zXF
ln

(
[X]out
[X]in

)

Then, we rearrange the term on the left-hand
side to obtain the equilibrium (Nernst equation):

EX
def= (Vin − Vout)|IX=0 ⇐⇒

EX = RT

zXF
ln

(
[X]out
[X]in

)
(2.8)

Table 2.1 shows typical values of the equilibria
of various ions.

To extend the Nernst–Plank equation for mul-
tiple ions, Goldman (1943) and Hodgkin and
Katz (1949) established a mathematical formal-
ism for describing the currents flowing through
and voltage changes across semipermeable mem-
branes. This formalism models the diffusion of
ions through a uniformly permeable membrane,
predating the notion of channels or pores through
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Table 2.1 Approximate ion concentrations on both sides of the membrane. The reversal potentials have been calculated
at human body temperature (Bear et al. 2007)

Ion Outside concentration (mM) Inside concentration (mM) Reversal potential, EX in mV (at 37
◦
C)

K+ 5 100 −80

Na+ 150 15 62

Ca2+ 2 0.0002 123

Cl− 150 13 −65

the membrane. It is assumed that ions cross the
membrane independently (the independence prin-
ciple) and that the electrical field across the mem-
brane is constant. As before, the flux of ions
across the membrane is governed by the internal
concentration gradient and the electric field aris-
ing from the potential difference, calculated by
the Nernst–Plank equation.

From these assumptions, the Goldman–
Hodgkin–Katz (GHK) current equation can be
derived. For an analytical derivation, see Johnston
and Wu (1995):

IX = PXzXF zXF
RT

V

×
(
[X]in − [X]out exp

(− zXF
RT

V
)

1− exp
(− zXF

RT
V
)

)
(2.9)

where PX is the permeability of the membrane
with respect to ion X measured in cm s−1 and
indicates the ability of the ion to diffuse across
the membrane. The permeability is defined em-
pirically as

JX,total = −PX ([X]in − [X]out)

thus, it is proportional to the diffusion coefficient,
DX . For more details, see Hille (2001).

Due to the underlying assumption that the
electrical field is constant, the GHK equation is
called the constant-field equation.

Under some specific voltage regimes and for
particular ions (Fig. 2.2), the ionic current can be
approximated using a simple linear model based
on Ohm’s law

IX,total = (V − EX)

rX

(2.10)

where rX is the corresponding to ion X specific
conductance in 	 cm2. Due to the simplicity

of Eq. (2.10), it is commonly used to describe
the ion current across the membrane (see Sect.
2.2.2). Nevertheless, the linear method should be
cautiously used when ions show large differences
between inside and outside concentrations (Fig.
2.2).

The GHK equation gives the current flow con-
cerning one ionic species X. However, the to-
tal current flowing through the membrane is the
summation of the individual ionic currents. Near
the resting potential, the membrane is mainly
permeable to Na+, K+, and Cl−, and hence, the
total current is given by

I =
∑

X∈{Na,K,Cl}
IX = INa + IK + ICl

The membrane resting potential occurs when
the total ion current flowing across the membrane
is zero. Plugging in Eq. (2.8) for each ion species,
and setting I = 0 and zX = 1 (the ions are univa-
lent), we obtain the membrane resting potential:

Em = RT

F
ln

×
(

PK
[
K+]

out + PNa
[
Na+

]
out + PCl

[
Cl−

]
in

PK[K+]in + PNa
[
Na+

]
in + PCl[Cl−]out

)

(2.11)

2.2.2 Equivalent Circuitry

As mentioned above, the critical elements of
a neuronal membrane are the lipid bilayer, the
pumps, and the ion channels. The lipid bilayer
of the membrane can be charged because of
the separation of ions inside and outside of the
cell. It can thus be represented as a capacitor
in an electrical circuit. The ion channels can
be described as conductors or resistors, as they
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Fig. 2.2 Potassium (left) and calcium ionic currents are
calculated with the linear (dashed line, Eq. 2.10) and the
constant-field (solid line, Eq. 2.9) approaches, respec-
tively. Neurons primarily operate at negative voltages, as
the spike duration is 1–2 ms. Thus, for the potassium
current, the linear model is a good approximation. How-

ever, this model is not a good representation of typical
calcium current. Blue dotted lines indicate the reversal
potentials for each ion. We used some arbitrary values for
the conductances and the permeabilities of the ions. Ionic
concentrations used here are given in Table 2.1

Fig. 2.3 The equivalent circuit of a patch of the neuronal
membrane. (a) The equivalent circuit of a membrane con-
sists of (from left to right) a capacitance (lipid bilayer),
three conductances and their corresponding batteries (ion
channels and concentration gradients, respectively), and

a current source (injected current). (b) A simplification
of the circuit in (a). Here, we use only one resistor to
represent the total effect of the three channels, equivalent
membrane resistance, and the corresponding membrane
resting potential as a battery

allow specific ions to pass through them. The
chemical gradient built up by the pumps is the
equivalent of a battery with a voltage equal to
the ion-specific equilibrium potential (Fig. 2.3).
Taken together, we can now describe the behavior
of themembrane potential in terms of an electrical
circuit, commonly known as the equivalent RC
circuit model (Fig. 2.3). When the membrane is

at its resting membrane potential Vrest ≡ Em, we
can use the Nernst–Planck and GHK equations
to describe the membrane potential. Next, we
analyze the current flowing through a patch of a
neuron’s membrane at rest, and when a current is
injected through an electrode, Iinj.

An ideal capacitor is characterized by
its capacitance measured in farads (F). The
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relationship between the capacitance and the
stored charge is given as

C = Q

V
(2.12)

which means that a capacitor of 1 F causes a
voltage of 1 V in the circuitry when containing
1 C of electrical charge. The capacitance can be
calculated by

C = ε0A

d

where ε0 is the electric constant (8.854 ·
10−13 F m−1), A is the area of the two plates (m2),
and d the distance between the plates (m). Thus,
larger neurons should be represented by larger
total membrane capacitance, Cm. In general,
we use the specific membrane capacitance (cm)
measured in units per area, hence Cm = cmA.
Although cm may depend on the potential, for
most cell membranes, the specific membrane
capacitance is approximately 1 μF cm−2.

The current is the time derivative of the charge,
thus differentiating Eq. (2.12) and rearranging the
terms we obtain the capacitive current (A cm−2)
as

iC = Cm
dVm

dt
(2.13)

As described in Eq. (2.10), any membrane
channel can be described as a resistor or con-
ductor, as it allows the flow of ions through it.
The specific membrane conductance (S cm−2)
specifies the number of channels per unit area,
and from Ohm’s law, the current passing through
these channels is

im = gm (Vm − Em) = Vm − Em

rm
(2.14)

where rm ≡ 1
gm

is the membrane resistance

measured in 	 cm2.
As the membrane is not permeable to one ion

species only, and as different ion channels have
different properties, we have the total membrane
current

im =
∑

X∈{ions}
gX (V − EX)

Thus,

Em =
∑

X∈{ions} gXEX∑
X∈{ions} gX

, rm = 1∑
X∈{ions} gX

According toKirchhoff’s current law, the alge-
braic sum of currents in a network of conductors
meeting at a point is zero.

Thus,

iC + im = 0 ⇐⇒ cm
dVm

dt
= −gm (Vm − Em)

(2.15)

Consider now a positive current pulse of finite
duration, i.e. a square pulse of amplitude Iinj and
total duration tinj. On the rising edge of the pulse,
the membrane potential starts to rise steeply. This
rise away from the resting potential is referred
to as depolarization. As the pulse continues, the
increase of voltage becomes less steep, and the
voltage gets closer and closer to a limiting value,
i.e. steady-state, V∞. When the current is re-
moved, the voltage starts to fall quite steeply. The
rate of fall decreases as the membrane potential
gets close to its original value. This phase is
called repolarization, as the membrane potential
tends toward its resting state. The opposite ef-
fects are observed by injecting negative current.
The membrane potential attains values below its
resting level, and a phenomenon referred to as
hyperpolarization. The equation that describes
the evolution of voltage over time is

cm
dVm

dt
= −gm (Vm − Em) + Iinj

A
(2.16)

which is equivalent to the Eq. (2.13), with the
addition of the injected current, Iinj. A is the total
surface area of the membrane, and we divide by
this to have the same units.

A critical feature of the membrane is the exact
shape of the depolarization and repolarization
phases. By analytically solvingEq. (2.16) and set-
ting the initial voltage at rest, i.e.,Vm(t= 0)=Em,
we obtain the analytical solution for the rising
phase

Vm(t) = Em + rmIinj

A

[
1− exp

(
− t

cmrm

) ]
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Fig. 2.4 Membrane response to a pulse current injection
with tend − tstart duration and magnitude Iinj. The vertical,
dotted lines show the times when the membrane is at 63%
of its maximum value (rise phase) and 37% (decay phase),
respectively. The membrane time constant is calculated by

subtracting the time at which the membrane is at 63%
of the maximum value from the time that the injection
of the current starts. The input resistance is calculated by
dividing the �V by the injected current magnitude

Notice that this function is an inverted expo-
nential decay, thus when t becomes large enough,
the voltage approaches its steady-state exponen-
tially, i.e. V∞ = Em + rmIinj

A
.

When the injected current is removed, the re-
polarization phase starts, where

Vm(t) = Em + (
V

(
tinj

)− Em
)

×
[
exp

(
− t − tinj

cmrm

) ]

Here, the function is an exponential decay, and
thus when t becomes sufficiently large, the volt-
age approaches the resting state. In both phases,
the dynamics of the voltage depends on the factor
cmrm which determines the speed of the voltage
transitions. This factor has time units. Thus, it
is commonly referred to as the membrane time
constant, τm. The membrane time constant shows
howmuch time is needed for a membrane to reach
63%

(
1− 1

e
≈ 0.63

)
of its maximum value (rise

phase), and also how much time is required for

the voltage value to attain 37%
(
1
e
≈ 0.37

)
of

the maximum value upon removal of the injected
current. The time constant of neurons ranges typ-
ically from 4 to 50 ms.

Another commonly used feature is the input
resistance of a neuron. Input resistance is defined
as the change in the steady-state of the membrane
voltage divided by total applied current (Koch
1999) and shows the excitability of the membrane
(Fig. 2.4).

RIN
def= V∞ − Em

Iinj

2.2.3 Cable Equation and Passive
Properties of Dendrites

2.2.3.1 Linear Cable Equation
So far, we considered the passive properties of
an isolated patch of the neuronal membrane, i.e.
an isopotential membrane. Although this approx-
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Fig. 2.5 A schematic diagram of a dendritic segment
is represented as a cable. The cable consists of several
equivalent RC circuits—the axial current flows in the
longitudinal axis (black arrow indicates the positive axial
current). The extracellular axial resistance is assumed to
be zero

imation is appropriate for examining neuronal
cell bodies, it is not accurately reproducing the
spatial extent of axons or dendrites. Here, we will
focus on dendritic structures and their passive
properties.

First, we consider a dendrite as a cylindrical
cable of diameter d. This cable consists of various
compartments, i.e. RC circuits connected in series
(Fig. 2.5). In this case, the membrane potential
depends not only on time but also on the longi-
tudinal distance x, Therefore at any given time
t and point in space x the membrane potential
is V(x, t). The equation governing the membrane
potential dynamics is called the cable equation.
It accounts for the currents flowing through the
membrane (influx, efflux) and those flowing from
one compartment to others. Here, we assume that
Re = 0, i.e. the extracellular space is isopotential.

The axial current, Ia, flows alongside the den-
drite due to voltage gradients, passing through the
cytoplasm, and is influenced by its axial resis-
tance. The total axial resistance is proportional to
the length of the cable and inversely proportional
to the cross-sectional area, i.e. the longer and
thinner the dendritic compartment, the harder it is
for the axial current to flow through it. The total
axial resistance (	) is defined as

Ra = ra

Δx

π
(

d
2

)2

where �x denotes the finite length of the com-
partment, πd2 the cross-sectional area, and ra

denotes the specific axial resistance measured in
	 • cm.

Using Ohm’s law,

Vm (x + Δx, t) − Vm (x, t)

= −Ia (x, t) Ra = −Ia (x, t) ra

Δx

π
(

d
2

)2

Vm (x + Δx, t) − Vm (x, t)

Δx
= −Ia (x, t)

ra

π
(

d
2

)2

In the limiting case of tiny compartments, i.e.,
�x→ 0, the left-hand-side is the definition of the
derivativewith respect to the space variable x, and
thus

∂

∂x
Vm (x, t) = −Ia (x, t)

4ra

πd2

Solving for Ia, measured in amperes (A), we
obtain the axial current flowing from compart-
ment x + �x into compartment x

Ia (x, t) = −πd2

4ra

∂

∂x
Vm (x, t) (2.17)

The minus sign is due to the convention that
positive currents are those flowing from left to
right (Fig. 2.5).

At every single RC circuit, the total capacitive
current is derived using the total capacitance, i.e.
Cm = cm(πd�x)

IC (x, t) = cm (πdΔx)
∂

∂t
Vm (x, t)

Also, the ion flow across the membrane, as-
suming for simplicity that Em = 0 is given by

Im (x, t) = (πdΔx)
Vm (x, t)

rm

From Kirchhoff’s current law, we have that

IC (x, t) + Im (x, t) = Ia (x, t) − Ia (x + Δx, t)

cm (πdΔx)
∂

∂t
Vm (x, t) + (πdΔx)

Vm (x, t)

rm

= πd2

4ra

∂

∂x
Vm (x + Δx, t) − πd2

4ra

∂

∂x
Vm (x, t)



2 Modeling Dendrites and Spatially-Distributed Neuronal Membrane Properties 35

Dividing by the membrane surface area, i.e.
πd�x

cm
∂

∂t
Vm (x, t) + Vm (x, t)

rm

= d

4ra

(
∂
∂x

Vm (x + Δx, t) − ∂
∂x

Vm (x, t)

Δx

)

where the term inside the parentheses denotes the
second partial derivative of voltagewith respect to
the spatial location x. By multiplying both sides
by rm and rearranging the terms, we obtain the
linear cable equation:

τm
∂

∂t
Vm (x, t) = λ2 ∂2

∂x2
Vm (x, t) − Vm (x, t)

(2.18)

where τm = cmrm is the membrane time

constant and λ =
√

drm
4ra

is the spatial or length

constant measured in length units (usually
in mm). Importantly, as the space constant
depends on the cable diameter, its value is
dependent on the geometry of the cable. For
example, if a cable has cm = 1 μFcm−2,
ra = 200 	 cm, rm = 20,000 	 cm2, and
d = 1 μm, then its τm = 20 ms and its λ =√

1 μm
(

10−4cm
μm

)
20,000 Ω cm2

4 • 200 Ω cm = 0.07 cm or 700 μm.

2.2.3.2 The Infinite Cable
First, we will examine a hypothetical infinite ca-
ble (−∞ < x < +∞), applying on its midpoint a
current I(x, t). In this case, the cable equation Eq.
(2.18) is written as

τm
∂

∂t
Vm (x, t) = λ2 ∂2

∂x2
Vm (x, t)

−Vm (x, t) + rmIinj (x, t)

with initial condition Vm(x, 0) = V0(x) and the
only physical constraint that Vm(x, t) = 0 as
�x � → ∞.

Taking advantage of the Fourier transforma-
tion, we can solve this equation (see Appendix).

The final solution is

Vm (x, t) =
∞∫

−∞
G(x − y, t) V0(y)dy

+ rm

τm

t∫

0

∞∫

−∞
G(x − y, t − s)

×I (y, s) dyds

(2.19)

where

G(x, t) = 1√
4πλ2

(
t

τm

) exp

(
− t

τm

)

× exp

⎛

⎝− x2

4λ2
(

t
τm

)

⎞

⎠

We will consider two cases of external cur-
rent injection, one where we apply an instanta-
neous current and one that is constant in time,
both in the midpoint of the cable. In the first
case, we assume that at t = 0, we apply a pulse
in the midpoint of the cable, i.e., x = 0, thus
Iinj(x, t)= I0τmδ(x)δ(t)/πd.1 Figure 2.6 shows the
injection site for both cases. The voltage initially
is resting at its steady-state, i.e. V0(x) = 0. The
solution of Eq. (2.19) is

Vm (x, t) = rm

πd

t∫

0

∞∫

−∞
G(x − y, t − s)

×I0δ(y)δ(s)dyds

= rm

πd

t∫

0

∞∫

−∞
G(x, t) I0dyds

= rmI0

πd
G (x, t)

1 δ(u) =
{
1, if u ≥ 0
0, if u < 0
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Fig. 2.6 The infinite cable. Current injected into the cable
at x = 0. The injected current flows in both directions,
and assuming that the cable has uniform passive properties
along its length, the attenuation of the voltage is symmet-
rical around the site of injection

Therefore, the analytical solution is

Vm (x, t) = rmI0

πd

√
4πλ2

(
t

τm

)

× exp

(
− t

τm

)
exp

⎛

⎝− x2

4λ2
(

t
τm

)

⎞

⎠

(2.20)

At each point x, the voltage reaches its max-
imum value at t∗(x) ≈ τmx

2λ (demonstrated by
taking the derivative of Eq. (2.20) with respect
to time and setting it to zero). Additionally, for a
large amount of time, i.e., t → ∞, the membrane
voltage returns to its initial state, thus Vm(x) = 0
and the physical constraint is valid (recall that
exp(−∞) = 0).

When the external current is continuously ap-
plied, Iinj(x, t) = I0δ(x)/πd. Plugging this into
Eq. (2.19), we can simplify the cable equation.2

Notice that

Vm (x, t) = rm

πdτm

t∫

0

∞∫

−∞
G(x − y, t − s)

×I0δ(y)dyds

= rmI0

πdτm

t∫

0

G(x, t − s) ds

2 The convolution of any one function with the
delta function returns the function unchanged:
∞∫
−∞

f (x − y, t) δ(y)dy = f (x, t) ∗ δ(y) = f (x, t)

In order to derive this integral, we use the
Laplace transform (see Appendix)

Vm (x, t) = rmI0

4πdλ

[
exp

(
−|x|

λ

)
erfc (θ1 − θ2)

− exp

( |x|
λ

)
erfc (θ1 + θ2)

]

(2.21)

where θ1 = |x|
2λ

√
τm
t
, θ2 =

√
t

τm
, erfc (w) =

2√
π

∞∫
w

e−z2dz

The complementary error function output is
an inverted sigmoid-like function with its values
bounded, i.e. erfc(−∞) = 2, erfc (∞) = 0.

In the edge case of t → ∞, θ1 = 0, θ2 = ∞,
thus θ1 − θ2 = − ∞ and θ1 + θ2 = ∞ . Thus,
we have the steady-state solution (Note that, for
simplicity in the notation V ≡ Vm).

V∞(x) = rmI0

2πdλ
exp

(
−|x|

λ

)
(2.22)

The input resistance associated with the infi-
nite cable is

Rinf = V0

I0
=

rmI0
2λ(πd)

I0
= rm

2πdλ
= 2raλ

πd2

=
2ra

√
drm
4ra

πd2 =
√

rmra

πd3/2

(2.23)

As we expected, the input resistance for the
infinite cable is constant and independent from
the distance from the location of the input current.
Also, the input resistance is inversely propor-
tional to the cable diameter, i.e. Rinf ∝ d−3/2.

In Fig. 2.7, we plot the steady-state solutions
of the infinite cable for various geometries. No-
tice that attenuation is more pronounced in thin
structures.

2.2.3.3 The Finite Cable
Here, we consider a more realistic case of a cable
with finite length l, i.e. 0 < x < l. Although we
take into consideration only one boundary con-
dition for the infinite cable, we can use several
boundary conditions for the finite and the semi-
infinite cables, respectively. Here, wewill explore
some of them, but we encourage the interested
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Fig. 2.7 The steady-state solution for the infinite cable.
The potentials decay as a function of absolute distance
from the input electrode site. The site of the current
injection is at X = 0. The attenuation is increased as the
diameter decreases (colors indicate the cable diameter).
Thus, in distal, i.e., distant from the soma, thin dendrites,
the generated potentials undergo strong attenuation, and
assuming passive propagation, only a small amount will
be detected at the soma

reader to see more in (Jack et al. 1975; Tuckweel
1988). Often, we use the unitless variable L = l

λ
,

which is the electrotonic length. Also, we use the
unitless variables X = x

λ
and T = t

τm
. Thus, the

linear cable equation is written as

∂

∂T
V (X, T ) = ∂2

∂X2
V (X, T ) − V (X, T )

The most critical and realistic boundary con-
ditions are listed below:

• Sealed end (X = 0 or X = L), no axial current
can pass through this end, thus Ia = 0, which
leads to the corresponding boundary condition
∂

∂X
V (X, T ) |X=end = 0, end = 0, L (Neu-

mann condition). This boundary condition is
the most relevant to neurons embedded in liv-
ing tissue.

• Killed end (X = 0 or X = L), the potential at
this terminal, is identical to the extracellular
potential. Thus, the potential is set to zero,
V(X, T)|X = end = 0, end = 0, L (Dirichlet con-
dition).

• Current injected at one end, thus Iinj at X = 0.
In this case, ∂

∂X
V (X, T )

∣∣
X=0

= − 4ra

πd2 Iinj (X).

• Voltage clamp, in which the voltage is clamped
(set) to some fixed level, so V(0) = Vclamp.

• Lumped soma, where we consider a soma as
a single, isopotential compartment attached
to the nerve cable. Suppose the soma has
a total resistance Rm, s and capacitance
Cm, s. Then, the boundary condition at

X = 0 is
(

V (X,T )

Rm,s
+ Cm,s

∂
∂T

V (X, T ) − πd2

4ra

∂
∂X

V (X, T )
)∣∣

X=0
= 0.

It is crucial to derive the cable equation at the
steady-state, i.e., where ∂

∂T
V (X, T ) = 0. The

linear cable equation at the steady-state is

d2

dX2
V (X, T ) − V (X, T ) = 0

and has general solutions of a second-order ordi-
nary differential equation of the form:

V (X) = A1 exp (−X) + A2 exp(X)

V (X) = B1 cosh (L − X) + B2 sinh (L − X)

V (X) = C1 cosh(X) + C2 sinh(X)

The constants Ai, Bi, and Ci are determined
from the boundary conditions.

First, we will examine the semi-infinite cable,
0 < X <∞, when we inject a constant current into
the end of the cable (X= 0), Iinj(X,T)= I0(t)= I0,
so that its magnitude is Iinj (X = 0) = −πd2

4ra

dV
dX

(Eq. 2.17). Recall that every cable must satisfy
the condition that at an infinitely large distance,
the voltage remains bounded, i.e. V(X) < ∞ as
X → ∞. Consider the general solution

V (X) = A1 exp (−X) + A2 exp(X)

In order to satisfy the boundary condition,
A2 = 0, as lim

X→∞ exp(X) = ∞, so the general

solution is given:

V (X) = A1 exp (−X)

Applying the appropriate boundary condition,

d

dX
V (X) |X=0 = −A1 exp (−X)|X=0 = −A1
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Thus, A1 = − d
dXV (X) |X=0 = 4raλI0

πd2 , where
X = x

λ
. Thus, the steady-state solution is

V (X) = 4raλI0

πd2
exp (−X) (2.24)

The input resistance for the semi-infinite cable
(denoted by R∞, Rall 1959) is given by

R∞ = V (0)

I0
= 4raλ

πd2
= 2

√
rmra

πd3/2
(2.25)

Notice that, R∞ = 2Rinf. Conceptually, an in-
finite cable consists of two identical semi-infinite
cables, one from 0 to ∞ and the other from 0
to −∞. As these cables are identical, the input
resistance of a single semi-infinite cable is double
of the input resistance of the infinite one as the
longitudinal current can flow only in one direc-
tion, i.e.,R∞ = 2Rinf. One can think of the infinite
cable as two semi-infinite cables represented by
the same input resistance. Thus, these circuits are
connected in parallel, as the total injected current
is the summation of the current to the left and
the current to the right (Kirchhoff’s first law).
In parallel circuits, the total resistance is 1

Rinf
=

1
R∞

+ 1
R∞

= 2
R∞

⇐⇒ R∞ = 2Rinf .
In general, the terminal has neither infinite

(sealed end) nor zero (killed end) resistance, but
some finite value RL due to leaking currents that
flow through the terminal membrane. This leaky
end is a more biological boundary condition, for
example, if the cable is connected to another cable
or even to an entire dendritic tree. If we know the
value of the voltage at this boundary, VL, and the
voltage at X = 0 is V0, we can derive the steady-
state solution for an arbitrary boundary condition
at the end.

Recall that the general solution is

V (X) = B1 cosh (L − X) + B2 sinh (L − X)

We compute the values of the voltage at the
ends, i.e. X = 0 and X = L.

V (X = L) = VL = B1 cosh(0)
+B2 sinh(0) ⇐⇒ B1 = VL

V0 ≡ V (X = 0) = B1 cosh(L)

+B2 sinh(L) ⇐⇒ B2 = V0 − VL cosh(L)

sinh(L)

Thus,

V (X) = VL cosh (L − X) + V0 − VL cosh(L)

sinh(L)
× sinh (L − X) ⇐⇒

V (X) =

VL cosh (L − X) sinh(L)

+V0 sinh (L − X)

−VL cosh(L) sinh (L − X)

sinh(L)
⇐⇒

V (X) =

V0 sinh (L − X)

+VL[cosh(L − X) sinh(L)

− cosh(L) sinh(L − X)]
sinh(L)

Using the known trigonometric identity for the
hyperbolic function,3 we have the final form of
the general solution

V (X) = V0 sinh (L − X) + VL sinh(X)

sinh(L)
(2.26)

Notice that, at the terminal, X = L, the total
current flowing across the membrane is equal to
the longitudinal current at this point as it passes
through the cross-sectional area of the cable.
Thus, using Ohm’s law and Eq. (2.17), we obtain

IL = VL

RL

= − πd2

4raλ

dV

dX

∣∣∣∣
X=L

= − 1

R∞
dV

dX

∣∣∣∣
X=L

⇐⇒

VL

RL

= − 1

R∞
dV

dX

∣∣∣∣
X=L

(2.27)

Usually, it is much more convenient to have a
formula with only one constant of voltage; hence
we use Eq. (2.27) to write VL as a function of
V0 (note that experimentally we know the voltage

3 sinh(α − β) = sinh (α) cosh (β) − sinh (β) cosh (α),
with α = L − X, β = L
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at the stimulation site, but not at the end of the
dendrite). We use another trigonometric identity
for the hyperbolic functions.4

VL

RL

= − 1

R∞
× −V0 cosh (L − X) + VL cosh(X)

sinh(L)

∣∣∣∣
X=L

= 1

R∞
VL cosh(X) − V0

sinh(L)

4 d
dz cosh(z) = sinh(z), d

dz sinh(z) = cosh(z)

Solving for VL, we obtain

VL = V0

cosh(L) +
(

R∞
RL

)
sinh(L)

Plugging this into Eq. (2.26) we have

V (X) =
V0 sinh (L − X) + V0

cosh(L)+
(

R∞
RL

)
sinh(L)

sinh(X)

sinh(L)
⇐⇒

V (X) =
V0 sinh (L − X)

[
cosh(L) +

(
R∞
RL

)
sinh(L)

]
+ V0 sinh(X)

sinh(L)
⇐⇒

V (X) = V0

sinh (L − X) cosh(L) + sinh(L)
(

R∞
RL

)
sinh(L) + sinh(X)

sinh(L)
[
cosh(L) +

(
R∞
RL

)
sinh(L)

] ⇐⇒

V (X) = V0

cosh (L − X) sinh(L) − sinh(X) + sinh (L − X)
(

R∞
RL

)
sinh(L) + sinh(X)

sinh(L)
[
cosh(L) +

(
R∞
RL

)
sinh(L)

]

where we have used the formula sinh(X) =
cosh (L − X) sinh (L) − cosh (L) sinh (L − X)

Therefore, the steady-state equation for a finite
cable is

V (X) = V0

cosh (L − X) +
(

R∞
RL

)
sinh (L − X)

cosh(L) +
(

R∞
RL

)
sinh(L)

(2.28)

The input resistance of the finite cable is given
by definition as RIN

def= V0
I0

Recall that, I0 = − 1
R∞

dV
dX

∣∣
X=0

RIN = V0

I0
= − R∞V0

V0

[− sinh(L−X)−
(

R∞
RL

)
cosh(L−X)

cosh(L)+
(

R∞
RL

)
sinh(L)

]

X=0

RIN = R∞
cosh(L) +

(
R∞
RL

)
sinh(L)

sinh(L) +
(

R∞
RL

)
cosh(L)

Finally, we write the RIN in a more compact
format using tanh(z) = sinh (z)/ cosh (z)

RIN = R∞
RL + R∞ tanh(L)

R∞ + RL tanh(L)
(2.29)
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Fig. 2.8 Comparison of the passive properties of differ-
ent finite length cables. The site of the injected current
is at X = 0. (Left) Comparison of voltage attenuation of
various finite cables with a sealed end (green) and killed
end (orange) boundary conditions. Colors from darker to
lighter indicate a reduction in the total electrotonic length

of the cable. As L increases, the cables become closer
to the semi-infinite cable (blue dashed line). (Right) The
normalized input resistance for the sealed end (green) and
the killed end (orange) boundary conditions as a function
of the electrotonic length

Notice that, in the edge case, L → ∞,
RIN = R∞, as tanh(∞) = 1. When RL → ∞
we can retrieve the sealed end condition, whereas
when RL = 0, we retrieve the killed end condition.

Thus, the input resistance for the sealed end is

RIN,sealed = R∞
tanh(L)

= R∞ coth(L)

Moreover, substituting into Eq. (2.28) we have
the steady-state solution for the sealed end condi-
tion

V (X) = V0
cosh (L − X)

cosh(L)

Moreover, the input resistance for the killed
end condition is given if we set RL = 0, therefore

RIN,killed = R∞ tanh(L)

and the corresponding solution is Eq. (2.28)

V (X) = V0
sinh (L − X)

sinh(L)

Finally, when RL = R∞

V (X) = V0
cosh (L − X) + sinh (L − X)

cosh(L) + sinh(L)

Recall that cosh(x) = ex+e−x

2 and sinh(x) =
ex−e−x

2 , thus

V (X) = V0 exp (−X)

which is the steady-state solution for the semi-
infinite cable. Figure 2.8 shows the steady-state
voltage and the input resistance for different ge-
ometries and boundary conditions, respectively.
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2.2.4 Dendritic Trees

2.2.4.1 Branching and Equivalent
Cylinders

Previously, we derived and analyzed the cable
equation for the infinite, semi-infinite, and finite
cables, respectively, using step currents within a
single unbranched cable. Although understanding
the current flow in cables is paramount, the single
cable is only an idealized form of what happens
in the brain. Neurons feature dendrites, which are
highly branched and extensive, with quite distinct
morphologies. Therefore, any dendritic structure
can be modeled as a branched cable structure
consisting of various cylinders with distinct mor-
phological and electrical properties. Consider a
branched cable that connectswith two other semi-
infinite cables. We denote with D1 the parent
cable, and with D2 and D3 the two child cables,
respectively (Fig. 2.9). The three cables are char-
acterized morphologically by their length and di-
ameter, denoted li and di, respectively. The cables
are connected at a spatial location x = 0. The
cable equation for a branched structure is derived
using two new conditions, i.e. the continuity of
voltages and the conservation of currents at the
branch point.

Continuity of voltages implies that at branch
point, all voltages are equal, i.e.

V0 ≡ V1(0) = V2(0) = V3(0)

Recall that the steady-state solution of the
infinite cable that is Vj (x) = Vj(0) exp

(− x
λ

)

Thus,

Vj (x) = V0 exp

(
− x

λj

)
, for j ∈ {eq, 2, 3}

Fig. 2.9 A schematic representation of an isolated branch
consisting of three compartments. The stimulation elec-
trode is denoted with the purple shape

where eq denotes the equivalent, extended to in-
finity, Deq

1 cable.
Conservation of currents implies that the lon-

gitudinal current leaving D1 is equal to the sum
of currents entering D2 and D3. Using Eq. (2.17)
for the axial current and assuming the same spe-
cific axial and membrane resistances, ra and rm,
across cables (i.e., the material properties of the
dendritic cables are the same), the axial current
of the parent cable is equal with the summation of
axial currents flowing through child cables, i.e.:

Ia,1 = Ia,2 + Ia,3 ⇐⇒ πd2
1

4ra

dVeq

dx

∣∣∣∣
x=0

= πd2
2

4ra

dV2

dx

∣∣∣∣
x=0

+ πd2
3

4ra

dV3

dx

∣∣∣∣
x=0

Taking out the common factor π
4ra

, we end up
in the formula

d2
1
dVeq

dx

∣∣∣∣
x=0

= d2
2
dV2

dx

∣∣∣∣
x=0

+ d2
3
dV3

dx

∣∣∣∣
x=0

⇐⇒

d2
1

λ1
= d2

2

λ2
+ d2

3

λ3

Recall that λj =
√

dj ra,j

4rm,j

d
3/2
1 = d

3/2
2 + d

3/2
3 (2.30)

Therefore, if all cables share the same material
properties andEq. (2.30) holds, then cablesDi can
be collapsed into a single cable, the equivalent ca-
ble. W. Rall (1962, 1964) was the first to describe
this property, the d3/2 rule, in his seminal works.

This relationship also holds if we assume
that child dendrites are finite cables, assuming
that they have the same electrotonic length (i.e.,
l2/λ2 = l3/λ3). If we then collapse dendrites
Di into a single equivalent cylinder, this must
have the same diameter as the parent cable,
i.e., d1, and equivalent electrotonic length
l1/λ1 + l2/λ2 = l1/λ1 + l3/λ3.

To prove this prerequisite, we will use the
formalization derived above for the finite cable
using the arbitrary leaky boundary condition at
the branching point. First, we assume that the
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child cables terminate with a sealed end boundary
condition at their rightmost ends. Thus, the input
resistances are

RIN,2 = R∞,2 coth (L2)

and

RIN,3 = R∞,3 coth (L3)

The two daughter cables are represented by
two parallel circuits, thus the total resistance at
X = L1 is given by

1

RL,1
= 1

RIN,2
+ 1

RIN,3

which, in turn, is the effective resistance of the
parent cable at this point.

The input resistance of the parent cable is
given by Eq. (2.29),

RIN,1 = R∞
RL,1 + R∞,1 tanh (L1)

R∞,1 + RL,1 tanh (L1)

Recall that given an injected current, Iinj, at
X = 0 of the parent dendrite the V1(0)= RIN, 1Iinj

Using this method backward, from daughter to
parent cables, we can solve for the input resis-
tance and, therefore, the steady-state voltage. We
can apply this methodology in any dendritic tree
structure in response to a current injection at any
location (Rall 1959).

The total current flowing to the daughter
branches is given by

Ij (X) = Vj

R∞,j

sinh
(
Lj − X

)

cosh(L)

where Vj is the voltage at the branch point for the
three compartments, respectively, i.e., X = 0 con-
cerning the child branch, and the current flowing
through them is given by

Ij (X = 0) = Vj (X = 0)

RIN,1

Due to the conservation of currents and the
equality of the voltages at the branch point

I0 (X = L1) =
∑

j∈D

Ij (X = 0) = VL1

∑

j∈D

1

RIN,j

From Eq. (2.28) the voltage of the parent
branch is described by

V1(X) = V1 (X = 0)

×
cosh (L1 − X) +

(
R∞,1

RL,1

)
sinh (L1 − X)

cosh (L1) +
(

R∞,1

RL,1

)
sinh (L1)

(2.31)

Thus, from the resistance of the parent cable at
the junction, X = L, is

1

RL,1
= 1

R∞,2 coth (L2)
+ 1

R∞,3 coth (L3)

Recall that fromEq. (2.25) we have the expres-
sion of infinite resistance

R∞,j = 2
√

rm,j ra,j

πd
3/2
j

1

RL,1
= πd

3/2
2

2
√

rm,j ra,j coth (L2)

+ πd
3/2
3

2
√

rm,j ra,j coth (L3)

Assuming that the child cables have the same
electrotonic lengths, and the cables share the
same properties, the denominators are equal, and
we can eliminate them, thus

RL,1 = 2
√

rm,j ra,j coth (L2)

π
(
d
3/2
2 + d

3/2
3

)

If the d3/2 rule holds, then

RL,1 = 2
√

rm,j ra,j

πd
3/2
1

coth (L2) = R∞,1 coth (L2)
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Plugging this expression in Eq. (2.31)

V1(X) = V1 (X = 0)
cosh (L1 − X) +

(
R∞,1

R∞,1 coth(L2)

)
sinh (L1 − X)

cosh (L1) +
(

R∞,1

R∞,1 coth(L2)

)
sinh (L1)

⇐⇒

V1(X) = V1 (X = 0)
cosh (L1 − X) + tanh (L2) sinh (L1 − X)

cosh (L1) + tanh (L2) sinh (L1)

Rearranging the terms and using the hyper-
bolic function properties, we end up with a com-
pact form of the equivalent dendrite.

V1(X) = V1 (X = 0)
cosh (L1 + L2 − X)

cosh (L1 + L2)

(2.32)

This equation is the same as the one obtained
for a finite, sealed end cable with an electrotonic
length equal to Leq = L1 + L2.

If we want to generalize this property, we
obtain the general expression

d
3/2
P =

∑
d
3/2
D

where P denotes the parent dendrite and D the
child dendrites, respectively.

Having a complex structure, and starting from
the end of the tree, we can recursively simplify the
dendritic structure to even a single semi-infinite
dendrite.

Overall, to take advantage of the powerful d3/2

rule, four properties should be valid:

1. The specific membrane resistance and the spe-
cific axial resistance must be the same across
all branches, rm, i = rm, j and ra, i = ra, j, ∀ i,
j ∈ D

2. All terminals (child cables) end with the same
boundary conditions

3. All child branches have the same electrotonic
length, i.e. Li = Lj, ∀ i, j ∈ D

4. At every branch point, the input resistance of
the semi-infinite cable (R∞) should be equal
across cables, i.e. d3/2

P = ∑
d
3/2
D

2.2.4.2 Isolated Branching Points
(Junctions)

With a few exceptions, most neurons violate one
or more of the constraints required to reduce a
thorny tree into an equivalent cylinder (Koch
1999). Another limitation emerges when we
change the stimulation site. Previously, we
derive the branched cable equation when a
stimulation electrode is placed at the parent
dendrite. Although this is the case when we apply
an external current experimentally to the soma or
the thick dendrite, the dendrites usually receive
most of their inputs at thin dendritic structures.
In this case, to use the equivalent cable, one can
assume that the longitudinal current is spread out
evenly across all child dendrites emerging from
the same branch point. However, this is not the
case when only one child dendrite receives input,
and the others do not.

Consider the same dendritic tree used before,
but now we apply the current on an arbitrary
point, y. Here, it makes more sense to use the
cable equation without the unitless transforma-
tion. For simplicity, consider all cables as semi-
infinite cables with known spatial constants, λj,
and the same specific axial resistance, ra. The
steady-state solution of the linear cable equation
can be applied on all points y, apart from the
injection site and the branching point. Thus, for
each compartment, using the spatial coordinate x,

λ2
j

d2Vj (x)

dx2
− Vj(x) = Iinj δ (x − y) , λj

=
√

dj rm,j

4ra
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The boundary conditions for this modified
problem are (1) at the branch (xb) point the
voltages of each cable are equal to each other,
(2) the longitudinal current should be conserved,
and (3) at the injection site, the injected current is
conserved. We can translate the above boundary
conditions into mathematical terms:

V1 (x = xb) = V2 (x = xb) + V3 (x = xb)

I1 (xb) = I2 (xb) + I3 (xb) ⇐⇒ d2
1
dV1

dx

∣∣∣∣
x=xb

= d2
2
dV2

dx

∣∣∣∣
x=xb

+ d2
3
dV3

dx

∣∣∣∣
x=xb

Iinj = πd2
1

4ra

(
dV1

dx

∣∣∣∣
x=y−

− dV1

dx

∣∣∣∣
x=y+

)

where Iinj is the injected current, and the terms
in the right-hand-side inside the parentheses are
the “left” and “right” derivatives of the voltage
at y, respectively. Setting xb = 0 to simplify the
equation, the solution is (for details, see Tuckweel
1988):

V1(x) = p1IinjRλ1

2

[
exp

(
−|x − y|

λ1

)

+ (2p1 − 1) exp

(
−y + x

λ1

)]

V2,3(x) = p2,3IinjRλ2,3 exp

(
− x

λ2,3
− y

λ1

)

pj = d
3/2
j∑3

i d
3/2
i

, Rλj
= 4raλj

πd2
j

(2.33)

If the injection site is on the thickest dendrite
(Fig. 2.10), then the effect of attenuation on thin
branches is negligible. However, if the injection
site is on one of the thinner dendrites, the thick
dendrite has a much more striking effect on the
attenuation between the two thinner branches.

2.2.5 Multicompartmental
Modeling

Aswe have seen, the cable equation can be solved
analytically under simple cases and by making

Fig. 2.10 The normalized voltages and the three cables
of an isolated branching point for current injection, one
electrotonic length unit away from the junction. (Right)
The parent cable is stimulated. The potentials along both
of the child branches are identical. The line for x < 0
represents the voltage of the thick branch. (Right) The

stimulation electrode is placed on one child branch den-
drite. The thick line for x > 0 shows the potential of
the stimulated dendrite, whereas the dashed line shows
the potential of the same dendrite when the current is
removed—adopted from Dayan and Abbot (2001)
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several assumptions. Although the solutions give
us a perfect intuition of how signals propagating
through dendritic trees and help us choose the
appropriate passive properties, such as rm, ra,
d, cm, we cannot explicitly solve the dendritic
membrane equation under realistic conditions. As
the membrane has passive channels and various
active ionic mechanisms, the mathematical solu-
tion becomes intractable. Thus, we use numerical
methods to be able to simulate various neuronal
types accurately and with high biological rele-
vance. Toward this direction, we split the den-
dritic tree into numerous compartments and dis-
cretize the continuous membrane voltage V(x, t).
Here, we choose the compartments to be small
enough to be considered as isopotential circuits.

In multicompartmental models, each compart-
ment is associated with amembrane voltage,V [j ]

m ,
accompanied by its passive and morphological
properties. Therefore, the differential equation
describing each compartment becomes

c[j ]m
dV [j ]

m

dt
= −i[j ]m + I

[j ]
inj

A[j ]

+g[j,j+1]
(
V [j+1]
m − V [j ]

m

)

+g[j,j−1]
(
V [j−1]
m − V [j ]

m

)
(2.34)

where j+1 and j−1 denote the two neighbor-
ing compartments, respectively. The g[j, j + 1]

denotes the coupling conductance among
the compartments j and j+1, and the term

g[j,j+1]
(
V

[j+1]
m − V

[j ]
m

)
represents the longi-

tudinal axial current from compartment j+1 to
compartment j. A[j] is the total surface area of
the j-th compartment, i.e., A[j] = πd[j]l[j], where
l[j] and d[j] represent the length and diameter of
the j-th compartment, respectively. The injected
current, if any, onto compartment j is denoted
by I

[j ]
inj . Terminal branches contain only one

coupling term from the previous compartment. In
contrast, parent dendriteswith two child dendrites
contain three such terms, one from the previous
compartment and two for the child compartments.

A general form of the compartmental equation is
given below

c[j ]m
dV [j ]

m

dt
= −i[j ]m + I

[j ]
inj

A[j ]

+
∑

k:k→j

g[j,j+k]
(
V [j+k]
m − V [j ]

m

)

The axial current flowing from compartment
j to j+1 passes through a total axial resistance,
depending on the morphological characteristics
of both compartments. Here, we use the half-
cylinders approach, i.e. the total axial resistance
is from the midpoint of compartment j to the
midpoint of compartment j+1. Thus, the total
axial resistance is

Ra = ra
l[j ]

2

π
(

d[j ]

2

)2 + ra
l[j+1]

2

π
(

d[j+1]

2

)2

= 2ra

l[j ]π
(
d [j+1]

)2 + l[j+1]π
(
d [j ]

)2

π
(
d [j ]

)2
π
(
d [j+1]

)2

= 2ra

l[j ]
(
d [j+1]

)2 + l[j+1]
(
d [j ]

)2

π
(
d [j ]d [j+1]

)2

Thus, the coupling conductance is the inverse
of Ra,

Ga = 1

ra

π
(
d [j ]d [j+1]

)2

l[j ]
(
d [j+1]

)2 + l[j+1]
(
d [j ]

)2

In order to transform the longitudinal current
from compartment j+1 to j, we divide the total
coupling conductance by the total surface area of
compartment j, A[j].

g[j,j+1]
a = 1

2ra

π
(
d [j ]d [j+1]

)2

l[j ]
(
d [j+1]

)2 + l[j+1]
(
d [j ]

)2

× 1

πd [j ]l[j ]
⇐⇒

g[j,j+1]
a = 1

2ra l[j ]

×
⎡

⎣ d [j ]
(
d [j+1]

)2
(
l[j ]

(
d [j+1]

)2 + l[j+1]
(
d [j ]

)2)

⎤

⎦

(2.35)
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Notice that g[j,j+1]
a is usually given in

mS cm−2, and ra in 	 cm. Also, typically,
the morphological properties of neurons are
measured in μm. So, one needs to change μm
to cm by multiplying with 10−4.

The units used in most compartmental models
are μF cm−2, mS cm−2, and μA cm−2 for the
specific capacitance, conductance, and applied
current, respectively. Typical values for the in-
jected current are in the order of a few nA or
hundreds of pA.

To generate various compartmental models of
dendrites, (1) we compute the morphological
(i.e., length, diameter), and (2) the passive
properties (capacitance, membrane resistance,
axial resistance) of the cylinders that compose
the dendritic tree. Simulators like NEURON
(Carnevale and Hines 2006) and GENESIS
(Bower et al. 2003) enable users to input a
digitized form of any neuron. The simulator
will automatically produce a compartmentalized
version of it by linking together the various cylin-
ders or using real, reconstructed morphologies
(www.neuromorpho.org, Ascoli et al. 2007).
Finally, in the simulator BRIAN2 (Stimberg et al.
2019), the user can write custom-based equations
to simulate a multicompartmental neuron.

2.3 Computational Modeling
of Active Dendrites

2.3.1 Biophysical Models
of Dendritic Function

Intracellular recordings from cell bodies of
various neuronal types have long suggested
that dendrites do not integrate the incoming
information passively. Direct recording and
imaging techniques have provided conclusive
evidence that dendrites express numerous
different types of voltage- and Ca2+-dependent
channels (active channels). It is widely accepted
that these channels are crucially involved in signal
processing at dendritic trees and strongly affect
neuronal output.

Although dendrites have been extensively
studied, some challenges emerge when studying

their active properties and function. The first
challenge is technical due to the morphological
characteristics of dendrites. Dendritic diameter
is negatively correlated with the distance from
the soma, i.e. the further from the soma, the
thinner the dendrites. Thus, it is challenging to
study them using intracellular recordings. In turn,
the recording sites are limited to dendrites with
thicker diameters proximal to the soma, missing
vital information from synaptic integration as
most neuronal afferents are located in thin distal
dendrites. Today, thanks to significant advances
in electrophysiological techniques, dendritic
recordings from an increasing number of
neuronal types can be obtained routinely (Davie
et al. 2006). Moreover, high-resolution imaging
techniques, e.g., multiphoton microscopy, allow
for measuring Ca2+ influx in thin dendrites and in
spines, both of which are not yet accessible with
direct voltage recordings (Svoboda et al. 1997;
Denk and Svoboda 1997).

Similar to the variety seen in neuronal den-
dritic trees, neurons express a plethora of voltage-
and Ca2+-dependent channels in these structures
in a non-uniform manner and with significant
differences among neuronal types. Furthermore,
the expression of ion channels in the dendrites
is highly flexible. Thus, their properties can be
altered during development or as a result of learn-
ing. This complexity has made it challenging
to define a set of commonly applied rules that
underlie dendritic function.

Here, we briefly describe active ion channels
that have been experimentally identified in
dendrites of various neuronal types. The vast
majority of the voltage-gated channels follow
the Hodgkin–Huxley formalism. As the internal
calcium concentration also gates several critical
channels, we will briefly describe some basic
models for intracellular calcium dynamics.

2.3.1.1 Modeling Active Conductances
All of the channels described below follow
the classic Hodgkin–Huxley mathematical
formalization (Hodgkin and Huxley 1952). The
total current due to an ion channel is

Iion = mphqIdrive(V ) (2.36)

http://www.neuromorpho.org
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where m and h are the dynamic gating variables
taking values between 0 and 1, p and q are non-
negative integers, and V is the membrane voltage.
Therefore, the current is maximum when both m
and h are 1. By convention, m will be activated
(get higher) with higher voltages, while h will be
inactivated (get smaller). The steady-state curve
for an activation particle increases with depo-
larization, while for an inactivation particle, it
instead decreases with depolarization. Notice that
not all channels have an inactivation phase (e.g.,
HH potassium current).

The maximum ionic current, Idrive(V), gen-
erally takes two possible forms corresponding
to the linear model or the constant-field model,
respectively.

The linear model is

Idrive = gX (V − EX) (2.37)

whereas the constant-field model is

Idrive =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P X
z2XF 2V

RT

(
[C]in−[C]out exp

(
− zXFV

RT

)

1−exp
(
− zXFV

RT

)

)

− P XzXF [C]outξ
1−

(
[C]in
[C]out

)
exp

(
V
ξ

)

exp
(

V
ξ

)
−1

(
V
ξ

)
, ξ = RT

zXF

(2.38)

2.3.1.2 Hodgkin–Huxley Mathematical
Formalism

In the HH formalism, a gating variable x can be
found in two distinct states, the open (O) and
closed (C) states, respectively. These two states
can be expressed using a reversible chemical re-
action scheme

O
βx(V )
�

αx(V )
C

Notice that with x we denote the proportion of
gating particles in their open state, while 1− x are
those in the closed state. αx(V) and βx(V) show
the rates at which a particle from the closed state
moves to the open and vice-versa, respectively
(Fig. 2.11). The state transition rate coefficients
are given as a function of voltage (Hodgkin and
Huxley 1952).

The corresponding first-order differential
equation to the chemical reaction of the states
is

dx

dt
= αx(V ) (1− x) − βx(V )x (2.39)

The steady-state of the gating variable is given

when we set the derivative to zero, i.e. dx
dt

set= 0.
Thus, we obtain the steady-state, x∞, of the gating
variable (Fig. 2.12):

x∞(V ) = αx(V )

αx(V ) + βx(V )
(2.40)

We rearrange the terms in the right-hand-side
of Eq. (2.39), obtaining a more useful form

dx

dt
= (x∞(V ) − x) /τx(V ) (2.41)

where τ x(V) represents the kinetics of the gating
variable and is calculated via

τx(V ) = 1

αx(V ) + βx(V )
(2.42)

Solving analytically, we obtain the evolution
of the gating variable over time:

x(t) = x∞(V ) − (x∞(V ) − x0) exp

(
− t

τx(V )

)

(2.43)
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Fig. 2.11 Activation (blue) and inactivation (orange) gat-
ing variables as a function of membrane voltage. Typical
shapes of the gating variable are sigmoid-like functions.

The channel is activated when the shared area under both
curves is nonzero. The dashed line represents the activa-
tion gating variable squared

Fig. 2.12 An activation gating variable. (Left) The rate
coefficients as a function of voltage. (Middle) The
steady-state of the gating variable as a function of volt-
age, x∞(V) = αx(V)/αx(V) + βx(V). The value of the
steady-state increases with increased voltage, indicat-

ing that this variable is an activation gating variable.
The shape of the function is sigmoid-like. (Right) The
corresponding kinetics of the transition between states,
τ x(V) = 1/αx(V) + βx(V)). This is a skewed bell-shaped
function
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The rate coefficients, steady-state, and time
constant of any gating variable can be dependent
on voltage and/or some other quantities (e.g.,
specific ion concentration). From Eqs. (2.40) and
(2.42), we obtain some useful formulas to match
experimental data:

αx(V ) = x∞(V )

τx(V )
and βx(V ) = 1− x∞

τx

(2.44)

Frequently, the functional forms of the rate
coefficients take one of the following three em-
pirical forms:

αx(V ), βx(V ) =

⎧
⎪⎨

⎪⎩

A exp
(

V−B
C

)

A V−B

1−exp( V−B
C )

A

1+exp(− V−B
C )

(2.45)

where A, B, C, and D are some arbitrary param-
eters calculated from patch-clamp experiments
(Fig. 2.13). These forms correspond to exponen-
tial growth, exponential decay, or a sigmoidal

function, respectively. Taken in unison, we end
with a general form that can be used to capture
most of the available discrete forms

αx(V ), βx(V ) = A′ + B ′V
C′ + D′ exp

(
V+E′

F ′
) (2.46)

with A
′
, B

′
, C

′
, D

′
, E

′
, and F

′
as the model param-

eters. Choosing the parameters appropriately, we
can retrieve the discrete forms given in Eq. (2.45).
For example, setting B

′ = 0, C
′ = 1, D

′ = 1, we
obtain the sigmoidal function (third form of Eq.
2.45).

A significant simplification that many models
use is to consider only the steady-state of the
gating variables. Most of the voltage-gated steady
states can be approximated with the Boltzmann
function (Fig. 2.14) of the general form

x∞(V ) = 1

1+ exp
(

V−V1/2

k

)

Fig. 2.13 Typical functions used to model the rate coefficients. (Blue) A classic exponential decay, (orange) an
exponential growth, and (green) a sigmoidal function
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Fig. 2.14 The Boltzmann (left) and the Gaussian (right) equations used to approximate the steady-state and time
constant of the gating variables. Dotted lines show the characteristic values of both functions

Moreover, the time constant can be approxi-
mated with a (skewed) bell-shaped function (see
Fig. 2.15):

τx(V ) = τmin + τamp

exp
(
−V−Aτ

Bτ

)
+ exp

(
V−Cτ

Dτ

)

where Aτ , Bτ , Cτ , and Dτ some arbitrary pa-
rameters. In the case of Aτ = Cτ = Vmax and
Bτ = Dτ = σV , we can use the cosh(z)5 function:

τx(V ) = τmin + τamp

cosh
(

V−Vmax

σV

)

A more general expression is to use a
Gaussian-like function directly:

τx(V ) = τmin + τamp exp

(
−(Vmax − V )2

σ 2
V

)

In the expressions of τ x, τmin is a factor that
prevents the time constant from being extremely
low, i.e., the gating variable avoids making tran-
sitions between the two states extremely quickly,
and τ amp denotes the peak value of the (skewed)
bell-shaped curve, i.e., τ amp = τmax − τmin.

5 cosh(z) = exp(−z)+exp(z)
2

All these forms are quite similar, especially in
physiological voltage regimes. Thus, they can be
used accordingly in models, and their parameters
can be obtained from experimental data (for com-
parison, see Fig. 2.15).

2.3.1.3 Thermodynamic Approach
An alternative model to simulate the gating vari-
ables of the ion channels is the thermodynamic
approach. Here, the rate coefficients for chemical
reactions are described as energy barriers that
reactants must overcome. This model assumes
that the gating of ion channels operates through
successive formational changes of the ion chan-
nels proteins. Let us consider a transition between
an initial state and a final state, with a voltage-
dependent rate, r(V).

I
r(V )→ F

According to the theory of reaction rates
(Eyring 1935; Johnson et al. 1974), the transition
rate depends exponentially on the free energy
barrier between these two states:

r(V ) = r0 exp

(
−ΔG0(V )

RT

)
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Fig. 2.15 Gating variable steady-state (left) and the cor-
responding time constant (right). Solid blue lines denote
the HH formalism values, whereas the dashed and dot-

ted lines show mathematical simplifications. The two ap-
proaches are in good agreement and become misaligned
only for extreme voltage values

where r0 is a constant, and �G(V0) is the free
energy barrier (Fig. 2.16).

For gating particles dependent only on voltage,
this theory can be recast in more explicit form by
considering parameters of a single-barrier kinetic
model for each particle (Jack et al. 1983; Borg-
Graham 1991). The advantages of this form are
parameters, which are both more directly related
to the functional behavior of the channel and
which have specific biophysical interpretations.

We first derive the expressions of α′
x (V )

andβ ′
x(V ), the forward and backward rate con-

stants of the single-barrier transition. For a given
arbitrary gating particle x, ζ (dimensionless)
is the effective valence of the gating particle.
When ζ is positive, the particle tends to the open
position with depolarization, i.e. it is an activation
particle. Similarly, a negative valence value
means that the particle tends to the open position
with hyperpolarization, i.e. it is an inactivation
particle. The effective valence (ζ ) is the product
of the actual valence of the particle (an integer)
and the proportion of the membrane thickness
through which the particle moves during state

transitions. γ is the position of the transition
state within the membrane, normalized to the
membrane thickness, usually referred to as the
factor of asymmetry.V1/2 is themembrane voltage
for which α′

x

(
V1/2

) = α0 and β ′
x

(
V1/2

) = β0,
and the α0 and β0 (ms−1) are the constant rate
coefficients when α′

x(V ) = β ′
x(V ). These terms

can be described in terms of Eyring’s rate theory
(Eyring 1935; Johnson et al. 1974), an explicit
version of which may include an additional
temperature term (Borg-Graham 1991). We shall
not consider this component explicitly here and
just take α0, β0 as constants. Usually, α0 = β0.

The corresponding rate coefficients are given
by

α′
x (V ) = α0 exp

(
ζγ

(
V − V1/2

) F

RT

)

β ′
x (V ) = β0 exp

(
−ζ (1− γ )

(
V − V1/2

) F

RT

)

(2.47)
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Fig. 2.16 A schematic representation of the thermody-
namic approach for an activation gating particle. Any
channel can be in two discrete and distinct states, closed
(C) and open (O). The energy barrier between the two
states, and thus the corresponding probabilities, is de-
pendent on the membrane potential, i.e. active channel.
Depolarization of the membrane will decrease the energy
barrier, increasing the probability of a particle remaining
in the open state. In contrast, membrane hyperpolarization
will have the opposite effect. The transition rates of this
gating variable are αx, and βx. �G0 shows the energy
barrier of free energy when there is no membrane dif-
ference. The barrier becomes more asymmetrical as the
potential difference is increased across the membrane. y is
the probability of the particle being in the open state

The time constant for the gating particle x is
given by

τx(V ) = τmin + 1

α′
x (V ) + β ′

x (V )

The additional term, τmin prevents the time
constant from being extremely small, as the rate
coefficients are exponentially dependent on volt-
age and can be extremely large.

Rearranging the terms in τ x(V) we obtain a
more compact form

τx(V ) = τmin + exp
(−γ ζ

(
V −V1/2

)
F

RT

)

α0 +β0 exp
(−ζ

(
V −V1/2

)
F

RT

)

(2.48)

The rate coefficients are connected with the
rates of the original HH model

αx(V ) = α′
x(V )

τmin
(
α′

x(V ) + β ′
x(V )

)+ 1

and

βx(V ) = β ′
x(V )

τmin
(
α′

x(V ) + β ′
x(V )

)+ 1

When τmin = 0, then the rate coefficients of
both models are equal.

Finally, the gating variable is calculated as

x∞ = α′
x(V )

α′
x(V ) + β ′

x(V )
= αx(V )

αx(V ) + βx(V )

or written in a more compact format

x∞ = α0

α0 + β0 exp
(−ζ

(
V − V1/2

)
F

RT

) (2.49)

As we said previously, an advantage of
this formulation is a more precise connection
between the parameters and the macroscopic
characteristics of the rate coefficients. In
particular, V1/2 gives the midpoint of the steady-
state x∞ and ζ sets the steepness of the sigmoidal
function x∞ (Fig. 2.14). The symmetry parameter
γ (0 ≤ γ ≤ 1) determines the skewness of τ x(V),
where γ = 0.5 gives a symmetrical bell-shaped
curve, which otherwise bends to one side or the
other as γ approaches 0 or 1, respectively. ζ sets
the width of τ x(V), unless γ is equal to either 0
or 1, in which case τ x(V) becomes sigmoidal and
thus ζ determines the steepness as for x∞(V).

This formalism describes both activation and
inactivation gating particles of the HH formalism.
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We can control for this behavior by appropriately
changing the sign of the parameter ζ . If ζ > 0, the
gating variable corresponds to an activation vari-
able and otherwise corresponds to an inactivation
parameter.

Temperature Dependence
Temperature plays a crucial role in the
experiments concerning active channel kinetics.
Hodgkin and Huxley (1952) have shown that
both inactivation and activation transition rates
increase as the temperature rises. Common to
many biochemical processes, the rates increase
exponentially with increasing temperature.
Different experimental studies are conducted
at different temperatures; thus, the respective
models have to account for this variance.
Typically, it is assumed that if the rate coefficient
increases with factor Q for 1

◦
C, then the factor is

QT for an arbitrary T
◦
C.

In neuroscience, the temperature coefficient
Q10 is used to quantify the temperature depen-
dence. Q10 measures the increase of a rate co-
efficient for a 10

◦
C temperature increase, i.e.

Q10 ≡ Q10. By definition,

Q10
def= αx

(
T + 10

◦
C
)

αx(T )
or

βx

(
T + 10

◦
C
)

βx(T )

(2.50)

where αx(T), βx(T) are the rate coefficients as a
function of the temperature T, respectively. Thus,
for an increase from T1 to T2, the temperature
coefficient is

φ = QT2−T1 = Q
(T2−T1)/10
10 (2.51)

To take into account the effect of the tem-
perature, we multiply both αx and βx with the
correction factor φ. A typical value of Q10 3
(Hille 2001), but according to transition state
theory, Q10 is also dependent on temperature.
The thermodynamicmodel approach includes the
temperature dependence in the rate coefficient
equations explicitly and not as a correction factor
(Eq. 2.48).

Apart from the rate coefficients, the maximum
ion conductance is also affected positively by the

increase in temperature, but with a lower magni-
tude comparing with the rate dependence,Q101.3
(Hille 2001). As for the rate coefficients, we
multiply the conductance with the corresponding
correction factor.

2.3.1.4 Ionic Concentrations
Usually, we assume that the ionic concentrations
inside and outside the cell are almost constant.
Although this is a good approximation, this is
not true concerning Ca2+ ions. Ca2+ exists inside
a neuron in a minimal concentration; therefore,
any Ca2+ influx (through the voltage-dependent
channels) substantially contributes to the internal
Ca2+ concentration. Recall that the equilibrium
potential of an ion depends on the external and
internal concentrations (Nernst equation). Here,
we will analyze a forthright model for tracking
and updating the Ca2+ concentrations. However,
we encourage the interested reader to see Ster-
ratt et al. (2011), for an extensive description
of modeling the intracellular dynamics of neu-
rons.

First, consider a current influx due to some ion
species X denoted as IX . As we have seen, the
ion influx (JX) and the corresponding current con-
nected using the ion valence zX and the Faraday
constant, F.

IX = zXFJX

The ion X dynamics can be expressed in terms
of an ordinary differential equation like the one
given below:

d [X]

dt
= −δ ([X]) ± IX

zXFμ

where δ([X]) denotes the decay of the ion due to
uptake or buffering, and μ is the depth of a thin
layer from which ions can flow into the cell, the
available pool of ions. We use the depth to trans-
form the flux from M • cm−1 • s−1 into M • s−1.
The negative sign is associated with the influx
(internal concentration), while the positive sign
is related to the efflux (external concentration)
of ion X. In simple terms, we use this function
to make X return to its initial state. The most
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straightforward decay function is the exponential
decay, thus,

δ ([X]) = ([X]− [X]0)

τ
(2.52)

We observe that in the absence of the ionic cur-
rent IX , the [X] tends to [X]0. Another commonly
used approach is based on the passive buffering
model described by the chemical reaction

X + B � XB → X + Y

where Y is the inactivated form of X. The decay
equation is derived according to the Michaelis–
Menten kinetics formalism

δ ([X]) = K1 [X]
K2 + [X]

(2.53)

Usually, an additional multiplying factor
a is used with the flux to account for the
buffering and the depth of the membrane pool.
The most widely used model is the one from
Wang and colleagues (Wang 1998), where
a= 0.002 μMms−1μA−1cm2 is used to produce
an influx of 0.2 μM Ca2+ per spike (Helmchen
et al. 1996). The decay function used is a simple

exponential decay δ
([
Ca2+

]) = [Ca2+]
τ

, with
τ = 80 ms for the dendrites (Markram et al. 1995;
Helmchen et al. 1996; Svoboda et al. 1997). Thus,
for this model to work properly, the modeler
should track the total calcium current through the
various Ca2+ voltage-dependent channels. Thus,
the model based on Wang (1998) is described by

d
[
Ca2+

]

dt
= −

[
Ca2+

]

τCa
− αICa (2.54)

It is interesting to see how all these properties,
assumptions, and theories are applied to neuronal
models. Thus, we will describe the active ion
channels that have been found in the dendrites of
various neurons.

2.3.1.5 Sodium Channels
There are four different experimentally identified
sodium channels expressed at high levels in the
central nervous system (for a review, see Trimmer

and Rhodes 2004). Although the activation gating
variables are quite similar across these types, vari-
ability in their inactivation properties has been
experimentally observed. During the activation
phase, sodium channels produce a fast, inward
current that dramatically depolarizes the dendritic
membrane voltage, shaping the synaptic poten-
tials and allowing the generation and propagation
of dendritic-generated action potentials. Most of
these channels are activated by depolarization
of approximately 20 mV in membrane voltage.
The main feature of sodium channels is their fast
kinetics. However, in CA1 pyramidal cells, slow-
inactivating sodium channels have been found
(Jung et al. 1997). The inactivation phase can
last seconds in comparison with milliseconds ob-
served in many sodium channels. The fraction of
the slow-inactivating sodium channels is higher
in dendrites than in the soma of CA1 pyramidal
cells.

Furthermore, the sodium channel activation
properties operate in more hyperpolarized states
in distal dendrites than in the proximal ones (Gas-
parini and Magee 2002), i.e. the corresponding
gating variable becomes nonzero lower voltage
regime. Another category of the sodium chan-
nel, which features slower kinetics, is the persis-
tent sodium channel located mainly in the axo-
somatic regions of neocortical pyramidal neurons
and Purkinje cells and in hippocampal pyramidal
cells. Nonetheless, evidence for dendritic persis-
tent Na+ currents (INaP) has also been reported
(Lipowsky et al. 1996; Mittmann et al. 1997;
Magistretti et al. 1999). The persistent sodium
current is an inward, depolarizing current, dif-
ferent from the fast sodium current because of a
lower activation threshold (60 mV), and the non-
inactivating property (Crill 1996). The persistent
sodium current plays a crucial role in the intrin-
sic function of neurons at the subthreshold input
space, such as the regulation of spike precision
and the amplification of synaptic inputs (Stuart
and Sakmann 1995; Vervaeke et al. 2006). Usu-
ally, its maximum conductance is 0.1–1% of the
transient sodium conductance (Carter et al. 2012).

In most biophysical computational models,
roughly two sodium currents are used; the
transient (fast) and the persistent (slow) sodium



2 Modeling Dendrites and Spatially-Distributed Neuronal Membrane Properties 55

channels. Although the fast sodium current was
briefly described by Hodgkin–Huxley (Hodgkin
and Huxley 1952), the equations are not suitable
for neurons in mammalian brains. A widely used
model to simulate the sodium fast current is
based on Traub et al. (1991). However, an extra
gating parameter is added to account for the
dendritic location-dependent slow attenuation
of the sodium current (Migliore et al. 1999).
Moreover, the persistent sodium current does not
usually have an inactivation gating variable.

2.3.1.6 Calcium Channels
Calcium channels are relatively similar to sodium
channels in their function; however, they are
different in their dynamics. Ca2+ currents are
slower, more prolonged, which further adds to the
excitability of dendritic membranes (Huguenard
1996). These channels also provide a pathway
for Ca2+ influx in the cell. Ca2+ imaging studies
and voltage-clamp recordings have observed a
variety of different types of Ca2+ channels. These
channels are non-uniformly distributed along
the dendritic trees of all neurons. Because the
concentration of Ca2+ inside the cell is low, even
a small amount of calcium influx can dramatically
change the driving force of Ca2+ channels, i.e.
Vm − ECa. The constant-field equation is usually
used to simulate these channels (see Sect. 2.2.1).
Using the GHKmodel, one additional equation is
required to keep track of the Ca2+ concentration.
The three prominent families of Ca2+ channels
are: (1) the T-type Ca2+ currents (ICaT) (Magee
and Johnston 1995), (2) the L-type Ca2+ currents
(ICaL) (Magee and Johnston 1995; Williams and
Stuart 2000), and (3) the P/Q-, N-, and R-types
Ca2+ current (ICaR) (Magee and Johnston 1995;
Randall and Tsien 1997).

• Low-threshold calcium (T-type) current: The
low-voltage activated (LVA) Ca2+ T-type
(CaT) current is enabled at low membrane
potentials, near rest. Their half-maximum,
V1/2, is around −40 mV. It shows substantial
voltage-dependent inactivation but no Ca2+-
dependence, which is enabled at high,
depolarized voltages; thus, it is also called
transient current (T-type). The steady-state

and the time constant of both activation and
inactivation gating parameters are similar to
the fast Na+ channels.

• High-threshold calcium (L-type) current:
The high-voltage activated (HVA) Ca2+ L-
type (CaL) current is activated at relatively
high voltage values, and their V1/2 is around
−15 mV. Similar to the T-type current, L-type
also inactivates; however, its inactivation is
dependent on the [Ca2+]in, and is slower than
the one observed in T-type currents.

• High-threshold calcium (P/Q-, R-, andN-type)
currents: These Ca2+ currents (CaPQ, CaR,
CaN) are neither transient nor long-lasting.
Thus, they should be modeled separately.
These channels are rapidly activating, with
medium unitary conductance. These channels
inactivate, with the R-type inactivating rapidly,
and P/Q-type show very slow inactivation
kinetics. Also, P/Q- and R-type channels are
activated at medium voltages, their V1/2 is
higher than −40 mV, while the N-type are
activated in higher voltage regimes, and their
V1/2 is higher than −20 mV.

2.3.1.7 Potassium Channels
Potassium channels are the primary regulators
of dendritic excitability. They come in a great
variety, and most of them have been identified
in dendrites. Potassium currents can be split into
four categories: (1) the transient K+ currents (e.g.,
A-currents), (2) the sustained currents, which
have slower kinetics and show very little, if any,
voltage-dependent inactivation (i.e., inactivation
time constant is from hundreds of milliseconds
to even seconds), (3) the Ca2+-dependent or
Ca2+- and voltage-dependent potassium currents,
and (4) the hyperpolarization (h) and inwardly
rectifying (IRK) potassium channels can be found
in dendrites.

• Delayed rectifier potassium currents: the
delayed-rectifier-type K+ (IKDR) currents have
been observed in dendrites, wherein they have
similar properties to those found at the soma.
These channels show slow activation and even
slower inactivation.
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• Transient potassium (A-type) currents: these
currents are large in amplitude and have very
rapid activation and inactivation kinetics
(Chen and Johnston 2004; Harnett et al.
2013). Their activation and inactivation phases
start at around −45 mV. Their distribution
across a dendritic tree is non-uniform, with
their population increasing with proximity
to the soma. These channels are different
from those described by Hodgkin and
Huxley (1952), showing a voltage-dependent
inactivation. Dendrites very proximal to soma,
i.e. perisomatic regions contain a slower
inactivating K+ current, the D-type K+
current.

• Sustained potassium currents: The sustained
potassium currents are slowly activating and
non-inactivating currents [e.g., the muscarinic
dependent K+ currents (M-type, IM)] (Hoff-
man et al. 1997; Muennich and Fyffe 2004;
Chen and Johnston 2004; Harnett et al. 2013).
These currents are activated slower than IA,
and show very little or no inactivation phase.
To be activated and inactivated, the membrane
voltage must be greater than −40 mV.

• Calcium-dependent potassium channels:
The activation and inactivation of these
channels depend on the internal calcium
concentration. They are involved in action
potential repolarization, the generation of
after hyperpolarization currents, and spike-
triggered adaptation. These channels come in
three different flavors: (i) large-conductance
Ca2+- and voltage-dependent potassium
channels (BK channels) (Womack and
Khodakhah 2004; Benhassine and Berger
2005), (ii) smaller conductance, Ca2+-
dependent potassium channels (SK channels)
(Womack and Khodakhah 2003; Cai et al.
2004), and (iii) even smaller conductance
Ca2+-dependent potassium channels (BK or
AHP) (Faber and Sah 2003). The BK currents
appear to be fastest, followed by SK and finally
by the AHP currents, which can be quite long-
lasting.

• Hyperpolarization-activated cation channels
and inwardly rectifying K+ channels:
Hyperpolarization-activated (Ih) and inwardly

rectifying K+ channels (IRK) participate in
setting the resting membrane potential as
well as other basic membrane properties
such as input resistance and membrane
polarization rates (Holt and Eatock 1995;
Robinson and Siegelbaum 2003). Although
they are very different channel types, they
are considered jointly here because they
have similar functional consequences. Both
channels tend to stabilize the membrane
potential in response to deviations from the
resting potential. Both HCN and IRK channels
have also been shown to have an enormous
impact on the integration of synaptic activity
(Stuart and Spruston 1998;Magee 1998, 1999;
Nolan et al. 2004). In the soma and apical
dendrites of pyramidal and thalamocortical
neurons, membrane hyperpolarization evokes
inward currents that are slowly activating and
deactivating and virtually non-inactivating.

Here, we have given an overview of the
available channels found on dendrites. We
highly encourage the interested reader to read
about ionic channels in Hille (2001), and more
about the spatial distribution of dendritic ion
channels in Magee (2016). To learn more about
dendrites, see Stuart and Spruston (2015), Stuart
et al. (2016). There are thousands of papers in
literature discussing and describing the active
properties of neurons. Biophysical intuitions on
what many of these channels do during different
input protocols are provided in ModelDB
(senselab.med.yale.edu/modeldb/, Hines et al.
2004) and ICG (icg.neurotheory.ox.ac.uk/,
Podlaski et al. 2017). Most of the ion channel
models are implemented using the NEURON
simulation environment (Carnevale and Hines
2006).

2.4 Conclusions-Remarks

In this chapter, we discussed several aspects of
dendritic processing. It is now widely accepted
that dendrites have an active and critical role in
shaping incoming input and, thus, determining
the firing pattern of a neuron. The classical view

https://senselab.med.yale.edu/modeldb/
https://icg.neurotheory.ox.ac.uk/
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of dendrites as passive integrators of incoming
signals has been rendered obsolete. Due to their
biophysical complexity, stemming from the ac-
tive channels, distributed along the membrane
in different ways, and their anatomical compart-
mentalization, dendrites of principal neurons are
now thought to act as independent subunits, each
performing different computations. Thus, it is of
the utmost importance to incorporate accurately
modeled dendrites in computational models of
neurons.

Toward this direction, we discussed the pas-
sive properties of dendrites and what parame-
ters one needs to incorporate to simulate passive
signal propagation through dendrites. We also
discussed how morphology affects dendritic inte-
gration and ways to model these effects. Finally,
we briefly presented some of the active conduc-
tances in dendrites and how we can model them
in multicompartmental models. Incorporating the
morphological, passive, and active neuronal prop-
erties in models is crucial in making these mod-
els biologically relevant. Having such accurate
models is critical for understanding the various
functional contributions of dendrites to single
neuron and circuit computations. Such modeling
contributions and their extensive impact on Neu-
roscience have recently been discussed (Poirazi
and Papoutsi 2020).

The accurate implementation of multi-
compartmental models is admittedly not a
trivial task. However, the growing amount of
electrophysiological data that are generated about
dendrites, alongwith the increased computational
power of modern computing infrastructure,
made it feasible to simulate dendritic trees in
unprecedented detail. We hope this chapter will
serve as a guide and inspiration for further delving
into the mysteries of these beautiful butterflies of
the soul, as called by Ramón y Cajal.
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A.1 Appendix: Mathematical
Derivations

A.1.1 A.1 General Solution
to the Linear Cable Equation
in Time and Space Given
a Current Injection, I(x, t),
at Some Point

τm

∂

∂t
V (x, t) = λ2 ∂2

∂x2
V (x, t)

−V (x, t) + rmI (x, t)

(A.1)

The initial voltage at t = 0 is given by
V(x, 0) = V0(t)

To analytically solve Eq. (A.1), we will take
advantage of the Fourier transforms. Recall that
the Fourier transform is usually used to convert
the time domain into a frequency domain. How-
ever, here we will use it to solve the cable equa-
tion. Thus, we will apply the Fourier transform in
the space domain instead of time.

Generally, the Fourier transform of any func-
tion is given by the integral

f (x, t)
F→ F (ω, t) : F̂ (ω, t)

=
∞∫

−∞
f (x, t) exp (−iωx) dx

The inverse Fourier transform returns us to the
space domain

F̂ (ω, t)
F−1→ f (x, t) : f (x, t)

= 1

2π

∞∫

−∞
F̂ (ω, t) exp (iωx) dω

Applying Fourier transformation to Eq. (A.1)
and using the linearity property of the Fourier, i.e.

F {αf (x, t) + βg (x, t)}
= αF {f (x, t)} + βF {g (x, t)}
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we obtain the expression in Fourier space

τF
{

∂

∂t
V (x, t)

}
+ F {V (x, t)}

−λ2F
{

∂2

∂x2
V (x, t)

}
= rmF {I (x, t)}

Using the property of derivatives, i.e.:

if f (x, t)
F→ F̂ (ω, t) , then F

{
∂n

∂xn
f (x, t)

}

= (iω)nF̂ (ω, t)

Thus, Eq. (A.1) is written as

τm

d

dt
V̂ (ω, t) + V̂ (ω, t)

−λ2(iω)2V̂ (ω, t) = rmÎ (ω, t) ⇐⇒

τm

d

dt
V̂ (ω, t) + (

1+ λ2ω2) V̂ (ω, t) = rmÎ (ω, t)

(A.2)

Equation (A.2) is an inhomogeneous ordinary
differential equation, and we will solve it with the
method of variation of a constant.

For simplifying the notation, we let V̂ ≡
V̂ (ω, t) , Î ≡ Î (ω, t)

τm

dV̂

dt
+ (

1+ λ2ω2
)
V̂ = rmÎ

First, we solve the homogenous differential
equation, setting the right-hand side of the equa-
tion to zero.

τm

dV̂

dt
+ (

1+ λ2ω2) V̂ = 0 ⇐⇒

dV̂

dt
= −

(
1+ λ2ω2

)

τm

V̂ ⇐⇒

dV̂

V̂
= −

(
1+ λ2ω2

)

τm

dt

Then, we obtain the solution by integrating
both sides and using some calculus properties1,2,3

∫
dV̂

V̂
=

∫
−
(
1+ λ2ω2

)

τm

dt ⇐⇒

ln
∣∣∣V̂

∣∣∣ = −
(
1+ λ2ω2

)

τm

t + C1, C1 ∈ R

exp
(
ln

∣∣∣V̂
∣∣∣
)
= exp

(
−
(
1+λ2ω2

)

τm

t+C1

)
⇐⇒

∣∣∣V̂
∣∣∣ = exp (C1) exp

(
−
(
1+ λ2ω2

)

τm

t

)
⇐⇒

V̂ = ± exp (C1) exp

(
−
(
1+ λ2ω2

)

τm

t

)
⇐⇒

Let C = ± exp (C1)

V̂ (ω, t) = C exp

(
−
(
1+ λ2ω2

)

τm

t

)
, C ∈ R

(A.3)

Now, to solve the inhomogeneous equation,
we plug in the solution (Eq. A.3), assuming that
the constant C is some function of time, C(t)

τ
dV̂

dt
+ (

1+ λ2ω2) V̂ = rmÎ ⇐⇒

τ

[
d

dt
C(t) exp

(
−
(
1+ λ2ω2

)

τm

t

)]

+ (
1+ λ2ω2)C(t) exp

(
−
(
1+ λ2ω2

)

τm

t

)

= rmÎ ⇐⇒

1
∫ 1

x
dx = ln |x| + c, c ∈ R

2 exp(ln(x)) = x
3 exp(x + y) = exp (x) + exp (y)
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where, using the summation and composite rules
of derivatives4

d

dt
C(t) exp

(
−
(
1+ λ2ω2

)

τm

t

)

= C′(t) exp

(
−
(
1+ λ2ω2

)

τm

t

)

−C(t)

(
1+ λ2ω2

)

τm

× exp

(
−
(
1+ λ2ω2

)

τm

t

)

Canceling out the opposite terms (i.e., same
absolute value but different signs),

C′(t) exp

(
−
(
1+ λ2ω2

)

τm

t

)
= rm

τm

Î ⇐⇒

C′(t) = rmÎ

τm

exp

((
1+ λ2ω2

)

τm

t

)
�⇒

C(t) =
t∫

0

rmÎ

τm

exp

((
1+ λ2ω2

)

τm

t

)
dt

+C2, C2 ∈ R

Plug this into Eq. (A.3)

V̂ (ω, t) =
⎛

⎝
t∫

0

rmÎ

τm

exp

((
1+ λ2ω2

)

τm

s

)
ds + C2

⎞

⎠

exp

(
−
(
1+ λ2ω2

)

τm

t

)

At t = 0, V̂ (ω, 0) = V̂0 (ω)

C2 = V̂0 (ω)

V̂ (ω, t) =
⎛

⎝
t∫

0

rmÎ

τm

exp

((
1+ λ2ω2

)

τm

s

)
ds

+ V̂0 (ω)

⎞

⎠ exp
(
− (1+λ2ω2)

τm
t
)

4 d
dx (f (x) + g(x)) = d

dx f (x)+ d
dx g(x), d

dx (exp (αx)) =
α exp (αx)

V̂ (ω, t) = V̂0 (ω) exp

(
−
(
1+ λ2ω2

)

τm

t

)

+ rm

τm

t∫

0

Î (ω, s)

× exp

((
1+ λ2ω2

)

τm

(t − s)

)
ds

Thus, we have obtained the solution of the
cable equation for any injected current. The next
step is to return in space domain applying the
inverse Fourier transformation and using the in-
tegral summation property5

V (x, t)

= 1

2π

∞∫

−∞
V̂0 (ω) exp

(
−1+ λ2ω2

τm

t

)

× exp (iωt) dω + 1

2π

∞∫

−∞

⎛

⎝ rm

τm

t∫

0

Î (ω, s)

× exp

(
−1+ λ2ω2

τm

(t − s)

)
ds

)

× exp (iωx) dω

Thus, the complete solution of the linear cable
equation is

V (x, t)

= 1

2π

∞∫

−∞
V̂0 (ω) exp

(
−1+ λ2ω2

τm

t

)

× exp (iωt) dω + 1

2π

rm

τm

t∫

0

∞∫

−∞
Î (ω, s)

× exp

(
−1+ λ2ω2

τm

(t − s)

)

× exp (iωx) dωds

Let

J1 = 1

2π

∞∫

−∞
V̂0 (ω) exp

(
−1+ λ2ω2

τm

t

)

× exp (iωx) dω

5
∫
(f (x) + g(x))dx = ∫

f (x)dx + ∫
g(x)dx
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and

J2 = 1

2π

rm

τm

t∫

0

∞∫

−∞
Î (ω, s)

× exp

(
−1+ λ2ω2

τm

(t − s)

)

× exp (iωx) dωds

First, we solve J1

J1 = 1
2π

∞∫
−∞

V̂0 (ω) exp
(
− 1+λ2ω2

τm
t
)

× exp (iωx) dω ⇐⇒

J1 = 1

2π

∞∫

−∞
V̂0 (ω)

× exp

(
−1+ λ2ω2

τm

t + iωx

)
dω ⇐⇒

J1 = 1

2π

∞∫

−∞
exp

(
− t

τm

)

× exp

(
− t

τm

λ2ω2

)
V̂0 (ω)

× exp (iωx) dω

This is the inverse Fourier transform of a mul-
tiplication. Here, we will use the convolution
property.6

For any arbitrary functions, f (x, t) and h(x, t),
according to the convolution property

F {f (x, t) ∗ h (x, t)} = F (ω, t) H (ω, t)

where F (ω, t) = exp
(
− t

τm

)
exp

(
− t

τm
λ2ω2

)

and H (ω, t) = V̂0 (ω)

By definition,

h (x, t) = V0(x)

6 f (x, t) ∗ g (x, t)
def=

∞∫
−∞

f (x − ζ, t) g (ζ ) dζ

Thus, we have to find the inverse Fourier trans-
form of f (x, t)

f (x, t) = 1

2π

∞∫

−∞
exp

(
− t

τm

)
exp

(
− t

τm

λ2ω2

)

× exp (iωx) dω

The first exponential does not depend on ω,
thus, it can go outside of the integral, and com-
pleting the square over ω inside the second expo-
nential:7

− t

τm

λ2ω2 + ixω = − t

τm

λ2

⎛

⎝ω + (ix)2

2
(
− t

τm
λ2
)

⎞

⎠
2

− (ix)2

4
(
− t

τm
λ2

) == − t

τm

λ2

⎛

⎝ω − x2

2
(
− t

τm
λ2

)

⎞

⎠
2

+ x2

4
(
− t

τm
λ2

)

Thus,

f (x, t) = exp

(
− t

τm

)
exp

⎛

⎝− x2

4
(

t
τm

λ2
)

⎞

⎠ 1

2π

×
∞∫

−∞
exp

⎛

⎜⎝− t

τm

λ2

⎛

⎝ω + x2

2
(

t
τm

λ2
)

⎞

⎠
2
⎞

⎟⎠ dω

Let

J3 = 1

2π

∞∫

−∞
exp

⎛

⎜⎝− t

τm

λ2

⎛

⎝ω + x2

2
(

t
τm

λ2
)

⎞

⎠
2
⎞

⎟⎠dω

Let ψ = ω + x2

2
(

t
τm

λ2
) �⇒ dψ = dω

J3 = 1

2π

∞∫

−∞
exp

(
− t

τm

λ2ψ2

)
dω

7 αx2 + βx + γ = α
(
x + β

2a

)2
γ − β2

4a
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Let ξ =
√

tλ2

τm
ψ �⇒ dξ =

√
tλ2

τm
dψ �⇒

dψ =
√

τm

tλ2 dξ

J3 = 1

2π

√
τm

tλ2

∞∫

−∞
exp

(−ξ2) dξ

This integral is the famous Gaussian integral
and is equal to

√
π , i.e.

J3 = 1

2π

√
τm

tλ2

√
π ⇐⇒ J3 =

√
τm

4πλ2t

Therefore,

f (x, t) = exp

(
− t

τm

)
exp

⎛

⎝− x2

4
(

t
τm

λ2
)

⎞

⎠

×
√

τm

4πλ2t
⇐⇒

f (x, t) =
√

1

4πλ2 t
τm

exp

(
− t

τm

)

× exp

(
− x2

4λ2 t
τm

)

Taking all together,

F {f (x, t) ∗ h (x, t)} = F (ω, t) H (ω, t)

⇐⇒ f (x, t) ∗ h (x, t)

= F−1 {F (ω, t) H (ω, t)}

f (x, t) ∗ h (x, t)
def=

∞∫

−∞
f (x − ζ, t) h (ζ, t) dζ

J1 =
∞∫

−∞
f (x − ζ, t) V0(x)dζ

For the second term, we have the integral

J2 =
∞∫

−∞
exp

(
−1+ λ2ω2

τm

(t − s)

)
Î (ω, s)

× exp (iωx) dω =
∞∫

−∞
F (ω, t − s) Î (ω, s)

× exp (iωx) dω

where, as before,

F (ω, t) = exp

(
− t

τm

)
exp

(
− t

τm

λ2ω2

)

Thus,

J2 =
∞∫

−∞
f (x − ζ, t − s) I (ζ, t − s) dζ

The complete solution of the linear cable equa-
tion is to any current injection, Iinj(x, t):

V (x, t) =
∞∫

−∞
f (x − ζ, t) V0(x)dζ

+ rm

τm

t∫

0

∞∫

−∞
f (x − ζ, t − s) Iinj

× (ζ, t − s) dζds

where

f (x, t) =
√

1

4πλ2 t
τm

exp

(
− t

τm

)

× exp

(
− x2

4λ2 t
τm

)

A.1.2 A.2 Solution to a Constant,
Localized Current

The solution of the linear cable equation, when
a constant current is applied at x = 0, i.e.,
I(x, t) = I0δ(x)/πd, and the initial voltage is zero,
V0(x) = 0

V (x, t) = rm

τmπd

t∫

0

∞∫

−∞
f (x − ζ, t − s)

×I0 (ζ, t − s) dζds ⇐⇒

V (x, t) = rm

τmπd

t∫

0

∞∫

−∞
f (x − ζ, t − s)

×I0δ (ζ ) dζds
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Convolution of any function with the delta
function returns the function itself, thus:

V (x, t) = rmI0

τmπd

t∫

0

f (x, t − s) ds ⇐⇒

V (x, t) = rmI0

τmπd

t∫

0

√
1

4πλ2 t−s
τm

exp

(
− t − s

τm

)

× exp

(
− x2

4λ2 t−s
τm

)
ds

Let φ = t − s �⇒ dφ = − ds, and absorb the
minus by inverting the integral limits

V (x, t) = rmI0

τmπd

0∫

t

−
√

1

4πλ2 φ

τm

exp

(
− φ

τm

)

× exp

(
− x2

4λ2 φ

τm

)
dφ ⇐⇒

V (x, t) = rmI0

τmπd

t∫

0

1√
4πλ2 φ

τm

exp

(
− φ

τm

)

× exp

(
− x2

4λ2 φ

τm

)
dφ

Let T = φ

τm
�⇒ dT = 1

τm
dφ

V (x, t) = rmI0

τmπd
√
4πλ2

t/τm∫

0

1√
T

exp (−T )

× exp

(
− x2

4λ2T

)
τmdT ⇐⇒

V (x, t) = rmI0

πd
√
4πλ2

t/τm∫

0

1√
T

exp (−T )

× exp

(
− x2

4λ2T

)
dT

To solve this integral, we will use the Laplace
transform because its properties involve integrals
of this form.

The Laplace transform is defined as

f (t)
L→ F(s), F (s) =

∞∫

0

f (t) exp (−st) dt

F (s)
L−1→ f (t), f (t) = 1

2πi

∞∫

−∞
F(s) exp(st)ds

Using the time-domain integration Laplace
transform property, i.e.

if f (t)
L→ F(s), then L

⎧
⎨

⎩

t∫

0

f (z)dz

⎫
⎬

⎭ = 1

s
F (s)

Let f (T ) = 1√
T
exp

(
−T − (

x
2λ

)2 1
T

)

L {f (T )} = F(s) =
+∞∫

0

1√
T

exp (−T − b/T )

× exp (−sT ) dT , b

=
( x

2λ

)2
thus b ≥ 0

F(s) =
+∞∫

0

1√
T

exp (−T − b/T − sT ) dT ⇐⇒

F(s) =
+∞∫

0

1√
T

exp (− (s + 1) T − b/T ) dT

Let u = √
T �⇒ du = 1

2
dT√

T
, u1 = 0, u2 =

∞

F(s) =
+∞∫

0

2 exp
(− (s + 1) u2 − b/u2

)
du

Wecomplete the square inside the exponential,
i.e.

− (s + 1) u2 − b

u2
= −

(√
s + 1u −

√
b

u

)2

−2
√

b (s + 1)
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Thus,

F(s) = 2

+∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2

−2
√

b (s + 1)
)

du ⇐⇒

F(s) = 2

+∞∫

0

exp
(
−2

√
b (s + 1)

)

× exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠ du ⇐⇒

F(s) = 2 exp
(
−2

√
b (s + 1)

)+∞∫

0

× exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠ du

Let

J1 =
+∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠ du

(A.4)

Also, let k =
√

b
s+1

1
u

�⇒ u =
√

b
s+1

1
k
�⇒

du = −
√

b
s+1

1
k2

dk, k1 = ∞, k2 = 0

J1 = −
0∫

∞
exp

⎛

⎝−
(√

b

k
−√

s + 1k

)2
⎞

⎠

×
√

b

s + 1

1

k2
dk ⇐⇒

J1 =
√

b

s + 1

∞∫

0

× exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠ 1

u2
du

(A.5)

Summing Eqs. (A.4) and (A.5)

2J1 =
+∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠ du

+
√

b

s + 1

∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠

× 1

u2
du ⇐⇒

2J1 =
+∞∫

0

⎛

⎝exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠

+
√

b

s + 1
exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠

× 1

u2

)
du ⇐⇒

2J1 =
+∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠

×
(
1+

√
b

s + 1

1

u2

)
du

Multiplying both sides with
√

s + 1

2
√

s + 1J1 =
+∞∫

0

exp

⎛

⎝−
(√

s + 1u −
√

b

u

)2
⎞

⎠

×
(√

s + 1+ √
b
1

u2

)
du ⇐⇒

J1 = 1

2
√

s + 1

+∞∫

0

exp

⎛

⎝−
(√

s + 1u−
√

b

u

)2
⎞

⎠

×
(√

s + 1+√
b
1

u2

)
du

Let w = √
s + 1u−

√
b

u
�⇒ dw = √

s + 1+√
b

u2 , w1 = −∞, w2 = ∞

J1 = 1

2
√

s + 1

+∞∫

−∞
exp

(−w2
)
dw

J1 =
√

π

2
√

s + 1
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Therefore,

F(s) = 2 exp
(
−2

√
b (s + 1)

) √
π

2
√

s + 1
⇐⇒

F(s) = exp
(
−2

√
b (s + 1)

) √
π√

s + 1

Thus,

V (x, T ) = rmI0√
4πλ2

L−1

{
1

s
F (s)

}

Let G(s) = 1
s
F (s)

G(s) = 1

2

√
π

2s√
s + 1

exp
(
−2

√
b (s + 1)

)

Using the identity

2

s
√

s + 1
= 1

(s + 1) −√
s + 1

− 1

(s + 1) +√
s + 1

Another important property of the Laplace
transform is the shift in frequency domain

if f (T )
L→ F(s), then exp (εT )

f (T )
L→ F (s − ε)

Here, ε = − 1
In addition, from Bateman (1954), page 261,

Table 16, we have the inverse Laplace of a func-
tion

L−1

{
1

s + γ
√

s
exp

(−η
√

s
)}

= exp
(
ηγ + γ 2T

)
erfc

(
1

2
ηT − 1

2 + γ T
1
2

)

Let

H(s) = 1

2

√
π exp

(
−

(
2
√

b
)√

s
)

×
(

1

s − √
s
− 1

s + √
s

)
, H (s + 1)

= G(s), thus g(T ) = exp (−T ) h(T )

H(s) = 1

2

√
π
(
−

(
2
√

b
)√

s
)(

1

s − √
s

)

−1

2

√
π exp

(
−2

√
b
)√

s
1

s + √
s

In our case, γ = −1, η = 2
√

b, for the first
term, and γ = 1, η = 2

√
b for the second. Due to

the linearity property of the Laplace transform,8

h(T ) = 1

2

√
π

[
exp

(
−2

√
b + T

)

× erfc
(√

bT − 1
2 − T

1
2

)

− exp
(
2
√

b + T
)

× erfc
(√

bT − 1
2 + T

1
2

)]

Thus,

g(T ) = exp (−T )
1

2

√
π

[
exp

(
−2

√
b + T

)

× erfc
(√

bT − 1
2 − T

1
2

)

− exp
(
2
√

b + T
)

× erfc
(√

bT − 1
2 + T

1
2

)]
⇐⇒

g(T ) = 1

2

√
π

[
exp

(
−2

√
b
)

× erfc
(√

bT − 1
2 − T

1
2

)
− exp

(
2
√

b
)

× erfc
(√

bT − 1
2 + T

1
2

)]

Thus, changing back the expressions for b and
T = t/τm

V (x, t) = rmI0

2πdλ
√

π

√
π

2

{
exp

(
−|x|

λ

)

× erfc

( |x|
2λ

√
τm

t
−

√
t

τm

)

− exp

( |x|
λ

)

× erfc

( |x|
2λ

√
τm

t
+

√
t

τm

) }

8 c1f (t) + c2g(t)
L→ c1F(s) + c2G(s)
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V (x, t) = rmI0

4πdλ

{
exp

(
−|x|

λ

)

× erfc

( |x|
2λ

√
τm

t
−

√
t

τm

)

− exp

( |x|
λ

)

× erfc

( |x|
2λ

√
τm

t
+

√
t

τm

) }

Setting t −→ ∞, we obtain the steady-
state solution and using the erfc properties, i.e.
erfc(−∞) = 2, erfc (∞) = 0,

V (x,∞) ≡ V∞(x) = rmI0

2πdλ
exp

(
−|x|

λ

)
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3AUser’s Guide to Generalized
Integrate-and-Fire Models

Emerson F. Harkin, Jean-Claude Béïque, and Richard Naud

Abstract

The generalized integrate-and-fire (GIF)
neuron model accounts for some of the most
fundamental behaviours of neurons within a
compact and extensible mathematical frame-
work. Here, we introduce the main concepts
behind the design of the GIF model in terms
that will be familiar to electrophysiologists,
and show why its simple design makes this
model particularly well suited to mimicking
behaviours observed in experimental data.
Along the way, we will build an intuition
for how specific neuronal behaviours, such
as spike-frequency adaptation, or electrical
properties, such as ionic currents, can be
formulated mathematically and used to extend
integrate-and-fire models to overcome their
limitations. This chapter will provide readers
with no previous exposure to modelling a
clear understanding of the strengths and
limitations of GIF models, along with the
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mathematical intuitions required to digest
more detailed and technical treatments of this
topic.

Keywords

Single-neuron model · Generalized
integrate-and-fire model ·
Electrophysiology · Neuroscience ·
Optimization

3.1 Introduction to
Leaky-Integrate-and-Fire
Models

From an electrical perspective, a neuron is like a
rubber balloon in the process of being inflated.
The cell membrane of the neuron separates elec-
trically charged ions inside and outside the cell
just as the balloon separates molecules of air,
and there is a difference in the distribution of
charges (i.e., voltage) across the membrane of
a cell just as there is a difference in pressure
across the membrane of the balloon. Synaptic
inputs to the neuron alter the voltage across the
membrane just as adding or removing air from
the balloon alters the pressure difference. The
amount of air needed to appreciably change the
pressure inside the balloon depends on its size,
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just as the number of charges needed to change
the membrane voltage depends on the surface
area of the membrane. If the balloon is not tied
shut, the air inside will slowly leak out, just as
charges leak across the cell membrane. Finally,
if the difference in pressure across the rubber
membrane of the balloon becomes too great, the
balloon will pop, just as a neuron will fire an
action potential, also called a spike, if the voltage
exceeds a threshold. Once the balloon pops, the
process restarts with a new, uninflated balloon,
just as a neuron will reset to a lower voltage after
firing an action potential.

This rubber balloon neuron model captures
several of the most important electrical features

of neurons, but some important details related
to spiking behaviour are still missing. We will
see how these can be addressed in Sect. 3.2. For
now, however, we will focus on developing a
mathematical description of our rubber balloon
model that will serve as a foundation for the rest
of the chapter.

The leaky-integrate-and-fire (LIF) neuron
model first introduced by Stein (1965), rooted in
the work of Lapicque (1907) from over a century
ago, captures the same properties of neurons as
our rubber balloon analogy. The LIF models the
membrane voltage V (t) in terms of its rate of
change dV/dt and behaviour at spike threshold
VT as follows:

dV

dt
= 1

C

(−gl(V (t) − El) + Iext(t)
)
, V (t) < VT (3.1)

{
V (t + tref) ← Vreset
t ← t + tref

, V (t) ≥ VT , (3.2)

where gl represents the leakiness of the
membrane, which is equivalent to 1/Rm, where
Rm is the membrane resistance; El represents
its equilibrium voltage, also called the resting
membrane potential; Iext(t) represents external
inputs to the neuron; C is the membrane
capacitance, which reflects themembrane surface
area; and tref is the duration of the absolute
refractory period after a spike. According to
Eq. 3.1, the membrane voltage relaxes towards its
equilibriumEl in the absence of any input Iext(t).
This happens more quickly if the membrane is
very leaky (dV/dt increases with gl) or if the
voltage is far from equilibrium (dV/dt increases
with V (t)−El), andmore slowly if themembrane
surface area is very large (dV/dt decreases
with increasing C), consistent with our balloon
analogy. Whenever the voltage reaches VT , a
spike occurs instantaneously, like the popping of
a balloon, and the dynamics of Eq. 3.1 no longer
apply. Instead, Eq. 3.2 specifies that the voltage
should be reset to a lower value Vreset after a
short refractory period tref. Unlike in many other
neuron models, the membrane voltage during

the spike is not defined—for a LIF model, a
“spike” is not spike-shaped at all, and it has no
shape because the voltage is not defined. This
simplification takes advantage of the fact that the
shape of the action potential does not carry any
meaningful information.

Comparison of LIF and Hodgkin–Huxley
models

• The decision not to model the dy-
namics of the membrane voltage dur-
ing the action potential is one of the
most important conceptual differences
between LIF models, which have their
roots in the early twentieth century work
of Lapicque (1907), and the biophys-
ically realistic models first introduced
by Hodgkin and Huxley (1952) half a
century later.

Hodgkin and Huxley’s account of the
biological mechanisms of action poten-

(continued)



A User’s Guide to Generalized Integrate-and-Fire Models 71

Box 3.1 (continued)
tial generation in squid axon included a
model of membrane voltage dynamics
as a sum of voltage-dependent ionic cur-
rents

C
dV

dt
= INa(t) + IK(t) + Iext(t),

where INa(t) and IK(t) are the voltage-
dependent sodium and potassium cur-
rents, respectively. Unlike in Lapicque’s
LIF model, the membrane voltage in
Hodgkin and Huxley’s model is always
defined, including during the action po-
tential. This detailed and realistic ap-
proach to modelling the voltage dynam-
ics of neurons has been enormously in-
fluential, to the point that neuronmodels
that are based on detailed descriptions of
ionic currents are commonly referred to
as Hodgkin–Huxley-style models.

With the advent of more realistic and
detailed Hodgkin–Huxley models, are
simplified LIF models still of any use?
When comparing these two types of
models, it is important to keep in mind
that they were created for different pur-
poses. The original model of Hodgkin
and Huxley was designed to explain how
the interactions of two specific ionic cur-
rents give rise to voltage spikes with
a particular shape, which we call ac-
tion potentials. The original model of
Lapicque, on the other hand, was cre-
ated to describe how different electrical
stimuli impacted the rate of action po-
tential discharge in frog nervous tissue.
For Lapicque’s work, a description of
the shape of the action potential (and the
biophysical mechanisms responsible for
it) was not necessary, and LIF models
continue to be used in cases when the
relationship between electrical input and
the timing or rate of output spikes is of
primary interest.

(continued)

Box 3.1 (continued)
The negative consequences of omit-

ting necessary biological components
from a model are obvious, but there
are also more subtle drawbacks of in-
cluding unnecessary detail. More com-
plicated models are usually more diffi-
cult to design and constrain to mimic
specific neurons of interest and can be
liable to produce inaccurate predictions
as a result (for reasons we will touch on
in Sect. 3.3.1). Highly detailed models
also take more time to simulate simply
because more calculations are required
per time step.

To summarize, LIF and Hodgkin–
Huxley models each describe neurons
at different levels of detail because they
were created for different purposes, and
each style of model comes with its own
compromises.

The highly simplified LIF model provides an
intuitive account of some of the most basic elec-
trical features of neurons. In particular, the one-
to-one correspondence between model parame-
ters and fundamental properties such as resting
membrane potential and spike threshold makes
the LIF model straightforward to interpret. In the
coming sections, we will first discuss how the
LIF model can be extended to account for spike-
frequency adaptation and stochastic firing in a
similarly intuitive way and then show how these
intuitive definitions lend themselves particularly
well to being fitted to data.

3.2 Generalizing the
Leaky-Integrate-and-Fire
Model

3.2.1 Spike-Triggered Adaptation

In response to a step stimulus, many neurons
initially fire action potentials at a high rate
that then decreases gradually to a lower rate.
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This phenomenon, known as spike-frequency
adaptation (SFA), plays many important roles in
neural systems such as enhancing the detection
of weak stimuli and computing the rate of change
of an input (Lundstrom et al., 2008). SFA arises
from the effects of spike-triggered adaptation
currents, which tend to push membrane voltage
away from spike threshold, as well as the
inactivation of the biophysical mechanisms
that cause spiking, resulting in an effective
change in the spike threshold. In this section,
we will show how to extend the LIF model to
incorporate these ideas in an explicit and intuitive
way.

On a conceptual level, SFA mechanisms can
be divided into two categories: mechanisms
that move the membrane voltage away from
threshold, such as adaptation currents, and
mechanisms that move the threshold away from
the membrane voltage, such as inactivation of
spiking mechanisms. We can capture these two
categories mathematically in terms of a pair of
functions η(x) (adaptation current) and γ (x)

(threshold movement) for x > 0, where x is
the time since a spike. In general, adaptation
currents and threshold changes are large just
after a spike but fade away over time. In order
to give η(x) and γ (x) these properties, we
can define them mathematically using decaying
exponentials e−x/τ , which fade away to zero as
x increases at a rate dictated by the timescale
τ . Depending on the cell type and even the
individual neuron, these adaptation mechanisms
may fade away quickly, slowly, or even over
multiple timescales. We can accommodate this
variability by implementing η(x) and γ (x) as
weighted sums of exponentials with different
timescales τ

f (x) ≡
∑

i

w
(f )

i e−x/τ
(f )

i , τ
(f )

i > 0, x > 0,

(3.3)

where the w
(f )

i are the weights and f corre-
sponds to η or γ as appropriate. If a particular
timescale τ

(f )

i is not found in a given neuron,

its associated weight w
(f )

i can simply be set to
zero to remove its contribution to the overall
adaptation function f (x). To allow the effects of
adaptation to build up over multiple spikes, we
can define H(t) and G(t) as the sums of η and
γ over the set of all past spikes {s ∈ S; s <

t}

H(t) ≡
∑

{s∈S;s<t}
η (t − s) (3.4)

G(t) ≡
∑

{s∈S;s<t}
γ (t − s) , (3.5)

where S is the set of all spike times, s is the
time of a specific spike, and t is the current time.
This means that if several spikes occur in quick
succession, the adaptation mechanisms H(t) and
G(t) will be engaged more strongly than if fewer
spikes had occurred. Additionally, since both η

and γ go to zero as the time since a spike t − s

increases, past spikes contribute less and less to
the adaptation functions H(t) and G(t) as time
goes on.

The LIF neuron model presented in the previ-
ous section does not account for spike-frequency
adaptation, but this is easily remedied by incorpo-
rating an adaptation current and spike-triggered
threshold movement into the model via H(t) and
G(t). In order to do that, we must first rede-
fine the fixed spike threshold VT to be a func-
tion VT (t) that returns the spike threshold at a
specific time t , taking the effects of previous
spikes into account via the threshold movement
G(t)

VT (t) ≡ V ∗
T + G(t),

where V ∗
T is the spike threshold after all

adaptation has faded away. This equation shows
why we call G(t) the threshold movement: it
gives the amount that the spike threshold has
moved as a result of adaptation.

Next, we must incorporate the adaptation cur-
rentH(t) into the subthreshold dynamics given in
Eq. 3.1 so that it can influence the subthreshold
voltage. Simply subtracting H(t) from the other
currents in Eq. 3.1 completes the definition of our
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LIF model with adaptation

dV

dt
= 1

C

(−gl(V (t) − El) − H(t) + Iext(t)
)
, V (t) < VT (t) (3.6)

{
V (t + tref) ← Vreset
t ← t + tref,

V (t) ≥ VT (t). (3.7)

Notice that Eq. 3.6 tells us that when the adapta-
tion currentH(t) increases after a spike, it is sub-
tracted away from the input current Iext(t). This
means that the adaptation current can effectively
reduce the strength of an input stimulus. Since the
LIF fires less rapidly in response toweaker inputs,
the adaptation current H(t) causes the firing rate
evoked by constant stimulus to drop off after the
first few spikes, consistent with the SFA effect we
seek.

3.2.2 Stochasticity

The LIF model presented here fires a spike
instantaneously when the voltage exceeds a

threshold VT (t), but in real neurons this process
is less precise (Mainen and Sejnowski, 1995). In
general, neurons are more likely to spike when
their membrane voltage exceeds a threshold, but
it is also possible for spikes to occur when the
voltage is below threshold or vice versa. It can
therefore be helpful to think of the relationship
between voltage and spiking in terms of a
probability that depends on the current voltage
and threshold, rather than as a hard cut-off. We
can express this idea mathematically in terms of
a spike probability function

ρ

(
V (t) − VT (t)

σ

)
= Pr[spike between time t and t + �t | V (t) − VT (t)], (3.8)

where Pr[x | y] denotes the probability of x

given y, σ is a scaling factor that sets the degree
of stochasticity, and �t is a small time interval.
To capture our intuition that spikes are more

likely when V (t) is above VT (t), ρ
(

V (t)−VT (t)

σ

)

is usually a sigmoidal function that is close to 1
when V (t) − VT (t) > 0 and close to 0 when
V (t) − VT (t) < 0, such as the one shown
in Fig. 3.1. The scaling factor σ allows us to
control how quickly the probability of spiking
increases when the voltage is above threshold. In
more intuitive terms, σ sets the threshold sharp-
ness.

Incorporating this stochastic spiking be-
haviour into the LIF model with adaptation
will complete our definition of the generalized
integrate-and-fire model (GIF). To accomplish
this, we simply need to invoke the spiking rule

given in Eq. 3.7 probabilistically according to the
spike probability function given in Eq. 3.8 rather
than deterministically whenever the voltage
exceeds a given threshold. The pseudocode in
Algorithm 1 sketches how this can be done, and
an example of a model simulated this way is
shown in Fig. 3.2.

3.2.3 Simplifications,
Generalizations, and
Limitations

The generalized integrate-and-firemodel we have
presented here accounts for more features of
neuronal excitability than the leaky-integrate-
and-fire model from Sect. 3.1, but it is still a
highly simplified model. Compared with the LIF
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Fig. 3.1 Typical shape of the spike probability function
given in Eq. 3.8. The vertical axis shows the probabil-
ity of spiking within a small time window [t, t + �t),
and the horizontal axis shows the distance between the
membrane voltage V (t) and the spike threshold VT (t).
Notice that increasing the stochasticity scaling factor σ

increases the probability of spiking below threshold. The

spike probability function shown here is ρ
(

V (t)−VT (t)
σ

)
=

exp
[
−e

V (t)−VT (t)

σ �t
]
, which is used by the GIF model as

previously described (Gerstner et al., 2014; Harkin et al.,
2020; Mensi et al., 2016, 2012; Pozzorini et al., 2015)

Fig. 3.2 The generalized integrate-and-firemodel. A cur-
rent input I (t) produces a subthreshold voltageV (t) that is
translated into a probability of emitting a spike Pr[spike].
Spikes are emitted stochastically and cause the voltage to
reset to a lower value after a short delay, as in the leaky-
integrate-and-fire model. Spike-frequency adaptation is
caused by the spike-triggered adaptation current H(t) and
threshold movement G(t). Notice that spikes introduce
discontinuities into the spike probability and adaptation
mechanisms because the dynamics of the GIF model dur-
ing a spike are not defined. There are also discontinuities in
the membrane voltage V (t) for the same reason; however,
to improve clarity, here we have set the voltage to an
arbitrary high value during each spike. The dashed grey
lines in G(t) and H(t) indicate zero

Algorithm 1 Simulation procedure for the GIF
model
Require: Iext(t) � Input current.
Require: C, gl, El, η, γ, V ∗

T , σ, ρ � Model components.
Require: V0,�t, T � Initial voltage, simulation
timestep, and duration of simulation.

Require: ξ(t) � Random number between 0 and 1
sampled at time t .

� Set initial condition.
t ← 0
V (t) ← V0
S ← {∅}
while t < T do

G(t) ← ∑
{s∈S;s<t} γ (t − s) � Compute threshold

movement from Eq. 3.5.
VT (t) ← V ∗

T + G(t) � Compute spike threshold
with adaptation.

if ξ(t) ≤ ρ
(

V (t)−VT (t)
σ

)
then

S ← S ∪ t � Add t to the set of spike times.
� Emit a spike according to Eq. 3.7.

V (t + tref) ← Vreset
t ← t + tref

else
H(t) ← ∑

{s∈S;s<t} η(t − s) � Compute
adaptation current from Eq. 3.4.

� Integrate membrane dynamics from Eq. 3.6
�V ←

�t
C

(−gl(V (t) − El) − H(t) + Iext(t)
)

V (t + �t) ← V (t) + �V

t ← t + �t � Increment time.
return V (t),S for 0 ≤ t < T

model, the GIF model accounts for two important
phenomena related to spiking: spike-triggered
adaptation and a stochastic threshold. However,
the GIF model does not account for subthreshold
adaptation that is not related to spiking, nor does
it account for the effects of the mechanisms that
give rise to stochastic spiking on the subthreshold
voltage.

Subthreshold adaptation can be produced by
voltage-activated currents that oppose the very
changes in voltage that cause them to activate,
creating the appearance of a sag in the volt-
age response to step inputs. Prominent exam-
ples include the hyperpolarization-activated cur-
rent Ih and subthreshold voltage-activated potas-
sium currents. From a functional perspective, the
main effect of these currents is to filter out inputs
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that produce slow changes in voltage while letting
through inputs that cause the voltage to change
quickly. In real neurons, this frequency filtering
effect is specific to the range of subthreshold
voltages in which the current activates—if an
input current produces a change in voltage that
does not activate the current causing subthreshold
adaptation, no adaptation is produced. In GIF
models, subthreshold adaptation is most easily
accounted for by adding a slowly activating leak
current. This approach is mathematically sim-
ple to implement but disregards potential voltage
specificity of subthreshold adaptation. An alter-
native approach is to augment the GIFmodel with
explicit Hodgkin–Huxley models of the currents
that give rise to adaptation. We will discuss how
to augment GIF models with Hodgkin–Huxley
components in Sect. 3.3.4.

Stochastic firing in real neurons arises partly
from the fast but not instantaneous dynamics of
the sodium channels that mediate spiking. In real
neurons, sodium channels begin to open when
the membrane potential approaches threshold.
This pushes the membrane potential even closer
to threshold, creating a positive feedback loop
between membrane potential and sodium channel
activation. Eventually, this process passes a
threshold or point of no return and a spike is
produced. In the GIF model, this soft positive
feedback process is replaced by a probability of
spiking. When the positive feedback process is
strong enough to very rapidly pass the point of no
return (i.e., when the threshold is very sharp),
the probabilistic threshold of the GIF model
can be a good approximation. However, if this
positive feedback process is initially very weak,
the activity of sodium channels can impact the
subthreshold voltage dynamics without leading
to spiking. In this case, the probabilistic threshold
of the GIF model is a worse approximation
because it does not capture the effects of spiking
mechanisms on the subthreshold dynamics.

The GIF model differs from real neurons in
one additional important respect: real neurons
exhibit a complex morphological structure, but
the GIF model represents a voltage at a single
point. The GIF model is most accurate when only

inputs and outputs at the level of the cell body
are considered. Fortunately, an electrode located
at the cell body is often both the main source of
input and instrument for measuring output during
in vitro electrophysiological experiments. Unfor-
tunately, under physiological conditions, most of
the input to a neuron arrives via synapses located
on potentially electrically distant dendrites, and
the point-neuron simplification of the GIF model
may be less appropriate.

In sum, while the GIF model offers a simple
and intuitive description of many of the electrical
properties of neurons, it does not capture all of
the properties of neurons equally well. When
the subthreshold effects of ionic currents, spiking
mechanisms, or neuronal morphology are of pri-
mary interest, it is important to consider whether
the GIFmodel can be adapted to account for these
mechanisms to a satisfactory extent, or whether
an entirely different modelling framework should
be chosen.

3.3 Fitting the Generalized
Integrate-and-Fire Model

3.3.1 Finding Parameter Values:
Experiments vs. Optimization

So far we have presented the GIF model as an
intuitive single-neuronmodel formulated in terms
of interpretable input and output variables, which
include input current, voltage, and spike times,
and parameters, such as membrane leakiness and
spike threshold. Next, we turn to the question of
how to choose appropriate values for the param-
eters. In practice, there are two main approaches:
carry out a series of detailed electrophysiological
experiments to measure each parameter in the
model, for example, by applying current steps of
various amplitudes to measure the action poten-
tial threshold, or use mathematical optimization
techniques to find the parameter values that cause
the output of the model to mimic that of a real
neuron. Choosing between these two approaches
involves a trade-off between the interpretation of
model parameters and the accuracy of model pre-
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dictions. Following the experimental approach,
parameter values will have a precise and famil-
iar physiological interpretation, but the output of
the model might not mimic that of any particu-
lar neuron or cell type very closely. Following
the optimization-based approach, the parameter
values will represent effective quantities with a
potentially less precise physiological interpreta-
tion, but the output predicted by the model will
match that of a particular neuron as closely as
possible. For readers with a strong background
in experimental neuroscience, it may come as
a surprise that models constructed using experi-
mentally measured parameter values can produce
poor predictions in common cases. In this section,
we discuss why this happens and present an alter-
native optimization-based approach.

One situation in which models constructed
using experimentally measured parameter values
produce poor predictions arises when both of the
following conditions are met:

1. The true values of the parameters in the neuron
population of interest are correlated or are
otherwise not statistically independent.

2. It is not possible to experimentally determine
the values of all of the parameters in a single
neuron, or this data is not available even if it is
possible to collect.

This situation arises very often in practice. This
is partly because the first condition is surprisingly
easy to meet since it is sufficient for only two of
the model parameters to be related (resting mem-
brane potential and action potential threshold, for
instance). The second condition is also usually
met because it is often impractical to measure
each of the model parameters in every neuron,
even if it is technically possible. If both conditions
are met, the distribution of the experimentally
determined model parameters will not match the
true distribution in the population. Since the be-
haviour of the GIF model is controlled by its
parameters, this can easily lead to models that
exhibit unexpected behaviours that are not found
in the population of neurons they are intended to
mimic.

To see why, consider a hypothetical popula-
tion of neurons with a similar degree of spike-
frequency adaptation. Suppose that this adapta-
tion is caused by a variable mixture of an adap-
tation current and moving threshold, but that the
sizes of the adaptation current andmoving thresh-
old are anticorrelated such that the overall degree
of spike-frequency adaptation is roughly con-
stant. If it is not possible to measure both the
adaptation current and the moving threshold in
the same neurons, a researcher might observe
that both the adaptation and the moving threshold
range from small to large, but not realize that
they are anticorrelated. This might lead them to
create a set of models that includes neurons with
both a large moving threshold and adaptation
current, even though no such neurons exist in the
population. As a result, the models might exhibit
more variable spike-frequency adaptation than
the neuron population (Balachandar and Prescott,
2018). Even if the researcher decides to create
a single model of an “average” neuron by set-
ting both the adaptation current and the moving
threshold to a moderate amplitude, the degree of
spike-frequency adaptation in the model might
be very different from any of the neurons in
the population. This is because the non-linear
interactions between the adaptation current and
the moving threshold cause the total amount of
spike-frequency adaptation to be different from
the sum of its parts. Similarly, the average spike-
frequency adaptation in a population can be dif-
ferent from the averages of its parts. This phe-
nomenon is sometimes called the failure of av-
eraging (Golowasch et al., 2002).

In an alternative approach to parameter esti-
mation, an experimenter records the voltage re-
sponse of a neuron to an input current delivered
via an intracellular electrode, and the output of
the model in response to the same input is forced
to match that of the neuron as closely as possible
(Pozzorini et al., 2015). This approach involves
defining a mathematical measure of similarity
between the output of the model and the observed
behaviour of a neuron and finding a set of pa-
rameter values that maximize this measure. In
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some cases, it is possible to find the similarity-
maximizing parameter values directly by taking
advantage of mathematical properties of the sim-
ilarity measure. However, it is often necessary
to simply take an initial guess at the values of
the model parameters and then adjust them re-
peatedly in the direction of increasing similarity
until a maximum level of similarity is reached, a
process known as gradient ascent. Whether they
are obtained via gradient ascent or found directly,
the similarity-maximizing values are referred to
as the optimal values for the corresponding pa-
rameters, and the process of finding them is called
optimization or fitting.

The optimization process can be understood
more intuitively by visualizing it in terms of a
similarity landscape. If we focus on only two of
the model parameters at a time, we can imagine
that the two parameters give the latitude and
longitude of a point on this landscape and that
the similarity defines the altitude of that point.
Following this analogy, points of maximal sim-

ilarity correspond to the tops of hills in this land-
scape. We can imagine gradient ascent as the
process of starting somewhere on the landscape
and proceeding uphill. In the machine learning
literature, it is more common to define a mathe-
matical measure of dissimilarity and use gradient

descent to find optimal points lying at the bot-
toms of valleys; for the sake of simplicity, we
will focus on similarity/gradient ascent for now.
Depending on the model and similarity measure,
there can be more than one hill in the similarity
landscape.1 When this is the case, finding the

1 In this case, the points at the tops of hills are higher
than all points within a small neighbourhood, but not
necessarily all points in the landscape. After all, there
might be taller hills elsewhere. Points that are only optimal
within a small neighbourhood are called locally optimal,
and the point at the top of the tallest hill is called globally
optimal.

point at the top of the tallest hill becomes quite
difficult becausewe cannot reach it by proceeding
uphill from any starting point. (Fortunately, in the
case of the GIF model, there is only one hill,
and finding the parameter values that produce
the highest possible similarity is not difficult.2)
This process works the same way when there
are more than two parameters, but visualizing a
landscape with additional dimensions stretches
the imagination.

The main advantages of this optimization-
based approach over experimentally determining
parameter values are that optimization is less
labour-intensive and yields models that produce
more accurate predictions. On the other hand,
a potential drawback of this approach is that the
parameter values obtained via optimization do not
necessarily correspond exactly to experimental
measurements. To see why, consider a neuron
that is exactly like the GIF model except
that it has an additional voltage-dependent
conductance

2 Although the measures of similarity and dissimilarity
used by the GIF model will be presented briefly in
Sect. 3.3.3, the reasons that these measures are associated
with landscapes that have a particular structure are beyond
the scope of this chapter. For a thorough introduction, see
(Gerstner et al., 2014; Paninski et al., 2004).

dV

dt
= 1

C
(−gl(V (t) − El) − gv(V )(V (t) − El) − H(t) + I (t)) ,

where gv(V ) is the voltage-dependent con-
ductance. If a researcher were to fit the
GIF model to this neuron, the effect of the
voltage-dependent conductance would be
mixed into the leak conductance of the GIF
model

−gl(V (t) − El) − gv(V )(V (t) − El) = −(gl + gv(V ))(V (t) − El) �⇒ ĝl = gl + gv(V ),

where ĝl is the value obtained by fitting the
GIF model. Notice that not only is there a
mismatch between the fitted leak conductance
and the true leak conductance of the neuron,
ĝl �= gl , but, since gv(V ) depends on voltage
and ĝl = gl + gv(V ), the value obtained
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for ĝl depends on the voltage of the neuron!
This illustrates that unless the neuron to which
the GIF model is fitted is a GIF model,
the optimal parameter values should not be
interpreted as exact substitutes for experimentally
determined values. Instead, they should be
interpreted as effective values, in the sense that
they specify how much a particular variable
affects the output of the GIF model within the
context of a specific input and a set of model
components.

The mismatch between optimal model param-
eter values and experimental measurements is
hardly unique to the GIF model. In fact, it arises
to some extent in all models that are not ex-
act copies of the systems they are intended to
mimic. (Such a model would, of course, be of
very little use!) Model simplification involves
combining multiple components of a more com-
plex model into a smaller number of compo-
nents in a simpler model, often introducing ap-
proximations in the process. This might seem
to suggest that more accurate parameter values
could be obtained by fitting models with fewer
simplifications, but in practice this is not often
the case. Complex neuron models with detailed
representations of the elaborate morphology or
diverse ionic composition of real neurons are very
difficult to fit to data because these complexities
introduce many hills and valleys into the similar-
ity landscape, making the best parameter values
hard to find.

In this chapter, we will focus on an
optimization-based approach for determining
parameter values mainly because GIF models
constructed in this way yield more accurate
predictions of neural output. In addition, the
fact that all of the parameters in the GIF model
can be fitted simultaneously to small amounts
of data means that the optimized values of
those parameters provide a detailed window
into the effective properties of individual cells.
However, the reader should be aware that
GIF model parameter estimates obtained via
optimization come with important caveats: value
estimates may depend on the conditions under
which they were obtained (for example, the
voltage range, as discussed above) and the

extent to which the GIF model resembles the
neuron being fitted. In the coming sections,
we will show how each of these caveats can
be addressed.

3.3.2 Choosing an Input

Optimization-based methods for choosing GIF
model parameter values involvematching the out-
put of the GIF model to that of a real neuron for a
given input. How, then, to choose the input?More
importantly, why does the choice of input matter?
In Sect. 3.3.1, we saw that the parameter values
found via optimization can depend on the range of
voltages experienced by the neuron to which the
GIF model is fitted. Since the voltage of a neuron
depends on its input, the parameter values found
via optimization depend on the input as well. This
implies that the choice of input is important for
two reasons: first, the effective parameter values
found by fitting the GIF model are specific to
the input used during fitting; second, since the
predictions made by the GIF model depend on
the values of its parameters, the neuronal outputs
(i.e., voltage, spike times) predicted by the GIF
model are most accurate for the input used during
fitting.

Whether the GIF model is to be used to pre-
dict neuronal outputs or gain insights into the
effective properties of individual cells, both goals
are more easily accomplished when the input
used for fitting the GIF model is chosen ap-
propriately. Which input is most appropriate de-
pends on the research question at hand; each
researcher must ask themselves whether specific
types of input (e.g., synaptic vs. artificial), fre-
quency bands (e.g., θ oscillations), or voltage
ranges (e.g., close to action potential threshold)
are most relevant to their question. In practice,
however, noise is often used as input because the
fluctuations present in noise cover a wide range
of simpler inputs (slow rise, fast rise, rise-then-
fall, etc.). Ornstein–Uhlenbeck noise is a par-
ticularly popular choice because it approximates
the random fluctuations produced by the synaptic
bombardment neurons receive in vivo (Pozzorini
et al., 2015).
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Carefully selecting the input used to fit the GIF
model, or simply using noise, mitigates one of the
important caveats associated with GIF models;
namely, that parameter estimates—and, by asso-
ciation, model predictions—are somewhat spe-
cific to a given input. The degree of specificity can
be quantified by simply comparing the parameter
estimates or predictions on different subsets of
data collected from a given neuron (Pozzorini
et al., 2015). In the machine learning literature,
it is common to divide a dataset of independent
samples into a portion used for fitting a model
and a separate portion for testing the accuracy
of model predictions using new inputs, referred
to as the training and test datasets, respectively.
In the case of data used to fit the GIF model,
completely independent samples are difficult to
obtain due to the long-lasting effects of adapta-
tion mechanisms. In practice, nearly independent
samples of neuronal output are obtained by ap-
plying at least two distinct inputs to each neuron
to be fitted, each separated by an equilibration
period of several seconds. The data associated
with some of the inputs will be used for fitting,
while the rest is reserved for testing, effectively
dividing the experiment into separate training and
test phases. Since our goal is to evaluate the
accuracy of GIF model predictions on the test
input, the experimenter should attempt to ensure
that the training and test phases of the experiment
are as similar as possible apart from the choice
of input. For a detailed discussion of the best
practices for evaluating the accuracy of GIF mod-

els, see Pozzorini et al. (2015). For a more gen-
eral treatment of model selection and accuracy
estimation, see Hastie et al. (2009) and Kohavi
(1995).

3.3.3 Optimization

3.3.3.1 Quantifying Model Accuracy
All optimization techniques rely on a precise def-
inition of the similarity or dissimilarity between
the actual and desired outputs of a function. In the
case of the GIF model, this means we must define
how we will measure the similarity between the
output of the GIF model and that of a real neuron.
Because the GIF model is divided into two parts,
each with their own outputs and parameters, we
will in fact need to define two separate measures:
one for the subthreshold component of the model
and one for the stochastic spiking rule.

The subthreshold component of the GIFmodel
given in Eq. 3.6 defines the relationship between
an external input Iext(t) and the derivative of the

membrane voltage d̂V
dt

given the current voltage of
the neuron V (t) and the timing of spikes S. No-
tice that we have added a hatˆto the voltage deriva-
tive to indicate that this quantity is predicted by
the model rather than measured experimentally.
We take the subthreshold voltage V (t) and the set
of spike times S to be given because they are eas-
ily measured experimentally, and because doing
so allows us to isolate the effect of the parameters
of the subthreshold model ĝl , Êl , Ĉ, ŵ(η)

i , and τ̂
(η)
i

on its output d̂V
dt
. Because the voltage derivative is

a continuous signal, we can quantify the level of
dissimilarity between the predicted derivative d̂V

dt

and the experimentally measured derivative dV
dt

using the sum of squared errors

J (ĝl , Êl, Ĉ, ŵ
(η)

1 , . . . , ŵ
(η)

k , τ̂
(η)

1 , . . . , τ̂
(η)

k ; I (t),S, V (t)) =
∑

t /∈S ′

(
dV

dt
− d̂V

dt

)2

, (3.9)

where t /∈ S ′ is the time excluding a small
window around each spike. Notice that if we
choose values of the parameters ĝl , Êl , etc. that
cause the predicted voltage derivative d̂V

dt
to
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be far above or below the measured derivative
dV
dt
, this dissimilarity function will have a

large value. On the other hand, if we choose
parameter values that cause the output of the
model to match the measured derivative exactly,

the dissimilarity will be zero. Our objective
is therefore to find the parameter values that
minimize J (ĝl , . . . ; I (t),S, V (t)), which can be
expressed mathematically as

argmin
ĝl ,Êl ,Ĉ,ŵ

(η)
1 ,...,ŵ

(η)
k ,̂τ

(η)
1 ,...,̂τ

(η)
k

J
(
ĝl , Êl, Ĉ, ŵ

(η)

1 , . . . , ŵ
(η)

k , τ̂
(η)

1 , . . . , τ̂
(η)

k ; I (t),S, V (t)
)

,

where argminx f (x) finds the value of x that
minimizes f (x). This notation is common in the
machine learning literature, in which J (x) is re-
ferred to as an objective function or loss function.

The stochastic spiking rule given in Eq. 3.8
defines the probability of emitting a spike at a
particular time t given the subthreshold voltage
predicted by the model V̂ (t) and the timing of
previous spikes {s ∈ S; s < t} (indirectly
through Eq. 3.5). Our goal is therefore to find
values for the parameters in the spiking rule V̂ ∗

T ,
σ̂ , ŵ

(γ )

i , and τ̂
(γ )

i that maximize the probability
that the spikes emitted by the model occur at the

same time as spikes are observed experimentally

argmax
V̂ ∗

T ,̂σ ,ŵ
(γ )

1 ,...,ŵ
(γ )

k ,̂τ
(γ )

1 ,...,̂τ
(γ )

k

Pr
[Ŝ = S | V̂ (t)

]
,

where Ŝ and S are the model predicted and
experimentally observed sets of spike times,
respectively. More precisely, we would like
to maximize the joint probability that the
model emits a spike when a spike is observed
experimentally and that the model does not
emit a spike when a spike is not observed
experimentally

Pr
[Ŝ = S | V̂ (t)

] = Pr

[
⋂

t

{
t ∈ Ŝ if t ∈ S
t /∈ Ŝ if t /∈ S

∣∣∣∣∣V̂ (t)

]
.

Unfortunately, the probability that the model
emits a spike at a particular time t depends on
the timing of previous spikes {ŝ ∈ Ŝ; ŝ < t}
due to spike-frequency adaptation induced by
the moving threshold G(t) from Eq. 3.5. This
means that the probabilities that the model
does or does not emit a spike at any particular
set of times ti, tj , tk, . . . are not independent,

and consequently, we cannot write the previous
equation as a product of probabilities. However,
if we assume that all of the spikes up to a given
time t were emitted at the correct times {ŝ ∈
Ŝ; ŝ < t} ← {s ∈ S; s < t}, then we can take
advantage of the fact that the spiking probabilities
under this assumption are independent to rewrite
the previous equation using the product rule

Pr
[Ŝ = S | V̂ (t)

] =
∏

t

⎧
⎨

⎩
ρ
(

V̂ (t)−V̂T (t)

σ̂

)
if t ∈ S

1− ρ
(

V̂ (t)−V̂T (t)

σ̂

)
if t /∈ S,

(3.10)

where ρ
(

V̂ (t)−V̂T (t)

σ̂

)
gives the probability of

spiking at time t (see Eq. 3.8). This gives us a

concrete expression for the similarity between
the output of the spiking rule of the GIF model



A User’s Guide to Generalized Integrate-and-Fire Models 81

and the experimentally observed spike times that
we can maximize.

3.3.3.2 Solving for Parameter Values
Now that we have expressed the degree of agree-
ment between the outputs of the GIF model and
of a real neuron, we can turn to the question of
how to adjust the model parameters to minimize
the dissimilarity in Eq. 3.9 and maximize the
similarity in Eq. 3.10. If we fix the timescales
τ

(η)

1 , . . . , τ
(η)

k , τ
(γ )

1 , . . . , τ
(γ )

k , we can solve for the
remaining parameters to minimize this restricted
form of Eq. 3.9 directly and maximize the re-
stricted form of Eq. 3.10 by gradient ascent.

It is possible to solve for the optimal values of
the unknown parameters in Eq. 3.9 because the
term representing the subthreshold dynamics of

the GIF model d̂V
dt

can be rewritten as a linear
equation. The parameter values that minimize the
sum of squared errors of any linear model can
be found using ordinary least-squares regression.
Simple linear models include ŷ = m̂x + b̂ for a
single input variable x, or

ŷ = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂nxn

for n input variables. The β̂i are called regression
coefficients or model parameters. In a geometric
interpretation of this equation, β̂0 is called an in-
tercept and β̂1, . . . , β̂n are called slopes. It might
not be immediately obvious that the GIF model
is such a linear model, but if the subthreshold
dynamics from Eq. 3.6 are expanded and rear-
ranged, we obtain the following:

d̂V

dt
= ĝlÊl

Ĉ
+ −ĝl

Ĉ
V (t) + 1

Ĉ
Iext(t) + −ŵ

(η)

1

Ĉ

∑

{s∈S;s<t}
e

s−t

τ
(η)
1 + · · · + −ŵ

(η)

k

Ĉ

∑

{s∈S;s<t}
e

s−t

τ
(η)
k ,

which can be rewritten as

ŷ = β̂0 + β̂1V (t) + β̂2Iext(t) + β̂3

∑

{s∈S;s<t}
e

s−t

τ
(η)
1 + · · · + β̂k+2

∑

{s∈S;s<t}
e

s−t

τ
(η)
k , (3.11)

where Ĉ = 1/β̂2, ĝl = −β̂1/β̂2, and so on.
This is a linear model where the output ŷ = d̂V

dt

is the voltage derivative; the inputs xi are the
injected current Iext(t), the subthreshold voltage
V (t), and the exponential basis functions of
the adaptation current η(t − s) from Eq. 3.3
summated over past spikes {s ∈ S; s < t} (ob-
tained by decomposing H(t) from Eq. 3.4); and
the regression coefficients β̂i are the unknown
parameters. This linear form of the subthreshold
dynamics shows why it is necessary to fix the
values of τ

(η)

i : if these values were not fixed, the
dynamics could not be written in terms of known
input variables multiplied by unknown regression
coefficients, and it would not be possible to use
ordinary least- squares regression to estimate
all of the unknown parameters. Importantly, this

form also shows that more components can be
added to the subthreshold part of the GIF model
as long as they can be written in terms of a known
variable scaled by an unknown amount (this will
be discussed in detail in Sect. 3.3.4).

Unfortunately, there are no similar techniques
to find the values of the threshold parameters
that maximize Eq. 3.10 directly. Instead, we must
begin with a set of initial guesses for the val-
ues of these parameters and incrementally im-
prove them using gradient ascent. In practice,
the spike probability function used in the GIF
model, ρ( V̂ (t)−V̂T (t)

σ̂
) (see Eq. 3.8), guarantees that

gradient ascent will eventually lead us to the best
possible values for these parameters (Gerstner
et al., 2014; Paninski et al., 2004). Similarly to
the subthreshold optimization process discussed
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above, this guarantee is subject to certain con-
straints, and the simplest way to satisfy these
constraints is to require that the term inside the
spike probability function, V̂ (t)−V̂T (t)

σ̂
in this case,

can be written as a linear function of its param-
eters. By expanding V̂T (t) and rearranging, we
can rewrite the term inside the spike probability
function as

V̂ (t) − V̂T (t)

σ̂
= −V̂ ∗

T

σ̂
+ 1

σ̂
V̂ (t) + −ŵ

(γ )

1

σ̂

∑

{s∈S;s<t}
e

s−t

τ
(γ )
1 + · · · + −ŵ

(γ )

k

σ̂

∑

{s∈S;s<t}
e

s−t

τ
(γ )
k

= β̂0 + β̂1V̂ (t) + β̂2

∑

{s∈S;s<t}
e

s−t

τ
(γ )
1 + · · · + β̂k+2

∑

{s∈S;s<t}
e

s−t

τ
(γ )
k ,

where V̂ (t) is the voltage predicted by the
subthreshold component of the model. This
expression for V̂ (t)−V̂T (t)

σ̂
is of course linear with

respect to the unknown parameters. Just as with
the subthreshold component of the model, this
linear form illustrates that additional components
can be added to the spiking rule of the GIF model
as long as they can be written as a known variable
scaled by an unknown amount.

3.3.4 Extending the Subthreshold
Model

The GIF model, like all other neuron models,
is subject to the No Free Lunch theorem: no
single model is best for all cases (Wolpert and
Macready, 1997). The simplifications used to
construct the GIF model—for example, that
the subthreshold dynamics of neurons are not
voltage-dependent—might present problems for

particular cell types or research questions. In this
section, we will use the serotonin neurons of the
dorsal raphe nucleus as a case study to illustrate
how the GIF model can be extended to address
limitations of the subthreshold model.

The subthreshold electrical properties of
serotonin neurons are characterized by an
unusually large membrane resistance (equivalent
to a very small leak conductance) and a potent
voltage-dependent ionic current (Harkin et al.,
2020). These characteristics violate one of
the core assumptions of the GIF modelling
framework, namely, that the subthreshold
electrical properties of neurons are dominated
by a voltage-independent leak conductance.
Fortunately, it is possible to augment the
subthreshold dynamics of the GIF model with
a voltage-dependent component to account for
the specific characteristics of serotonin neurons.
To see how, we will start by adding a voltage-
dependent current IV (t) to the subthreshold
dynamics of the GIF model defined in Eq. 3.6

dV

dt
= 1

C

(−gl(V (t) − El) + IV (t) − H(t) + Iext(t)
)
. (3.12)

We can model IV (t) following the usual
Hodgkin–Huxley approach

IV (t) = gV m(t)h(t)(V (t) − EV ), (3.13)

where gV is the maximum conductance; m(t)

and h(t) are the activation and inactivation gating
functions, respectively; and EV is the reversal
potential of the current. The details of the gating
functions and reversal potential are not impor-

tant; suffice it to say that these can usually be
determined experimentally3 or controlled. With

3 The gating functions in Hodgkin–Huxley current models
are usually expressed in terms of an equilibrium gating
function, which is a sigmoidal function of voltage, and
one or more gating time constants, which may themselves
depend on voltage. Readers with a background in whole-
cell electrophysiology will likely already be familiar with
techniques for measuring these quantities. For a compre-
hensive treatment, see Hille (2001).
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this in mind, we can group together the known
terms from Eq. 3.13 into a new variable a(t) =
m(t)h(t)(V (t)−EV ). Substituting this back into
Eq. 3.13, we obtain a definition of the voltage-
dependent current in terms of a known variable
scaled by an unknown parameter

IV (t) = gV a(t). (3.14)

Recall from Sect. 3.3.3 that the unknown param-
eters in the subthreshold component of the GIF
model can be found easily as long as the sub-
threshold dynamics can be written in a linear
form; in other words, as a sum of known vari-
ables scaled by unknownparameters. Substituting
Eq. 3.14 back into Eq. 3.12 and expanding and
rearranging the terms, we obtain the following
linear form in analogy with Eq. 3.11

d̂V

dt
= ĝl Êl

Ĉ
+ −ĝl

Ĉ
V (t) + ĝV

Ĉ
a(t) + 1

Ĉ
Iext(t) + −ŵ

(η)

1

Ĉ

∑

{s∈S;s<t}
e

s−t

τ
(η)
1 + · · · + −ŵ

(η)

k

Ĉ

∑

{s∈S;s<t}
e

s−t

τ
(η)
k .

Because the subthreshold dynamics can still be
written in a linear form, the regression approach
to estimating the unknownmodel parameters pre-
sented in Sect. 3.3.3 can still be used, ultimately
yielding an augmented GIF model with a voltage-
dependent ionic current (see Fig. 3.3).4

Augmenting the GIF model with additional
components such as ionic currents can bring
the assumptions of the neuron model into closer
agreement with the known features of particular
neurons. This improves the interpretability of
the model by reducing the extent to which
multiple electrical features are mixed into a
single model term. Evidence of this mixing can
be seen in the estimated values of ĝl in serotonin
neurons using the GIF model and its augmented
counterpart presented above. Even though the
leak term used to estimate ĝl is the same in
both models, the values of ĝl in the augmented
model are closer to the corresponding true values
gl because the effects of the voltage-dependent
current are mixed into it to a lesser extent (see
Fig. 3.4). Of course, unless the Hodgkin–Huxley
model of the current used in the augmented
GIF model is exactly correct, a certain amount
of mixing will always occur, which explains
why the distribution of ĝl in Fig. 3.4 does not
exactly agree with the ground truth. This reduced

4 For an example of a similar approach used to estimate the
parameters of ionic currents in a more detailed model, see
Huys et al. (2006).

mixing can also increase the accuracy of model
predictions by decreasing the dependence of
model parameter estimates on the input used
to fit the model (as discussed in Sect. 3.3.1). In
the case of serotonin neurons, the augmented
GIF predicts the timing of spikes significantly
more accurately than the base GIF model (Harkin
et al., 2020), even though the differences between
the two models are limited to the subthreshold
dynamics. (See Fig. 3.5 for an example of an
augmented GIF model fitted to a serotonin
neuron.) These results illustrate how adjustments
to the GIF model can improve accuracy and
interpretability.

Fig. 3.3 A GIF model augmented with a voltage-
dependent current
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Fig. 3.4 Leak conductance estimated by GIF models fit-
ted to serotonin neurons (circles). Ground-truth estimates
for this parameter based on experimental measurements
from a large number of cells are shown in grey; wider areas
indicate a relatively greater proportion of cells. Notice that
the estimates produced by the augmented GIF model are
closer to the ground truth

Fig. 3.5 A GIF model augmented with a voltage-
dependent current fitted to a serotonin neuron. The noisy
input stimulus at the top was not used during fitting.
Notice that the augmented GIF model (teal) accurately
predicts the subthreshold voltage (middle) and spike times
(raster, bottom) of the real neuron (blue). The spike rasters
at bottom are for several repetitions of the test stimulus
shown at top. These illustrate that the augmented GIF
model captures some of the natural stochasticity of spiking
observed in serotonin neurons

3.4 Summary

In this chapter, we have seen that generalized
integrate-and-fire (GIF) models build on leaky-
integrate-and-fire models to capture three of the
most fundamental features of neurons: leaky
subthreshold integration, stochastic spiking,
and spike-frequency adaptation. The simplified
mathematical structure of the GIFmodel provides
a one-to-one correspondence between model
components and electrophysiological features,
making it intuitive to understand. We also saw
that the subthreshold and spiking components
of the GIF model are rooted in linear models
that are easily fitted to data. This allows the GIF
model to be constrained to mimic the behaviour
of individual neurons based on very little data
using a two-step optimization procedure, often
with better results than more labour-intensive
experimental approaches that require measuring
the values of model parameters one at a time.
Finally, we showed how the linear components
of the GIF model can be extended to account for
non-linear ionic currents that are not present in
the GIF model as it was initially defined.

3.5 Further Reading

The leaky-integrate-and-fire model as it is used
today was first introduced by Stein (1965), and
the generalized integrate-and-fire model as it is
presented here was introduced by Mensi et al.
(2012). See Kobayashi (2009) for an earlier
model similar to the GIF model that also captures
a wide range of neural behaviours. A detailed
derivation of the GIF model and its two-step
fitting procedure can be found in Gerstner et
al. (2014). For a very practical description of
how to carry out experiments that can be used
to constrain the GIF model, and an overview
of how GIF models can be fitted using publicly
available software, see Pozzorini et al. (2015). For
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examples of how different variations of the GIF
framework can be used to capture the behaviours
of various types of cortical neurons, see Mensi
et al. (2016); Teeter et al. (2018). The definitive
textbook on the physiology of ion channels and
neuronal membranes is Hille (2001).

The GIF modelling framework is conceptually
related to other classes of neuron models that
are based on linearity assumptions. Like the GIF
framework, generalized linear models (GLMs)
(Pillow et al., 2008) and linear–nonlinear Poisson
models (LNPs) (Truccolo et al., 2005) are based
on a linear function of a set of inputs that is
then passed through a non-linear link function to
produce a firing rate (GLMs) or spike probabil-
ity (LNPs). However, unlike GIF models, these
models do not attempt to predict the subthreshold
voltage as an intermediate step. This means that
GLMs and LNPs are not well suited to cases
where the subthreshold voltage is of primary in-
terest, or when spiking data is very sparse. On
the other hand, these models can be fitted to
spiking data even when the subthreshold voltage
is not known, as is the case during extracellular
recording.

In this chapter, we have introduced opti-
mization methods that rely on either exact
knowledge of the relationship between model
parameter values and predictive accuracy to
solve for the best possible parameter values
directly, or that use only local knowledge
of this relationship to find the best values
within a neighbourhood (gradient-based methods
introduced in Sect. 3.3.3). Gonçalves et al. (2020)
recently introduced an intermediate approach that
uses an artificial neural network to approximate
the global relationship between parameter values
and model outputs, allowing approximately
optimal parameter values to be found even for
complex models.
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4Neuron–Glia Interactions and Brain
Circuits

Marja-Leena Linne , Jugoslava Aćimović ,
Ausra Saudargiene , and Tiina Manninen

Abstract

Recent evidence suggests that glial cells take
an active role in a number of brain functions
that were previously attributed solely to neu-
rons. For example, astrocytes, one type of glial
cells, have been shown to promote coordi-
nated activation of neuronal networks, modu-
late sensory-evoked neuronal network activity,
and influence brain state transitions during de-
velopment. This reinforces the idea that astro-
cytes not only provide the “housekeeping” for
the neurons, but that they also play a vital role
in supporting and expanding the functions of
brain circuits and networks. Despite this accu-
mulated knowledge, the field of computational
neuroscience has mostly focused on modeling
neuronal functions, ignoring the glial cells and
the interactions they have with the neurons.
In this chapter, we introduce the biology of
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neuron–glia interactions, summarize the ex-
isting computational models and tools, and
emphasize the glial properties that may be
important in modeling brain functions in the
future.

Keywords
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Neuronal network · Neuronal excitability ·
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Computational modeling · Brain simulation
science

4.1 Introduction

Glial cells are non-neuronal cells in the central
and peripheral nervous system that are not able
to fire action potentials. Glia was first discov-
ered in 1856 by Rudolf Virchow, and later di-
vided into oligodendrocytes, astrocytes, ependy-
mal cells, and microglia in the central nervous
system and Schwann cells and satellite cells in
the peripheral nervous system. The morphology
and physiology of glia as well as the ratio of
neuron-to-glia vary between different brain areas.
The common belief is that glial cells are not
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like neurons—they maintain homeostasis, form
myelin, and provide support and protection for
neurons. In the neuron-centric view, changes in
neuronal activity depend solely on the intrinsic
properties of neurons and the information trans-
mitted. Over the past 10 years, this assumption
has been questioned more frequently as new ev-
idence about the multiple roles of glial cells in
the brain has emerged. Recent work has shown
that glia may have more active roles in the brain
functions than has been previously thought, not
only in developing but also in mature circuits.

Astrocytes are star-shaped cells representing
the largest group of glial cells in our brain. There
are two types of astrocytes, protoplasmic astro-
cytes in the grey matter and fibrous astrocytes in
the white matter. Astrocytes are the most diverse
glial cell type in the central nervous system. In
different brain regions they differ in morphology,
physiology, and expression of genes encoding
the most fundamental proteins responsible for
astroglial function. In general, astrocytes have
a soma as well as perisynaptic and perivascular
processes. Perisynaptic processes surround neu-
ronal synapses and enclose part of extracellular
space (sometimes also called perisynaptic, ex-
trasynaptic, or periastrocytic space in the liter-
ature). Perivascular processes connect the astro-
cyte with blood vessels and enclose some extra-
cellular space called the perivascular space. Be-
lowwe present a generic view of some of themost
important biophysical and cellular mechanisms
that are shown to underlie important astrocytic
functions (for more information, see, for exam-
ple, Kettenmann and Ransom 2013; Verkhratsky
and Butt 2013).

One of the most important functions of astro-
cytes is to clear excess extracellular potassium
and other ions from the brain extracellular space,
the narrow microenvironment that surrounds ev-
ery cell of the central nervous system (Orkand et
al. 1966). This prevents the over-excitement of
neuronal networks. Equally important is their role
in regulating glutamatergic synaptic transmission
by taking up excessive glutamate (Danbolt 2001),
transforming it into glutamine, and then releasing
glutamine into the extracellular space for presy-
naptic terminal tometabolize it back to glutamate.

Astrocytes also promote formation of excitatory
synapses and establishment of synaptic connec-
tivity in the developing central nervous system
(Allen and Eroglu 2017). In addition, astrocytes
have recently been shown to contribute to the in-
formation processing capabilities of brain circuits
and affect animal behavior (see, e.g., Pannasch
and Rouach 2013; Oliveira et al. 2015; Poskanzer
and Yuste 2016; Chever et al. 2016; Lines et al.
2020). Recent experimental glioscience research
can thus revolutionize our understanding of ro-
dent and human brain function (see also Volterra
et al. 2014; Bazargani and Attwell 2016). Theo-
retical and computational neuroscience modeling
methods as well as brain simulation science tools
(Einevoll et al. 2019), combined with tools devel-
oped for computational glioscience (Savtchenko
et al. 2018), can offer ways to greatly facilitate
the understanding of glial contributions to overall
brain functions.

Nearly three decades of research has provided
us with substantial knowledge of neuron–glia in-
teractions. As described by Bazargani and At-
twell (2016), there has been three waves of re-
search when different types of hypotheses have
prevailed. In the remaining sections, we present
state of the art in astrocyte biology, emphasizing
some key properties that may be important in
modeling neural and brain functions in the future.
We also summarize the existing methods and
tools targeted to modeling of glial functions as
well as give examples of computational models
developed in the field.

4.2 Neuron–Astrocyte
Interactions and Altered
Neuronal and Circuit
Excitability

Astrocytes are specialized glial cells that are
positioned in a close vicinity of neurons and
can interact with neurons to alter neuron’s
intrinsic excitability as well as the excitability
of brain circuits. The study of astrocytic cell
membrane and intracellular mechanisms is not
straightforward. Astrocytes do not express all-or-
none phenomenon like action potential firing
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but instead use calcium ions as a signaling
mechanism. Experimental manipulation of
astrocytic calcium concentration is not an easy
task and can produce different results depending
on the approach and context (for a more detailed
discussion, see, e.g., Agulhon et al. 2010; Fujita
et al. 2014; Sloan and Barres 2014). Additional
tools, both experimental and computational, are
required to understand the vast complexity of
astrocytic calcium signaling and its decoding to
advance functional consequences in the brain.
Until 2010, most of the studies were performed
using in vitro cell cultures and slice preparations,
and only recently studies addressing astrocyte
roles in brain functions in vivo have accumulated.
The goal of future research is to better understand
the integrated operation of various calcium-
mediated astrocytic regulatory mechanisms in
neuronal excitability and information processing
in the brain.

Astrocytes display complex biochemical and
biophysical mechanisms, which are known to be
involved in many physiological phenomena in
the brain. These mechanisms can be divided into
several categories according to the molecule(s)
involved. The most relevant are (i) membrane
transport proteins involved in movement of
ions, small molecules, and macromolecules
across the biological membrane (summarized in
Kettenmann and Ransom 2013), (ii) membrane
receptor proteins, the activation of which can
trigger an increase in the astrocytic calcium
concentration in vitro (Backus et al. 1989;
Kimelberg 1995; Jalonen et al. 1997) and
in vivo (Beltrán-Castillo et al. 2017), (iii)
calcium-dependent signaling pathways or other
mechanisms that are activated by cell membrane
mechanisms and govern the production and
release of different molecular mediators from
astrocytes (summarized in Kettenmann and
Ransom 2013), and (iv) astrocyte-released
substances that target the neuronal and vascular
systems as well as other glial cells (see, e.g.,
Perea and Araque 2007; Jourdain et al. 2007).
The above-mentioned astrocytic mechanisms
have been shown to depend on the developmental
stage. Additionally, these mechanisms operate
at different temporal and spatial scales. Com-

putational techniques may help to clarify their
contributions in brain circuits and tissue, both
in healthy and impaired conditions. Some of the
above-mentioned mechanisms have already been
considered in computational glial and astrocyte
models to understand the role of neuron–astrocyte
interactions in the intrinsic excitability of neurons
and in neuronal network functions (Manninen et
al. 2018b).

In addition to a rich repertoire of cell mem-
brane and intracellular mechanisms directly con-
trolling and indirectly influencing neuronal ex-
citability, astrocytes can be coupled via gap junc-
tion channels (Orkand et al. 1966) to form a sort
of cellular network called the “astrocytic syn-
cytium” (Giaume et al. 2010). Intercellular cal-
cium signaling (Cornell-Bell et al. 1990) through
gap junctions has been extensively demonstrated,
particularly in in vitro preparations. Astrocytic
gap junctions have been shown to play a crucial
role in the control of extracellular Na+, K+, Ca2+,
and Cl− homeostasis in vitro (Rose and Ransom
1997) and in vivo (Ma et al. 2016). The study
of astrocytic gap junctions in neuronal depolar-
ization, excitability, synchronization, and brain
circuit function has gained more and more inter-
est over the past decade. Gap junction-coupled
astrocyte networks have been shown to modulate
synaptic strength and plasticity through facilita-
tion of glutamate and K+ removal during synap-
tic activity (Pannasch et al. 2011). Furthermore,
electrophysiological and Ca2+ imaging experi-
ments in neocortical slices have shown that elec-
trical stimulation of a single astrocyte activates
other astrocytes of the surrounding local network
and can trigger synchronization of neighboring
neurons (Poskanzer and Yuste 2011). Compu-
tational models for gap junction-coupled astro-
cytes have been developed to better understand
intercellular Ca2+ signaling and Ca2+ waves in
astrocyte networks resembling in vitro cell cul-
ture conditions (Lallouette et al. 2014). However,
more studies are clearly needed to better under-
stand the developmental expression of gap junc-
tion channels and their functional consequences
in vivo.

Recently, astrocytes have been reported to
play a role in neuronal activity and network
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oscillations (see, e.g., Carmignoto and Fellin
2006; Poskanzer and Yuste 2016). In the study of
Poskanzer and Yuste (2016), astrocytic Ca2+
activity has been shown to precede circuit
shifts that dominate the slow-oscillation state.
In addition, alterations in normal astrocytic
physiology have been associated with several
neuropsychiatric and neurodegenerative diseases.
In order to computationally link all relevant
intra- and intercellular mechanisms of astrocytes
with neuronal intrinsic and circuit excitability
calls for better understanding of the astrocytic
mechanisms in vivo and, consequently, for more
biologically realistic models of astrocytes. To
this purpose, new experimental techniques and
protocols are being developed to further clarify
the existence and roles of gap junctions in the
astrocyte syncytium in different brain areas and
developmental phases in vivo.

4.3 Neuron–Astrocyte
Interactions, Synaptic
Transmission, and Synaptic
Plasticity

Astrocytes are anatomically organized into three-
dimensional, non-overlapping spatial territories,
or domains, in vivo. This process of anatomical
segregation is called astrocyte tiling. It means
that the processes of astrocytes rarely overlap
the domains of other astrocytes. In vivo recon-
structions of astrocytes show complex morpho-
logical structures with more branched and dense
processes compared to neurons (Bushong et al.
2002; Oberheim et al. 2009; Vasile et al. 2017;
Calì et al. 2019). Within an anatomical domain
a single astrocyte can send its fine processes to
reach a nearby neuron. A single cortical astrocyte
is estimated to contact altogether 20,000–120,000
synapses in rodents and up to 2,000,000 synapses
in humans (Oberheim et al. 2009). Astrocytes also
send their endfoot processes to envelop vascu-
lar smooth muscle cells and control brain blood
flow (Attwell et al. 2010). The complex morphol-
ogy and anatomical organization of astrocytes
calls for new computational methods to better
understand the spatial compartmentalization of

astrocytes and the roles of astrocyte processes in
synaptic transmission and plasticity.

Astrocytes have been shown to be important
regulators of neural development and maturation
(Allen 2013), including the control of the number
of synapses (Ullian et al. 2001) and synaptic
connectivity (Eroglu and Barres 2010). Synap-
tic plasticity, defined as the activity-dependent
change in the strength or efficacy of the synap-
tic connection between a pre- and postsynap-
tic neuron, is expressed in the brain in diverse
forms across multiple timescales. Accumulating
experimental evidence indicates that glial cells,
including astroglia, modulate synaptic transmis-
sion and plasticity during postnatal development
and maturation of cortical circuits. Evidence for
such a modulation has been found at least in
the following brain areas: somatosensory/barrel
cortex (Takata et al. 2011;Min and Nevian 2012),
hippocampus (Yang et al. 2003; Perea andAraque
2007; Navarrete et al. 2012; Sibille et al. 2014;
Letellier et al. 2016; Sherwood et al. 2017), and
prefrontal cortex (Petrelli et al. 2020). These stud-
ies also suggest that the biophysical and biochem-
ical mechanisms modulating synaptic transmis-
sion and plasticity may be diverse and depend on
the brain area and the type of a synapse.

Like all living cells, astrocytes are capable of
exocytotic release ofmolecules. Over the past two
decades, the concept that astrocytes can release
neuroactive molecules, gliotransmitters, which in
turn modulate neuronal excitability and synaptic
transmission, has radically changed our under-
standing of brain physiology. This concept states
that astrocytes, together with pre- and postsynap-
tic neuronal components, make up a functional
tripartite synapse (Araque et al. 1999). Astro-
cytic release of gliotransmitters (e.g., glutamate,
d-serine, and adenosine triphosphate) is gener-
ally accepted to be a Ca2+-dependent process
although studies exist that did not find the link be-
tween astrocytic Ca2+ and release of gliotransmit-
ters (Agulhon et al. 2010). Recent imaging studies
andmorphology reconstructions (Calì et al. 2019)
give additional evidence for the concept of the
tripartite synapse. In these reconstruction studies,
some of the astrocyte processes are shown to be
very close to synapses, so that three elements
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are grouped together: the pre- and postsynaptic
processes and one astrocytic process. The short
physical distance in the triad could thus allow
direct communication between neurons and astro-
cytes.

The exocytotic release of substances from
astrocytes can provide one way to modulate
synapses and synaptic activity, along with
other mechanisms that were presented in the
previous section. In our previous study, using
a detailed model of a synapse, we have shown
that astrocyte processes can take part in synapse
computation (Manninen et al. 2020). In this in
silico study, we show how complex biochemical
and biophysical mechanisms at the pre- and
postsynaptic neurons and in the astrocytic process
modulate long-term depression in spike-timing-
dependent plasticity in somatosensory cortex
during postnatal development (Min and Nevian
2012). The interplay between neurons and
glia in synapse development and plasticity in
vivo is under intense research (Stogsdill and
Eroglu 2017). Combination of wet-lab and
computational techniques will be crucial in
the future to better understand the complex
nature of neuron–astrocyte interactions and
the remaining controversies in the field. This
integration of wet-lab and computational studies
is crucial for better understanding of disease
mechanisms. As an example, a hallmark of
many neurodevelopmental disorders is abnormal
synapse formation and function. Since glial
cells have been shown to play a role in synapse
development and maturation, it is possible that
atypical functioning of glial cells underly many
developmental brain disorders.

4.4 Computational Modeling
and Simulation

A few hundreds of computational models for
astrocytes and neuron–astrocyte interactions
have been developed so far. These include
biophysically detailed models of the above-
mentioned key astrocytic mechanisms, such as
the mechanisms related to K+ buffering and Ca2+
dynamics, for various neural phenomena as well

Fig. 4.1 Number of published models per year for astro-
cytes involving Ca2+ dynamics. In all these models, the
Ca2+ dynamics is derived from a few published models
originally not developed for astrocytes. None of the plotted
astrocyte models are multi-compartmental models with
all cell membrane phenomena described, but instead they
mainly model Ca2+ dynamics. For a comparison, tens of
multi-compartmental whole-cell models exist just for cor-
tical pyramidal cells implemented using, e.g., NEURON
simulator (see, e.g., Huhtala et al. 2020). Data modified
from Manninen et al. (2018b, 2019)

as phenomenologicalmodels lackingmechanistic
details and described by relatively simple equa-
tions. However, multi-compartmental models of
astrocytes considering all important biophysical
details do not exist. For a comparison, almost
all different neuron types of a rodent brain have
at least one representative multi-compartmental
model fitted against electrophysiological and
other data. Moreover, there is no well-established
way of modeling neuron–astrocyte interactions
at the network level although many models
exist; methodologies and approaches are under
development.

In this review, we are mainly interested in
the models and approaches that incorporate
astrocytic Ca2+ dynamics. In Fig. 4.1, we
present the number of Ca2+ dynamic models
published for astrocytes per year (Manninen
et al. 2018b, 2019). We can conclude that the
computational glioscience field kicked off around
the year 2000. For a comparison, tens of multi-
compartmental whole-cell models exist just for
cortical pyramidal cells (see, e.g., Huhtala et al.
2020). These neuron models were implemented
using, e.g., NEURON simulator (Carnevale and
Hines 2006) and are available in ModelDB
(McDougal et al. 2017).
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4.4.1 The Scope and Complexity
of Glial ComputationalModels

We can choose between biophysical mechanistic
and phenomenological modeling or combining
them when modeling the dynamical behavior
of neurons and astrocytes. Among neuron
models, Hodgkin and Huxley (1952) model,
Traub et al. (1991) model or its derivative
Pinsky and Rinzel (1994) model are examples
of biophysical models, while FitzHugh-Nagumo
model (FitzHugh 1961), Morris and Lecar (1981)
model, integrate-and-fire (IF) type models like
adaptive exponential integrate-and-fire model
(Brette and Gerstner 2005), and Izhikevich
(2007) model are examples of phenomenological
models. The above-mentioned neuronmodels can
be incremented with more detailed ion channel
and receptor models or intracellular signaling
pathways related to, for example, Ca2+ dynamics,
different protein kinases and phosphatases.
For the synapse, the models range from the
biophysically detailed vesicular release models
(e.g., Bollmann et al. 2000) to the reduced and
computationally efficient models (e.g., Tsodyks
and Markram 1997; Tsodyks et al. 1998).

Some key astrocytic mechanisms have been
modeled and characterized in several studies (see,
e.g., Linne and Jalonen 2014; Manninen et al.
2018b, 2019). Of these, our recent study (Man-
ninen et al. 2018b) is the most detailed analysis
of the astrocyte models. The features of more
than hundred models with detailed enough astro-
cytic Ca2+ dynamics were compared to show the
similarities and differences between the models
(Manninen et al. 2018b). Even though some of
these models are relatively simple in terms of
equations, we can mostly consider them biophys-
ical because they model some key biophysical
mechanisms of astrocytes.

Most of the astrocyte models consider the
dynamics of inositol trisphosphate receptors
(IP3Rs), sarco/endoplasmic reticulum Ca2+-
ATPase (SERCA pump), and leak flux from the
endoplasmic reticulum to the cytosol, and they
can also incorporate other mechanisms, such as
plasma membrane Ca2+-ATPase (PMCA pump),
Na+/Ca2+ exchanger (NCX), and K+ channels.

Most of the models utilized the Ca2+ dynamics
models by De Young and Keizer (1992), Li and
Rinzel (1994), and Höfer et al. (2002) with small
modifications (for details of these models, see
Manninen et al. 2018b). More phenomenological
models are represented by, for example, Postnov
et al. (2007). Many different types of models
have been used to describe astrocytes’ effect on
neurons (e.g., Nadkarni and Jung 2003; Postnov
et al. 2007; Volman et al. 2007), but also detailed
astrocytic vesicle release models have been used
(e.g., Bertram et al. 1996). Gap junctions have
as well been modeled between astrocytes (e.g.,
Höfer et al. 2002; Lallouette et al. 2014). In
addition to models considering astrocytic Ca2+
dynamics, there are hundreds of different types
of astrocyte models considering mechanisms to
other ions than Ca2+ but these models are not
discussed here. To get an idea about modeling
of these other mechanisms, see, for example, the
books by Keener and Sneyd (2009) and Dupont
et al. (2016).

4.4.2 Simulation Tools

Because of the complexity of astrocytemorpholo-
gies and the fact that astrocytes possess Ca2+
(instead of Na+) excitability, new tools are clearly
needed to advance the field of glioscience model-
ing. A few simulation tools already exist for mod-
eling astrocyte functions and dynamics on various
levels (Table 4.1). Two of the available simula-
tion tools, ASTRO (Savtchenko et al. 2018) and
STEPS (Hepburn et al. 2012), are built for mor-
phologically detailed multi-compartmental cell
models which are needed in the computational
neuroscience field. STEPS was developed first
for neuronal models and just recently extended
to astrocytes (Denizot et al. 2019), while ASTRO
was developed directly to model astrocytes. AS-
TRO tool was built on top of NEURON simulator
(Carnevale and Hines 2006). Both ASTRO and
STEPS can be used to study reaction-diffusion
systems with electrophysiology, and STEPS spe-
cializes in stochastic simulation. The rest of the
tools listed in Table 4.1 were built for neural net-
work simulations. Brian 2 (Goodman and Brette
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2008) and NEST (Gewaltig and Diesmann 2007)
were originally built for spiking neural network
models, but recently Brian 2 was extended to also
include glial cell modeling making possible to
construct neuronal–glial network models (Stim-
berg et al. 2019) and NEST version of astrocyte
extension is in preparation. ARACHNE (Aleksin
et al. 2017), on the other hand, was developed
directly for modeling neuron–glia interactions in
large networks. Examples of models that have
been developed using these tools can be found
in Table 4.1 and in ModelDB (McDougal et al.
2017).

4.5 Computational Models

Computational models of astrocytes and neuron–
astrocyte interactions can be divided into four
broad groups: (i) models describing one or more
properties of single astrocytes, (ii) models con-
necting several astrocytes together, (iii) models
describing neuron–astrocyte interactions in a sin-
gle synapse, and (iv) models describing neuron–
astrocyte interactions in brain circuits and net-
works (see also, Manninen et al. 2018b). Here,
we focus on the models of neuron–astrocyte in-
teraction, so in what follows we will only briefly
present the single astrocyte and astrocyte network
models. Instead, readers are encouraged to take
a look at the previous work (Manninen et al.
2017, 2018a, b, 2019) and recently published
models (e.g., Savtchenko et al. 2018; Denizot
et al. 2019). In the following sections, we will
present examples of models in the last two cat-
egories (iii) and (iv). The examples of models
in (iii) include models where a single, either an
excitatory or an inhibitory, synapse exists be-
tween two neurons and a nearby astrocyte, or
a single neuron has a bidirectional connection
with a single astrocyte. The examples of mod-
els in (iv) include models with more than one
synapse, and some of the example network mod-
els have a few hundred or even thousands of
cells.

https://github.com/LeonidSavtchenko/Arachne
https://github.com/LeonidSavtchenko/Arachne
https://github.com/LeonidSavtchenko/Astro
https://github.com/LeonidSavtchenko/Astro
https://briansimulator.org/
https://www.nest-simulator.org/
https://www.nest-simulator.org/
http://steps.sourceforge.net/STEPS/default.php
http://steps.sourceforge.net/STEPS/default.php
https://github.com/LeonidSavtchenko/Arachne/tree/master/ExamplePLOS
https://github.com/LeonidSavtchenko/Arachne/tree/master/ExamplePLOS
https://github.com/LeonidSavtchenko/Arachne/tree/master/ExamplePLOS
https://github.com/mdepitta/comp-glia-book/tree/master/Ch18.Stimberg
https://github.com/mdepitta/comp-glia-book/tree/master/Ch18.Stimberg
https://github.com/mdepitta/comp-glia-book/tree/master/Ch18.Stimberg
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4.5.1 Models of Single Astrocytes
and Astrocyte Networks

Unlike the detailed multi-compartmental neuron
models available for different brain areas, the
models including the whole astrocyte morphol-
ogy, the ion channel descriptions, and other rel-
evant mechanisms do not exist. One of the most
detailed models thus far for single astrocytes was
developed by Savtchenko et al. (2018), and for the
fine astrocyte process by Denizot et al. (2019).
Most of the single astrocyte and astrocyte net-
work models were developed to study Ca2+ dy-
namics often in single compartments, for exam-
ple, in the soma, but some exist to study vas-
cular events and homeostasis. Half of the single
astrocyte and astrocyte network models were not
developed for certain brain area but were generic
(Manninen et al. 2018b, 2019). About 20% of
the single astrocyte models and 50% of the as-
trocyte network models considered intracellular
or extracellular diffusion of molecules and ions,
while the single astrocyte models included more
molecules and ions as variables than the astrocyte
network models. The astrocyte network models
either included diffusion in the extracellular space
or gap junctions between the astrocytes, or both.
The larger number of astrocytes were modeled in
the astrocyte network models; the fewer number
of variables were usually modeled per astrocyte
(Manninen et al. 2018b). These earlier models
serve as a starting point to construct biophysically
more detailed, morphologically realistic models
of astrocytes in the future. The simulation tools
presented in Table 4.1 will make it possible to
incorporate more details in different compart-
ments of astrocytes (soma, large processes, fine
processes) provided that new data will become
available (imaging, electrophysiology, etc.).

4.5.2 Models for Neuron–Astrocyte
Interactions in Synapses

The neuron–astrocyte synapse models have
been developed to study different phenomena,

such as Ca2+ dynamics, synaptic plasticity,
and hyperexcitability. Theoretical concepts
like information transfer and synchronization
of activity have also been addressed using
these models. In addition, some of the models
consider the regulation of vascular blood flow.
Half of the single neuron–astrocyte synapse
models were generic and thus not developed
for a certain brain area (Manninen et al. 2018b,
2019). Half of the models used more complex
biophysical details, while the other half used
simpler phenomenological neuron models.
Diffusion of molecules and ions has been rarely
modeled, and only one single synapse model
out of 35 models published before 2018 took
diffusion into account (Manninen et al. 2018b).
Of the published single neuron–astrocyte synapse
models, we will discuss about the models by
Volman et al. 2007, Nadkarni et al. (2008),
Tewari and Majumdar (2012), De Pittà and
Brunel (2016), and the recently published
model by Manninen et al. (2020) (see Table
4.2).

Of these models, Manninen et al. (2020) and
Tewari and Majumdar (2012) used a biophys-
ically detailed neuron models and Nadkarni et
al. (2008) used a relatively simple neuron model
without considering the membrane potential. Vol-
man et al. (2007) modeled only one neuron, the
rest of the models incorporated both the pre- and
postsynaptic neurons. All the models integrated
several previously published model components
for astrocytic mechanisms, of which Nadkarni et
al. (2008), Tewari and Majumdar (2012), and De
Pittà and Brunel (2016) used a more biologically
realistic equation for the concentration of IP3 than
Volman et al. (2007) and Manninen et al. (2020).
Nadkarni et al. (2008) used a detailed presy-
naptic vesicular release model and a relatively
simple astrocytic glutamate release model. On the
other hand, Tewari and Majumdar (2012) used
biophysically detailed presynaptic and astrocytic
vesicle release models, while the other models
(Volman et al. 2007; De Pittà and Brunel 2016;
Manninen et al. 2020) used biophysically simpler
models.
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4.5.3 Models for Neuron–Astrocyte
Interactions in Brain Circuits
and Networks

Half of the neuron–astrocyte network models
were generic and developed to study many differ-
ent biophysical events, such as Ca2+ dynamics,
synchronization, information transfer, synaptic
plasticity, and hyperexcitability (Manninen et
al. 2018b, 2019). Most of these models utilized
simple phenomenological neuron models and
modeled gap junctions between astrocytes. About
30% of the models included intracellular or
extracellular diffusion of molecules and ions.
Most of these models had maximum of four
variables per astrocyte, meaning the astrocytes
were often modeled in simpler way than in the
other model groups. Of the published neuron–
astrocyte network models, we will discuss about
the models by Postnov et al. (2009), Aleksin et
al. (2017), Gordleeva et al. (2019), Stimberg et
al. (2019), and Li et al. (2020) (see Table 4.3).

Of these models, Aleksin et al. (2017) and
Gordleeva et al. (2019) presented the most
detailed ones. As with the neuron–astrocyte
synapse models, also here the models integrated
several previously published model components
for astrocytic mechanisms, of which Aleksin et
al. (2017) used the lowest number of variables
(i.e., differential equations), Postnov et al. (2009)
used the simplest equations, and the rest modeled
many mechanisms. Especially, Gordleeva et al.
(2019) and Stimberg et al. (2019) used a bit more
complex equation for the concentration of IP3
than the rest of the models. The simpler models
gave the possibility tomodelmore cells compared
to the more detailed models. None of the network
models used a detailed presynaptic vesicular
release model or detailed gliotransmitter release
model. However, Aleksin et al. (2017) and
Gordleeva et al. (2019) used Tsodyks et al.
(1998) model for their neurotransmitter or
gliotransmitter equation and Stimberg et al.
(2019) and Li et al. (2020) used the whole
Tsodyks et al. (1998) synapse model for both
the presynaptic and astrocytic terminals.

Finally, we would like to conclude that most
of the computational models for astrocytes are

not available in model repositories which makes
it challenging to study and further develop the
models [for more discussion, see Manninen et al.
2018b, 2019, and for available models, see Mod-
elDB (McDougal et al. 2017)]. Therefore, the
field of computational glioscience should strive
for the principles of reproducible science (Can-
non et al. 2007; Nordlie et al. 2009; Crook et
al. 2013; McDougal et al. 2016; Manninen et al.
2017, 2018a, b, 2019; Rougier et al. 2017).

4.6 Conclusions

In this chapter we have summarized the most
significant experimental findings of neuron–
astrocyte interactions and how they influence
brain circuits. In particular, we have discussed
the role of astrocytes in cellular excitability,
synaptic transmission, and synaptic plasticity.
The findings presented here clearly indicate that
astrocytes can no longer be neglected when
studying brain circuits and their functions.
We have also examined the state of the art in
computational modeling of neuron–astrocyte
interactions, particularly in excitability, synaptic
transmission and plasticity. We conclude that
computational modeling studies are increasingly
presented to provide further evidence that
astrocytes are an integral part of brain circuit
functions. There is, however, a lot to gain
from creating improved, data-based astrocyte
models. For example, the complex astrocyte
morphology as well as the astrocytic cell
membrane biophysics should be represented
more realistically compared to existing astrocyte
models.

Most of the knowledge on astrocytes is col-
lected using in vitro cell culture and slice prepa-
rations. To further our understanding there is a
need for in vivo studies of astrocytes’ biology and
function. New wet-lab measurement techniques
and selective pharmacology tailored specifically
for astrocytes, will be necessary to develop new in
silico models of astrocytes, particularly to under-
stand human brain disorders and diseases. Dys-
function in neuron–glia interactions may con-
tribute to the pathogenesis of neurodevelopmental
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and neurodegenerative disorders. A neuron–glia
crosstalk that governs the maturation and remod-
eling of synapses will be one important future
research areawhere integration ofmorphological,
biophysical, and biochemical wet-lab data and
in silico modeling may provide to be fruitful to
understand progression of brain disorders.
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5Short-Term Synaptic Plasticity:
Microscopic Modelling and (Some)
Computational Implications

Alessandro Barri and Gianluigi Mongillo

Abstract

Synaptic transmission is transiently adjusted
on a spike-by-spike basis, with the adjustments
persisting from hundreds of milliseconds up to
seconds. Such a short-term plasticity has been
suggested to significantly augment the compu-
tational capabilities of neuronal networks by
enhancing their dynamical repertoire. In this
chapter, after reviewing the basic physiology
of chemical synaptic transmission, we present
a general framework—inspired by the quan-
tal model—to build simple, yet quantitatively
accurate models of repetitive synaptic trans-
mission. We also discuss different methods
to obtain estimates of the model’s parameters
from experimental recordings. Next, we show
that, indeed, new dynamical regimes appear in
the presence of short-term synaptic plasticity.
In particular, model neuronal networks exhibit
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the co-existence of a stable fixed point and a
stable limit cycle in the presence of short-term
synaptic facilitation. It has been suggested that
this dynamical regime is especially relevant
in working memory processes. We provide,
then, a short summary of the synaptic theory
of working memory and discuss some of its
specific predictions in the context of experi-
ments. We conclude the chapter with a short
outlook.

Keywords

Quantal model · Short-term synaptic
plasticity · Slow-fast dynamics · Network
oscillations · Working memory

5.1 Introduction

Neurons interact with each other largely by
means of chemical synapses. Synaptic efficacy
is continuously adjusted over multiple time
scales ranging from milliseconds to years. On
long time scales, synaptic modifications, as for
instance exemplified by long-term potentiation
and depression, are thought to underlie learning
and memory storage. These modifications appear
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to be sensitive to both pre- and post-synaptic
activities in a Hebbian-like way. On shorter
time scales, on the order of tens of milliseconds
to seconds, synaptic modifications are mostly
dependent on pre-synaptic activity only. This
form of short-term synaptic plasticity (STP)
has been proposed to support a variety of
computations (Abbott and Regehr, 2004; Wu
et al., 2013). A non-exhaustive list includes
the following: rhythm generation (Senn et al.,
1996; Tsodyks et al., 2000), gain control (Abbott
et al., 1997; Rothman et al., 2009), temporal
filtering (Fortune and Rose, 2001), short-term
memory maintenance (Barak and Tsodyks, 2007;
Hempel et al., 2000; Mongillo et al., 2008),
and source of non-linearity in the balanced
regime (Hansel and Mato, 2013; Mongillo et al.,
2012).

Despite intensive research, the physiological
mechanisms responsible for STP are not com-
pletely understood. One important reason for this
is that synapses are pretty small. The typical vol-
ume of a cortical synapse, for instance, is about
1μ m3. Clearly, direct experimental access to
the inside of such a small structure is impossible
with standard electrophysiological tools. Exper-
imentally, one is typically able to control the
timing of synaptic activation, to manipulate the
ionic composition of the extracellular medium,
and to record post-synaptic responses as current
or voltage change, mostly at the soma. Models, at
different levels of physiological detail, are needed
in order to link the history of pre-synaptic activa-
tion to the observed changes in the post-synaptic
responses.

In their providing compact (i.e., with few
parameters), low-dimensional descriptions,
phenomenological models have been instru-
mental in effectively classifying patterns of
transmission at different synapses (Blackman
et al., 2013; Gupta et al., 2000), in uncovering
their underlying mechanisms (Dittman et al.,
2000; Hallermann et al., 2010; Saviane and
Silver, 2006), and in exploring theoretically their
functional consequences. Until quite recently,
phenomenological models only described the
average responses or, where the model were
stochastic, it was the average model responses

that were fitted to the trial-averaged experimental
responses. Synaptic responses, however, are
inherently stochastic as it is well and long known
(Del Castillo and Katz, 1954). This variability is
understood and routinely quantified in terms of
the quantal model of synaptic release (Quastel,
1997; Stevens, 2003). Theoretical studies have
shown that quantal fluctuations can significantly
affect network operations (e.g., Branco and Staras
(2009); Burnod and Korn (1989); De La Rocha
and Parga (2005); Matveev and Wang (2000)),
and it is, thus, important to have an accurate
description of their temporal dynamics.

Here, we present a brief review of recent
approaches to develop mathematically simple,
yet experimentally accurate, models of short-
term synaptic plasticity and discuss the impact
of short-term synaptic plasticity on network
operations. In particular, we focus on the putative
role of short-term synaptic plasticity in short-term
memory maintenance. This chapter is organized
as follows. In Sect. 5.2, we shortly describe the
quantal model of synaptic transmission and the
basic experimental phenomenology of short-term
synaptic plasticity. In Sect. 5.3, we introduce the
release-site formalism, inspired by the quantal
model, and show how a large class of STP models
can be formulated within this formalism. We
also discuss how the formalism can be used to
improve models’ parameters estimation from
the experimental data. In Sect. 5.4, we study
the emergence of novel dynamical regimes
in recurrent networks, brought about by the
presence of STP. In Sect. 5.5, we provide an
overview of the synaptic theory of working
memory. Finally, in Sect. 5.6, we provide a short
outlook and discuss some perspectives for future
work.

5.2 Basic Physiology of Chemical
Synaptic Transmission

Transmission at chemical synapses is mediated
by (pre-synaptic) activity-dependent release of
neurotransmitter. Neurotransmitter is packed into
synaptic vesicles on the pre-synaptic side. Some
of the vesicles are attached to the membrane and
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are in a so-called release-ready state. Release is
ultimately triggered by a steep rise of the cal-
cium concentration in the pre-synaptic terminal.
Physiologically, this is the result of a pre-synaptic
action potential, which strongly depolarizes the
terminal and opens voltage-gated calcium chan-
nels. Elevated calcium concentrations cause some
of the vesicle attached to the cellular membrane to
fuse with it and to liberate their content into the
synaptic cleft (the small space between the pre-
and the post-synaptic cells). The released neu-
rotransmitter then diffuses to the post-synaptic
side, where it binds to specific receptors causing
the opening of ion channels. This, in turn, causes
a (local) change in the post-synaptic membrane
polarization. The whole process takes on the or-
der of 1 ms, where most of this time is needed
for the calcium to flow into the synaptic termi-
nal.

5.2.1 Quantal Release

Synaptic vesicles contain roughly the same
amount of neurotransmitter, and when they fuse
with the cellular membrane, they (typically)
release all their content. As a result, neuro-
transmitter is released in discrete multiples of
a minimal quantity—a quantum. This is the so-
called quantal model of synaptic transmission,
which was established by Bernard Katz and
collaborators in a beautiful series of experiments
that we shortly summarize here (see Augustine
and Kasai (2007) for an historical presentation).

Fatt and Katz (1952) observed that post-
synaptic responses could sometimes be observed
in the absence of pre-synaptic activation. These
responses were much smaller in amplitude
than the responses produced by the electrical
stimulation of the axon, and so they called
them minis. Interestingly, all experimental
manipulations, for instance, the reduction of
calcium concentration in the bath, that abolished
electrically evoked responses also abolished
the minis. Importantly, the amplitudes of the
minis were roughly constant. They concluded
that the minis were the result of spontaneous
(i.e., in the absence of stimulation) release of

neurotransmitter. In the condition of low calcium
concentration (in the bath), electrically evoked
responses were also stochastic. At parity of
amplitude of the stimulation, the amplitude of
the responses was variable and, sometimes, no
response at all could be observed (which they
called a failure). The key observation was that the
ratio between different responses was very close
to integer numbers (i.e., the smallest response
was half of the second smallest response, and
so on) and that the amplitude of the smallest
response was roughly the same as the amplitude
of the minis.

To account for these observations, they pro-
posed and validated what is perhaps the first
(mathematical) model of synaptic transmission.
According to the model, the synapse is a collec-
tion of N independent release sites. Upon acti-
vation, each of the sites can either release one
vesicle of neurotransmitter, with probability p,
or fail to do so, with probability 1 − p. The ob-
served response is proportional to the total num-
ber of vesicles released (linear summation), the
constant of proportionality being the (average)
post-synaptic response to a single vesicle, q . The
average response, 〈R〉, is then given by

〈R〉 = q · (pN) , (5.1)

where pN is the expected number of vesicles
released upon activation. The average response is
easily determined experimentally. Assuming that
q is given by the average amplitude of the minis
(i.e., minimal observed response), one can then
estimate pN by using Eq. (5.1). The quantity pN

can be estimated in an alternative way, by deter-
mining the probability of failure, pf ail . A failure
is observed when, upon synaptic activation, all
sites fail to release a vesicle, that is

pf ail = (1− p)N � e−pN � 1− pN when

p � 1 and pN ∼ 1. (5.2)

By manipulating the calcium concentration in the
bath, one can make the probability of release p

small and then estimate pN by using Eq. (5.2).
The estimates of pN obtained via Eq. (5.1) and
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Eq. (5.2) were found to be in very good agree-
ment.

5.2.2 Short-Term Plasticity

The simplest experimental protocol that allows
one to study synaptic transmission in conditions
of repetitive activation is the so-called pair-
pulse protocol. Other slightly more sophisticated
protocols involve the use of long (e.g., Abbott
et al. (1997)) or short (e.g., Tsodyks andMarkram
(1997)) trains of pre-synaptic activations at
varying frequencies. In the basic version of
the pair-pulse protocol, one repeatedly elicits
two consecutive synaptic responses with a
given (fixed over the repetitions) inter-activation
interval and then computes the so-called paired-
pulse ratio (PPR), which is the ratio between the
average of the second responses and the average
of the first ones.

The main experimental observation is that,
unless the inter-activation interval is exceedingly
long, the PPR is significantly (statistically speak-
ing) different from 1. If the PPR is smaller than
1, synaptic transmission is depressing (in the spe-
cific experimental condition), i.e., the second re-
sponse will be, on average, smaller than the first
one. Conversely, if the PPR is larger than 1,
synaptic transmission is facilitating, i.e., the sec-
ond response will be, on average, larger than the
first one. At the same synapse, the amount of
depression/facilitation is dependent on the inter-
activation interval, and one typically observes
larger changes in the responses for shorter inter-
vals, while the PPR goes to 1 (i.e., no change) for
intervals of the order of 100–1000ms. Because of
the transient nature of the modification in synap-
tic transmission, this form of plasticity is referred
to as short-term synaptic plasticity.

Different mechanisms have been proposed to
be responsible for such short-term plasticity (Fio-
ravante and Regehr, 2011; Zucker and Regehr,
2002). It is presently unclear, however, whether
these mechanisms are exclusive or, rather, they all
cooperate to ensure the proper tuning of synap-
tic transmission across the wide range of possi-
ble patterns of pre-synaptic activity. Depression

could result, for instance, from the reduction in
the number of synaptic vesicles that are ready to
be released or from the temporary inactivation
of the release sites themselves, in the absence of
significant reduction in the ready-releasable pool
of synaptic vesicles. Yet another possibility is the
activity-dependent reduction of the probability of
release due to a reduction of calcium influx upon
spike. Similarly, facilitation could result from an
increase in the probability of release due to an
increase of the intracellular calcium or to an in-
crease in the number of ready-releasable vesicles
in the absence of changes in the probability of
release.

5.3 Modelling of Repetitive
Synaptic Transmission: The
Release-Site Formalism

In physiological conditions, neurons are active
for an extended period of time in a somewhat
irregular way that resembles a Poisson process.
One would like to know what are the effects of
such activity on synaptic transmission. Models of
synaptic transmission during repetitive activation
can be built by augmenting the quantal model,
which describes neurotransmitter release, with a
so-called refilling model (Quastel, 1997), which
describes how released neurotransmitter is made
available again (Fig. 5.1a).

According to the quantal model, a synaptic
connection is a collection of N independent re-
lease sites, which can either release neurotrans-
mitter or fail to do so upon spike. As the release
sites are assumed independent, one can focus on
describing the dynamics of the single release site.
The total release probability at one site, p (see
Eq. 5.1), is decomposed into the product of the
probability,pocc, that the site is release-competent
and the probability, prel , that the release actually
occurs, given that the site is release-competent
(Quastel, 1997), i.e.,

p = prel · pocc. (5.3)

Hereafter, we refer to prel simply as the
release probability. As illustrated in Fig. 5.1b,
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Fig. 5.1 The release-site formalism. (a) Schematics of
the transmitter release and refilling model. Upon spike
(blue), only the docked vesicles (yellow) can be released.
The post-synaptic response (gray) is proportional to the
number of vesicles released. In between spikes, vesicles

dock to noncompetent release sites (black arrow). (b) The
two possible states of a release site and the transitions
between them. prel is the release probability upon spike;
k+ and k− are the vesicle docking and undocking rates in
between spikes

this description assumes that the release site
can be in one of the two states: release-
competent or refractory. Release-competent
describes the situation in which all docking
and priming processes involving vesicle and
site are completed, and, for release to occur,
no other processes are needed except those
directly triggered by the spike, i.e., pocc = 1.
Refractory describes the complementary situation
in which the spike cannot trigger release, i.e.,
pocc = 0.

To complete the description of the model, one
has to specify the possible transitions between the
release-competent and the refractory states, and
the dynamics of prel , if any. The possible tran-
sitions between the two states comprise vesicle
release as well as vesicle docking/undocking pro-
cesses (see Fig. 5.1b). There are two types of tran-
sitions: those that occur upon spike and those that
occur in between spikes. A release-competent site
can go to the refractory state either by release
of its vesicle upon spike, with probability prel ,
or by vesicle unbinding in between spikes, with
probability k− per unit time. A refractory site can
go to the release-competent state by binding a
vesicle in between spikes, with probability k+ per
unit time. Otherwise, it remains in the refractory
state.

A large class of models of synaptic transmis-
sion can be formulated in this framework, by ap-
propriately selecting the dynamics of the release
site and of the release probability (Barri et al.,
2016).

5.3.1 The Tsodyks–MarkramModel

The Tsodyks–Markram model is the simplest
model of short-term synaptic plasticity (i.e., with
the smallest number of free parameters), yet
able to describe very diverse patterns of synaptic
transmission. The specific instantiations of the
dynamics of the release sites and the release
probability are as follows (Tsodyks andMarkram
(1997), Markram et al. (1998), Fuhrmann et al.
(2002)). The dynamics of the release sites
are described by a simple docking process: a
refractory site becomes release-competent with a
constant probability per unit time k+ = 1/τD . A
release-competent site becomes refractory only
by releasing upon spike (i.e., k− = 0). To keep
the original notation introduced in Markram et al.
(1998), we denote the probability that the site
is release-competent with x (instead of pocc)
and the probability of release with u (instead of
prel). Thus, the probability that the site is release-
competent at time t evolves according to

ẋ = 1− x

τD

− ux
∑

k

δ(t − tk), (5.4)

where δ(·) is the Dirac delta function and the sum
is over all pre-synaptic spike times tk . Hereafter,
to evaluate terms that involve the product of a
function with the Dirac delta (e.g., the last term in
Eq. (5.4)), one has to take the value of the function
immediately before the spike (i.e., u(t−k )x(t−k ) in
the equation above). To model facilitation, the
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probability of release increases with each spike,
and, in between spikes, it decays back to its
baseline level, U , with a time constant τF , i.e.,

u̇ = U − u

τF

+ U(1− u)
∑

k

δ(t − tk). (5.5)

The dynamics of u(t) in Eq. (5.5) are a mini-
mal phenomenological description of the effects
of calcium influx into the synaptic terminal on
the probability of release (Bertram et al., 1996;
Dittman et al., 2000;Markram et al., 1998; Neher
and Sakaba, 2008). Finally, the average post-
synaptic response upon spike is given by

〈R〉 = Nq · ux = A · ux, (5.6)

where the so-called absolute synaptic efficacy,A,
is given by the product of the total number of
release sites, N , and the (average) post-synaptic
response to a single vesicle, q , also known as the
quantal size (see Eq. 5.1).

5.3.2 Parameter Estimation from
Experimental Recordings

Phenomenological models with a small number
of free parameters can be usefully fitted to experi-
mental recordings. The fit provides, on one hand,
a quantitative estimate of the descriptive ability
of the model in different experimental conditions
and, on the other hand, an effective classification
of patterns of synaptic transmission. Furthermore,
the experimental estimates thus obtained provide
a range of biological plausibility for the corre-
sponding parameters, to be used in theoretical/-
modelling studies.

The simplest, and hencemore popular, method
to obtain an estimate of the model parameters
from experimental recordings consists in least-
squares fitting the average model responses to
the trial-averaged experimental responses. The
goodness of the fit provides a quantitative mea-
sure of the descriptive ability of the model. This
is, for instance, the method originally used in
Markram et al. (1998); Tsodyks and Markram
(1997). Least-squares fitting presents, however,

several problems. The trial-averaging procedure
required to fit models to data destroys the in-
formation contained in the correlation between
consecutive responses, as well as in their fluc-
tuations (Barri et al., 2016; Bird et al., 2016).
The accuracy of the parameter estimates, achiev-
able by least-squares fitting, is thus seriously
limited and steadily declines with an increasing
number of parameters to be fitted. Even worse,
least-squares fitting (at least for the Tsodyks–
Markram model) is ill conditioned1 for certain
combinations of parameter values, as shown in
Barri et al. (2016). Thus, the corresponding es-
timates can fluctuate wildly as a result of small
changes in the average responses. Trial-averaging
also severely constrains experimental protocols.
The need to have a suitably large number of
repetitions to average over leads, in practice, to
protocols consisting of short pre-synaptic trains
at relatively high rates, followed by quite long
interstimulation intervals. The repetition of iden-
tical trains allows one to extract little information
about the underlying synaptic dynamics (Barri
et al., 2016). Moreover, the parameters are esti-
mated with patterns of synaptic activation quite
far from physiological patterns, raising the ques-
tion of how good a description are the current
models and/or parameters for repetitive synap-
tic transmission in in vivo-like conditions (Do-
brunz and Stevens, 1999; Kandaswamy et al.,
2010).

An approach alternative to least-squares fitting
consists in exploiting the explicit description of
the sources of stochasticity, as described in the
previous section, and compute the probability
that a given train of post-synaptic responses
is observed in correspondence with a given
sequence of pre-synaptic activity. Obviously,
this probability depends on model’s parameters,

1 Least-squares fitting can be seen as a mapping from
the average experimental responses to the parameters. In
non-mathematical terms, the mapping is ill conditioned
when small changes in the experimental responses result
in large changes of the estimate. Practically, this means
that the estimate obtained is not reliable. In fact, repeating
the experiment would obviously produce slightly different
responses that, in turn, would produce vastly different
parameter estimates.
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which can then be estimated either by maximum
likelihood (Barri et al., 2016) or by full Bayesian
inference (Bird et al., 2016). Compared to
least-squares fitting, statistical inference is
clearly more expensive from a computational
point of view. However, this cost is largely
offset, we believe, by important advantages
(see also Bykowska et al. (2019) for a general
discussion). First, the estimates obtained by
statistical inference are more accurate and less
biased than least-squares estimates. This occurs
because statistical inference techniques exploit
the information contained in the variability of
the synaptic responses and in the correlations
between responses in a train. This information
is destroyed by trial-averaging and is, thus, not
available to least-squares procedures. Second,
statistical inference techniques allow one to
extract quantal as well as dynamical parameters
from the same set of recordings. This means, for
instance, that it is possible to obtain quantal
parameters without the need to undertake
multiple probability fluctuation analyses (Silver,
2003), which requires changing the extracellular
calcium concentration during experiments. Third,
and most importantly, the experimenter has
complete freedom in choosing the stimulation
protocol. For instance, the protocol can be
chosen so as to elicit informative sequences
of synaptic responses, thus achieving highly
accurate estimates of the relevant parameters.
For a given model, the asymptotic bounds on
the accuracy of the estimates obtained with
different protocols can be compared, before
running any actual experiment, by computing
the associated Fisher InformationMatrices (Barri
et al., 2016). Obviously, optimal protocols can be
designed by using the same tool. Alternatively,
and more interestingly, the stimulation protocol
can be chosen so as to reproduce the statistical
features of the in vivo spike trains driving the
synaptic connections of interest. This would
provide experimentalists as well as theoreticians
with tools to develop effective descriptions of
the transmission in physiologically relevant
conditions.

5.4 Network Dynamics in the
Presence of Short-Term
Synaptic Plasticity

The presence of short-term synaptic plasticity
significantly modifies the dynamical repertoire of
neuronal networks. Short-term synaptic plastic-
ity makes the relationship between pre-synaptic
firing rate and post-synaptic input non-linear.
Moreover, it increases the number of dynamical
variables one has to consider when describing the
state of the network. Accordingly, one expects
both quantitative and qualitative changes in the
network dynamics (for a friendly introduction to
dynamical systems analysis, see, e.g., Strogatz
(2018)).

The study of the effects of short-term plasticity
in spiking network is rather complicated, and a
satisfactory understanding has been achieved
only in steady states (Mongillo et al., 2012;
Romani et al., 2006) (but see Schmutz et al.
(2020)). Thus, we consider in the following
a simplified description of the dynamics of a
homogeneous population of excitatory neurons
to gain some insight into the changes in
network dynamics brought about by short-term
synaptic plasticity. Importantly, the regimes
of activity found in this simplified model are
also found in numerical studies of spiking
networks (Mongillo et al., 2008; Tsodyks et al.,
2000).

The state of the population is described by the
recurrent synaptic input, h, which evolves in time
according to

τ ḣ = −h + hext + Wuxτφ(h), (5.7)

where τ is the membrane time constant (of the
order of tens of milliseconds); hext is the external
input and represents the sources of synaptic input
different from the population under consideration
(e.g., the inhibitory neurons); W is the total ab-
solute synaptic efficacy; x and u are the levels
of depression and facilitation of the recurrent
synaptic connections, respectively; φ(·), the so-
called f − I curve, gives the firing rate of the
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population as a function of the synaptic input. We
take the f − I curve to be

φ(h) = νmax

1+ e−βh
, (5.8)

where νmax is the maximal firing rate (for cortical
neurons, νmax is of the order of hundreds of Hz),
and β is the gain (i.e., the larger β, the steeper the
change of the firing rate with the synaptic input).

The levels of depression, x, and facilitation, u,
evolve in time according to

τDẋ = 1− x − uxτDφ(h), (5.9)

τF u̇ = U − u + U (1− u) τF φ(h), (5.10)

where τD is the depression time constant (of the
order of hundreds of milliseconds), τF is the
facilitation time constant (of the order of seconds,
in the cases of interest), and U is the baseline
release probability (see Sect. 5.3.1).

5.4.1 Depressing Transmission

We start by studying the case in which synaptic
transmission is purely depressing. This can be
obtained by taking the limit τF → 0 in Eq. (5.10),
i.e., facilitation decays instantaneously. One is
then left with only two variables, whose dynamics
are described by Eqs. (5.7) and (5.9), where u =
U and constant.

We determine the fixed point(s). From
Eq. (5.7), one finds

h∗ = hext + WUx∗τφ(h∗) �⇒

x∗ = h∗ − hext

WUτφ(h∗)
, (5.11)

where the starred symbols denote the values of
the corresponding variables in the fixed point(s).
From Eq. (5.9), one finds

x∗ = 1

1+ UτDφ(h∗)
. (5.12)

The fixed points are given by the intersections of
the two nullclines Eqs. (5.11) and (5.12), i.e.,

φ−1(ν∗) = W · Uτν∗

1+ UτDν∗ + hext , (5.13)

where we have defined ν∗ = φ(h∗) (and, hence,
h∗ = φ−1(ν∗)). This is an equation that de-
termines the firing rate of the population, ν∗,
in the fixed points, and it can be easily solved
graphically. Before proceeding further, it is useful
to shortly recall what happens in the absence
of short-term synaptic depression, which can be
formally obtained by taking the limit τD →
0 in Eq. (5.9). This results in x∗ = 1 and
constant. The r.h.s. of Eq. (5.13) then becomes
linear in ν∗, i.e., WUτν∗ + hext . In this case,
Eq. (5.13) can have up to three solutions for a
suitable choice of the parameters W and hext

(see, e.g., Brunel (2000)). The low- and high-
rate solutions are stable, while the intermediate-
rate solution is always unstable (saddle node).
Obviously, if τD is sufficiently short, the multi-
stability is preserved. The main difference, as
compared to the case without synaptic depres-
sion, is that the high-rate solution will occur at
lower activity levels. This is a consequence of the
saturation of the synaptic input brought about by
the short-term depression, i.e., h → Wτ/τD in
the limit ν → ∞. By increasing τD further, the
network eventually becomesmono-stable. In fact,
the high-rate solution first destabilizes and then
disappears after colliding with the intermediate-
rate solution. One is then left only with the low-
rate solution. This phenomenology is illustrated
in Fig. 5.2. In Fig. 5.2a, we plot, on the same
graph, the l.h.s. and the r.h.s. of Eq. (5.13) for
three different values of τD (red—τD = 0ms;
blue—τD = 115ms; green—τD = 250ms).
The intersections correspond to the fixed points.
For τD = 115ms, both the low- and high-rate
solutions are stable fixed points (see Fig. 5.2b, c).
For τD = 130ms, there are still three fixed points;
however, both the intermediate- and high-rate so-
lutions are unstable. Thus, the network dynamics
eventually converge to the low-rate fixed point
(see Fig. 5.2d).
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Fig. 5.2 Multi-stability in the presence of short-term
depression. (a) Graphical solution of Eq. (5.13) for τD =
0ms (red), τD = 115ms (blue), and τD = 250ms (green).
(b) Sample trajectories in the h-x plane for different initial
conditions (blue stars). The full square corresponds to the
low-rate solution in (a) for τD=115ms. The fixed point is
a stable node. (c) Same as in (b) for the high-rate solution
(full square). The fixed point is a stable spiral. (d) Fixed

points and sample trajectories for τD = 130ms. Initial
conditions are chosen close to the high-rate solution (open
circle, HR). The fixed point is an unstable spiral, and the
trajectories eventually terminate in the low-rate solution,
which is the only stable fixed point (full square, LR). The
open circle marked SN denotes the saddle node separating
the low- and high-rate solutions. The inset shows a blow-
up of the initial conditions. Other parameters: τ = 10ms,
hext = −1.55, β = 3, W = 375.0, U = 0.2

An interesting behavior appears when the net-
work dynamics have only one fixed point, but
the fixed point is unstable. A necessary condition
for the fixed point to be stable is that it is stable
to (small) perturbations to h, when x is clamped
at the fixed point value, x∗. From Eq. (5.7), one
obtains that the fixed point is unstable when

− 1

τ
+ WUx∗φ′(h∗) ≥ 0, (5.14)

where φ′(h∗) denotes the derivative of φ(·), with
respect to h, evaluated at h∗. Expressing φ′(h∗)

and x∗ in terms of ν∗, Eq. (5.14) can be rewritten
as

βν∗
(
1− ν∗

νmax

)
≥ 1

WUτ

(
1+ UτDν∗) .

(5.15)
The above condition cannot be fulfilled for ν∗ �
0 nor for ν∗ � νmax . In fact, the l.h.s. is almost
zero, while the r.h.s is not smaller than 1/WUτ ,
which is definitely a positive quantity. Thus, for
suitable choices of the parameters, there exists an
interval of intermediate firing rates (i.e., neither
too low nor too high) for which the (only) fixed
point is unstable. In this case, as h and x cannot
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diverge—this is easy to check using Eqs. (5.7)-
(5.9)—the only possible dynamical behavior is a
limit cycle (Poincaré–Bendixson theorem). Note
that this is only true for a two-dimensional phase
space. The orbit of the resulting limit cycle is
plotted in Fig. 5.3a (black) together with the h and
x nullclines (blue and red, respectively). As can
be seen, the orbit runs far from the nullclines in
going fromA to C, through B. The dynamics are
fast during this part of the cycle as the velocities, ḣ
and ẋ, are proportional to the distances from the
respective nullclines. By contrast, the orbit runs
very close to the h nullcline in going from C to
A. In this part of the cycle, the relevant time scale
is then τD , and the dynamics are slow, given that
τD is of the order of hundreds of milliseconds.

This is easy to see. The explicit calculation,
however, is rather cumbersome, and we only out-
line the conceptual steps below. As h is very close
to its nullcline (i.e., ḣ � 0), we can use Eq. (5.7)
to obtain h as a function of x, i.e.,

τ ḣ = −h + hext + Wuxτφ(h) = 0 �⇒
h = F(x). (5.16)

Note that ḣ is not exactly zero, and we make an
error of the order of τ with the above approxima-
tion. Using F(x) into Eq. (5.9), we can express
the r.h.s. as a function of x only, i.e.,

τD

dx

dt
= G(x) �⇒ TC→A = τD

∫ xA

xC

dx

G(x)
,

(5.17)

where xC and xA correspond to values of x at
C and A, respectively. As explained above, in
this estimate, we make an error of the order of
τ , which is practically negligible when τ �
τD . In this limit, the period of the limit cycle is
dominated by the slow part, which, as Eq. (5.17)
shows explicitly, is of the order of τD .

The above picture is confirmed in Fig. 5.3b,
where we plot the time course of both h (top
panel) and x (bottom panel). The cycle starts with
a rapid and large increase of h, which induces
an important decrease of x, that is, it induces a
strong level of synaptic depression in the recur-

rent connectivity (A→B in Fig. 5.3b). As a result,
the neural activity, and hence h, drops down to
very low levels, with h � hext (B→C). Thanks
to the low neural activity (ν � 1/τD), synapses
start to recover from depression, and, as soon
as they become sufficiently strong (C→A), the
cycle starts again. As can be seen, going through
the slow part of the limit cycle takes about 2/3 of
the total period.

5.4.2 Facilitating Transmission

The inclusion of short-term facilitation signif-
icantly increases the repertoire of the possible
dynamical behaviors of the network. The system
becomes three-dimensional and, in some regions
of the parameters space, can even exhibit chaotic
behavior (Cortes et al., 2013). At the same time,
the analytic investigation of the dynamics be-
comes technically much more involved, and thus,
we will limit ourselves mostly to study the fixed
points and their stability. We will focus on the
case τF � τD . When τF ≤ τD , the resulting phe-
nomenology is qualitatively similar to the case
τF = 0 discussed in the previous section.

Also in the presence of short-term facilitation,
one can have up to three fixed points. The fixed
points can be found by solving Eq. (5.13) using,
instead of a constant U , the corresponding prob-
ability of release, u∗, which is now a function of
ν∗. From Eq. (5.10), one finds

u∗ = U
1+ τF ν∗

1+ UτF ν∗ . (5.18)

The probability of release (i.e., the level of fa-
cilitation) increases with τF at fixed ν∗ and in-
creases with ν∗ at fixed τF . More generally, u∗
increases with the product τF ν∗. The graphical
solution of the corresponding fixed point equation
for different levels of facilitation, obtained by
manipulating τF , is illustrated in Fig. 5.4a. If the
facilitation is too low (green—τF = 500ms)
or too high (red—τF = 6 s), there exists only
one fixed point, at low or high rate depending on
the level of facilitation. At intermediate levels of
facilitation, the network is multi-stable (blue—
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Fig. 5.3 Slow oscillations due to short-term depres-
sion. (a) Orbit of the limit cycle in the h–x plane (black)
together with the h nullcline (blue) and the x nullcline
(red). The fixed point (open circle) is unstable. (b) Time

evolution of h (top panel) and x (bottom panel) in the
limit cycle. The period of the oscillations is T � 650ms.
Parameters are the same as in Fig. 5.2 apart from hext =
−1.23 and τD = 250ms

τF = 1.5 s). Short-term facilitation further re-
duces the activity level of the high-rate solution
as compared to the case with purely depressing
transmission (compare the y-axis in Figs. 5.2a
and 5.4a). In fact, as the probability of release
increases with the firing rate, the saturation of
the synaptic input in the limit ν → ∞ is faster,
though the asymptotic level depends only on τD ,
and it is then the same as in the case with only
short-term depression.

The stability of the fixed points can be checked
by using Eq. (5.15), where again one substitutes
U with u∗ given in Eq. (5.18). In the multi-stable
regime, one finds that the low-rate solution is
always stable and the intermediate-rate solution
is always unstable. The high-rate solution, in-
stead, can be stable or unstable depending on the
parameters. The main novelty here as compared
to the case with purely depressing transmission
is that the high-rate fixed point becomes stable
via a subcritical Hopf bifurcation (Cortes et al.,
2013; Mongillo et al., 2008). Thus, there exists
a region in the parameters space where the net-
work exhibits bistability between the low-rate
fixed point and a limit cycle with large-amplitude
oscillations.

This regime is illustrated in Fig. 5.4b. The
network is initialized in the low-rate solution.
After 1s, the external input is increased during
500ms and then restored to its baseline level

(short horizontal red bar). After a short transient,
h converges to a tonic, enhanced level that per-
sists all along the stimulation. Following stimu-
lus removal, the network enters the limit cycle
(note the large-amplitude oscillations of h). The
oscillatory behavior persists (i.e., the limit cycle
is stable) until the external input is transiently
decreased, starting at t = 5s (short horizontal
red bar). The network then goes back to the low-
rate solution. The dynamics of Fig. 5.4b can be
qualitatively understood in the following way.
Consider the dynamics of the h-x sub-system.
Depending on the level of u, it can exhibit two
possible stable behaviors: a steady state at low
rate and a limit cycle with a period of order τD .
As a result of the external stimulation, the value
of u increases and reaches a value for which the
fixed point is not stable anymore. After stimu-
lus removal, and recovery from depression, the
network will thus enter the limit cycle, which is
the only stable attractor at that level of u. The
limit cycle will induce large-amplitude oscilla-
tions of h, and hence of the firing rate, that will
keep the level of facilitation suitably high (i.e.,
so that the low-rate fixed point remains unstable).
For this to be possible, u should not decay too
rapidly in between two consecutive peaks of h.
As these are separated by a time interval of the
order of τD , oscillations can be stable only if
τF � τD .



116 A. Barri and G. Mongillo

firing rate ν

sy
na

pt
ic

 in
pu

t h

0 5 10 15 20 25 30 35-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

τF = 500 ms
τF = 6000 ms

τF = 1500 ms

1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

3

4

5

time [s]

sy
na

pt
ic

 in
pu

t h

a b

Fig. 5.4 Multi-stability in the presence of short-term
facilitation. (a) Graphical solution of Eq. (5.13) (see main
text) for τf = 500ms (green), τF = 1.5 s (blue), and
τF = 6ms (red). For τF = 1.5 s, both the intermediate-
and high-rate solutions are unstable, while the low-rate
solution is stable. (b) Time evolution of h for τF = 1.5 s

under external stimulation. hext is increased from −1.55
to −1.0 in the interval t = [1.0, 1.5] (short horizontal red
line) and decreased from −1.55 to −2.0 in the interval
t = [5.0, 6.5] (long horizontal red line). Parameters are
the same as in Fig. 5.2 apart from W = 225.0 and τD =
150ms

5.5 Synaptic Theory of Working
Memory

Organisms need to actively maintain, and update,
relevant information about the task at hand to
select the appropriate course of action. Mainte-
nance, and update, of information on time scales
ranging from seconds to tens of seconds is sup-
ported by the working memory (WM) system
(Baddeley, 2003; Cowan, 2001). WM is routinely
studied in the context of delayed-response tasks.
In these tasks, the subject (human or animal)
is provided with some information (the cue) at
the beginning of the trial, which has then to be
held in memory over a short period of time (the
delay period) to select the appropriate behavioral
response at the end of the delay period. At the
single-cell level, a major neuronal correlate of
WM is the so-called persistent activity. This con-
sists in the selective (i.e., depending on the cue
stimulus) increase or decrease of single-cell firing
rates, as compared to a suitably defined baseline,
initiated by the presentation of the stimulus and
maintained across the delay period, that is long
after stimulus offset.

Different theoretical accounts have been put
forward to explain short-term memory mainte-
nance (i.e., persistent activity) at the mechanis-
tic level (Barak and Tsodyks, 2014). The most

popular one is based on the notion of attractor
network (Amit, 1989; Amit and Brunel, 1997;
Compte et al., 2000). In this account, the network
possesses multiple preferred states of activity (at-
tractors), each of these states corresponding to
the mnemonic representation of a given stimu-
lus. These preferred states differ by their spatial
distribution of activity so that, depending on the
stimulus, some neurons increase their firing rate,
while others decrease it. The state selected by the
network dynamics depends upon the specific in-
put received. The existence of multiple preferred
states, their stimulus selectivity and their stability,
allows the network to keep track of previous stim-
uli. In most attractor models, the multi-stability
is enabled by single-cell non-linearities. In the
presence of ongoing synaptic activity, the single-
neuron response function is generically S-shaped.
Thus, for excitatory feedback of suitable strength,
the enhanced activity state can be stabilized by a
self-sustained increase in the recurrent input.

An alternative account of temporary memory
maintenance is based on short-term changes
in the properties of synaptic transmission, in
combination with a suitable synaptic structuring
(Mongillo et al., 2008). This account was
inspired by the discovery that excitatory-to-
excitatory synapses in the pre-frontal cortex—
a cortical region heavily involved in WM—are
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strongly facilitating (i.e., with τF � τD), unlike
excitatory-to-excitatory synapses in sensory
cortices that are, instead, mostly depressing (i.e.,
τF � τD) (Wang et al., 2006). Interestingly,
synaptic connections in the pre-frontal cortex can
exhibit facilitation that lasts seconds (Barri et al.,
2016; Wang et al., 2006), which is comparable
with the time scale over which WM is supposed
to hold information. Thus, if the memory trace
were represented by facilitation levels, instead of
patterns of neural activity, it would be naturally
stable for longer periods (of the order of τF ),
with no need for enhanced spiking activity. In
this scenario, neuronal activity is only required to
convert the information, stored in the (synaptic)
facilitation levels, into a spiking form with the
purpose of reading it out or refreshing it, when
the retention interval is significantly longer than
the facilitation time constant.

5.5.1 Implementation in a Spiking
Network

This mechanism has been implemented in a
model cortical network, composed of integrate-
and-fire neurons, storing a set of sparsely coded
random memories in the excitatory-to-excitatory
connectivity according to a Hebbian prescription
(see Mongillo et al. (2008) for details). As
illustrated in Fig. 5.5, the network exhibits three
regimes of activity, depending on the level of
the external input and the strength of long-term
synaptic potentiation.

For sufficiently low levels of the external in-
put, the network exhibits a single stable activity
state corresponding to the spontaneous activity
(Fig. 5.5a). Thus, following stimulus presenta-
tion, the neural activity goes back to its base-
line level. However, the synapses of the neurons
coding for the corresponding memory remain fa-
cilitated, and the memory can be reactivated by
a non-specific (i.e., the same for all excitatory
neurons) excitatory input. The reactivation con-
sists of a short epoch of synchronized activity
(a population spike), where almost every neuron
coding for the memory fires a spike within an
interval of about 20ms. In the absence of the

reactivating signal, the memory fades away over
a time scale on the order of τF . This behavior
can be qualitatively understood by recalling the
analysis of the rate model in Sect. 5.4. Following
the presentation of the stimulus, the level of facil-
itation in the stimulated population will be larger
than the level of facilitation in the unstimulated
population. By properly choosing the amplitude
of the reactivating signal, one can then make the
steady state of the stimulated memory popula-
tion unstable while preserving the stability of the
steady state of the other memory populations (see
Eq. (5.15)). On short time scales (i.e., � τF ), the
activity of the stimulated memory population will
then be attracted to the stable limit cycle (the fixed
point is now unstable), and the population will
produce a population spike.

For intermediate levels of the external input,
the memory population exhibits bistability be-
tween a low-rate fixed point, to be identified
with the spontaneous activity, and a limit cy-
cle, to be identified with the persistent activity
(Fig. 5.5b). The reactivating signal, thus, becomes
unnecessary. Each reactivation increases both the
facilitation level and the depression level (i.e.,
decreases x), the latter terminating the population
spike. The time between subsequent reactivations
is controlled by the recovery from synaptic de-
pression.With a τD compatible with experimental
estimates, this would correspond to cortical oscil-
lations in the theta range (as commonly observed
in WM experiments). As τF � τD , the decay of
the facilitation during periods of low-rate activity
is balanced by the increase produced by the re-
activations, so that it remains at sufficiently high
levels for subsequent reactivation to occur. This
regime is analogous to the one observed in the
simplified rate model (see Sect. 5.4). Finally, for
larger levels of the external input, and if long-term
synaptic potentiation is sufficiently strong, the
memory population exhibits bistability between
two fixed points, one at low rate and the other
one at high rate (Fig. 5.5c). This regime is similar
to the bistability observed in standard attractor
models (see, e.g., Amit and Brunel (1997)).

The network is able to hold multiple memories
at the same time. In fact, the use of facilita-
tion at synaptic terminals as a memory buffer
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Fig. 5.5 Memory maintenance with short-term facil-
itation. (a) Sample spike rasters of neurons in the stim-
ulated (black dots) and unstimulated populations (green
dots). The item is loaded into the memory by activating
the corresponding neuronal population at time t = 0 (dark
shading) and reactivated by a global read-out at a later
time (gray shading). Red curve: the average value of x

in the synaptic connections of the stimulated population;
blue curve: the average value of u for the same synapses.
(b) Same as (a), with an increased background input.
The stimulated population reactivates spontaneously. Red
arrow indicates the onset of a decrease in the background

input that terminates memory maintenance. (c) A fur-
ther increase in background input leads to asynchronous,
enhanced spiking in the stimulated population. (Right)
Histograms of the corresponding differences in single-
neuron firing rates between the delay period and the
spontaneous state in the stimulated population. The delay
period is defined in (a) as the interval between the offset
of the stimulation and the onset of the read-out signal,
and in (b) and (c) as the interval between the offset of the
stimulation and the onset of the decrease in the background
input. Reproduced from Ref. Mongillo et al. (2008) with
permission

makes WM content robust to unrelated neural
activity in the rest of the network. Thus, when
a new stimulus is presented, the spiking activ-
ity related to the previous memory is temporar-
ily suppressed (during stimulus presentations).
However, the facilitation level is very weakly
affected so that, after stimulus removal, the net-
work maintains both memories by subsequent
reactivations of the corresponding populations.
The same feature enables resistance to distrac-
tors. When spiking activity related to memory
maintenance is suppressed by the presentation of

the distractor, information about the active mem-
ory (or memories) is maintained in the increased
facilitation level(s) in the corresponding synaptic
populations. Hence, reactivating spiking activity
is resumed after the termination of the distractor
presentation.

5.5.2 Comparisonwith Experiments

In any physical system—e.g., the brain—
information is stored by modifying the state of
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some or all of its components. The information
can be retrieved, at least in principle, for as long
as said modifications persist (Mongillo et al.,
2017). The underlying time scale sets the time
window over which information can be passively
held and, hence, beyond which an active refresh
mechanism is needed, if one wants to keep the
information. In standard attractor models, this
time scale is either the membrane time constant
(∼10ms) or the synaptic conductance time
constant (∼100ms for NMDA receptors). One
would then estimate the change in spiking rates
(the active refresh mechanism) needed to actively
keep the information to be in the range of tens to
hundreds of spikes per second. When instead
the facilitation level is used as the memory
signal, this time scale goes up to seconds and,
correspondingly, the change in firing rates is
expected to be in the range of few spikes per
second.

It turns out that these estimates are reasonably
accurate when compared with the results of nu-
merical simulations (Barbieri and Brunel, 2008).
For the simulations illustrated in Fig. 5.5, the
change in average firing rates when the network is
maintaining information in the facilitation levels
is about 3 spikes/sec for the transient modality
(Fig. 5.5a), and about 4 spikes/sec for the persis-
tent modality (Fig. 5.5b). When the memory is
maintained by a combination of spiking activity
and facilitation levels (Fig. 5.5c), the change in
average firing rates goes up to about 8 spikes/sec.
In standard attractormodels, change in firing rates
can be hardly below 20 spikes/sec (Brunel, 2000).
Experimental estimates of single-cell changes in
firing rate during themaintenance period are fully
consistent with the predictions of the synaptic
theory of WM (Shafi et al., 2007), while they
are problematic to account for in the standard
attractor framework, in the absence of additional
mechanisms (Barbieri and Brunel, 2008). Inter-
estingly, in some tasks, one observes a significant
reduction, or even disappearance, of enhanced ac-
tivity along the delay period. Enhanced, selective
activity then recovers before the test phase, i.e.,
when the memory is needed (see, e.g., Rainer and
Miller (2002)). These dynamics have been ac-
counted for in the context of the synaptic theory of

WM, though assuming facilitation time constants
somewhat longer than the ones experimentally
estimated (see Barak et al. (2010) and references
therein).

The fact that the memory information is pas-
sively (i.e., in the absence of spiking activity)
maintained over time scales of the order of sec-
onds entails several consequences. One is the
possibility that old, and possibly non-relevant,
information could interfere with novel informa-
tion, if this latter arrives within a time window
comparable with the facilitation time constant.
The existence of serial effects in memory tasks,
whereby information recently held in memory af-
fects the processing of incoming information, has
long been known (see Kiyonaga et al. (2017) for
a recent review). Recent studies have shown that
a quantitatively accurate account of these effects
can indeed be obtained within the synaptic theory
of WM (Barbosa et al., 2020; Kilpatrick, 2018).
Another consequence, which constitutes perhaps
themost specific prediction of the synaptic theory
of WM, is that it should be possible to reactivate
the neural representations of items recently held
in memory by a non-specific excitatory signal
(see Fig. 5.5a). Interestingly, this prediction too
has been verified in experiments by using a tar-
geted pulse of transcranial magnetic stimulation
(Rose et al., 2016; Wolff et al., 2017).

5.6 Conclusions and
Perspectives

We have reviewed a general framework to build
biophysically grounded models of synaptic trans-
mission and to estimate the corresponding param-
eters from experimental recordings. We have also
illustrated some of the effects of short-term plas-
ticity on collective network dynamics and dis-
cussed their computational implications as well
as their consistence with experimental data, in
particular in the context of the synaptic theory
of working memory. It remains to be understood
to which extent qualitative (e.g., facilitating/de-
pressing) and quantitative properties (e.g., τD)
of synaptic transmission inferred from current
in vitro studies provide a good description of
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synaptic transmission in vivo (Borst, 2010). Two
major improvements to experimental design are
suggested by the theory outlined above, which
could easily be implemented with no cost. The
first one would consist in using physiological
levels of calcium in the bath, rather than signif-
icantly higher concentrations as routinely done.
The second one would consist in using patterns of
activation that would more closely mimic spiking
in vivo, rather than using regular trains of spikes.
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6TheMean Field Approach for
Populations of Spiking Neurons

Giancarlo La Camera

Abstract

Mean field theory is a device to analyze the
collective behavior of a dynamical system
comprising many interacting particles. The
theory allows to reduce the behavior of
the system to the properties of a handful
of parameters. In neural circuits, these
parameters are typically the firing rates of
distinct, homogeneous subgroups of neurons.
Knowledge of the firing rates under conditions
of interest can reveal essential information
on both the dynamics of neural circuits and
the way they can subserve brain function.
The goal of this chapter is to provide an
elementary introduction to the mean field
approach for populations of spiking neurons.
We introduce the general idea in networks of
binary neurons, starting from the most basic
results and then generalizing to more relevant
situations. This allows to derive the mean
field equations in a simplified setting. We then
derive themean field equations for populations
of integrate-and-fire neurons. An effort is
made to derive the main equations of the
theory using only elementary methods from

G. La Camera (�)
Stony Brook University, Stony Brook, NY, USA
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calculus and probability theory. The chapter
ends with a discussion of the assumptions of
the theory and some of the consequences of
violating those assumptions. This discussion
includes an introduction to balanced and
metastable networks and a brief catalogue
of successful applications of the mean field
approach to the study of neural circuits.

Keywords

Leaky integrate-and-fire neuron · Binary
neuron · Logistic neuron · Neural
population · Neural circuits · Firing rate ·
Asynchronous state · Bistability ·
Multistability · Metastable dynamics

6.1 Introduction

The purpose of this chapter is to give an ele-
mentary introduction to mean field theory for
populations of spiking neurons.Mean field theory
is a conceptually simple, but far reaching method
developed in physics to explain a wide range
of phenomena, most notably to understand the
nature of phase transitions (Binney et al., 1992;
Le Bellac et al., 2004; Parisi, 1998). At its heart,
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it consists of neglecting fluctuations in the inter-
action between the units defining the system, and
it can lead to qualitatively correct insights with
relatively little effort. For example, a mean field
assumption on the energy potential of a non-ideal
gas leads quickly to the van der Waals equation
of state (Binney et al., 1992). Mean field results
also have a weak dependence on the microscopic
details of the system, promising to extract general
principles that apply to a large class of seemingly
unrelated models.

As neural circuits of the brain comprise a large
number of interconnected neurons, they are ide-
ally suited to amean field analysis. Very often, the
goal is to capture properties of neural circuits that
occur during typical behavior. Typical behaviors
pertain to large networks and should not depend
on the specific number of neurons (as long as this
number is large), or the details about the neu-
ron model, or the precise values of the synaptic
weights. For this reason, we are often interested
in the properties averaged across the distribution
of possible weights and in the limit of infinite
network size. Some important properties, such as
the existence of a sharp phase transition, are only
obtainable in this limit. In neuroscience, phase
transitions are related, for example, to the exis-
tence of memory phases (Amit, 1989) or to tran-
sitions between qualitatively different dynamical
regimes (Sanchez-Vives et al., 2017).

In this chapter, we present the main ideas of
the theory in a network of simplified neuronswith
probabilistic spiking. Including a probabilistic el-
ement allows to interpret the neural activities as
random variables and to articulate the approach
in a general language. All the main steps of the
approach, together with its neural applications,
are already available in this simple system and
can be grasped unencumbered by the technical
difficulties that arise in networks of spiking neu-
rons. When presenting the theory for integrate-
and-fire neurons, an effort is made to eschew
those difficulties and rely only on standard cal-
culus and probability theory. The assumptions of
the theory, and some possible departures from its
predictions, are also discussed. Three important
examples, bistable, metastable, and balanced net-
works, are also briefly considered.

We hope that this chapter will remove a
gap in the existing literature by presenting
an elementary introduction to the application
of mean field theory to networks of spiking
neurons.

6.2 Networks of Binary Neurons

Consider a network of N binary neurons xi ∈
{0, 1}, mutually connected by synapses Jij and
receiving external input Ii,ext coming from distant
neurons in, e.g., different brain areas. The input
current to unit i is therefore

Ii =
N∑

j �=i

Jijxj + Ii,ext , (6.1)

where the sum goes over all N neurons j except
neuron i itself. We assume that time proceeds in
discrete time steps. At each time step, unit xi will
emit a spike (xi = 1) if the input current is larger
than a threshold θ . For convenience and greater
generality, it is best to assume a probabilistic
process of spike emission.We assume that neuron
i will emit a spike with probability

p(xi = 1|Ii) ∝ eβ(Ii−θ), (6.2)

where β is a parameter that controls the level of
stochasticity of the spike emission process. Note
that, due to the term Ii,ext −θ in Eq. 6.2, the effect
of the thresholds can be included in the external
currents. Therefore, in most of the following, we
set θ = 0 and keep the external currents constant.
The following arguments generalize easily to the
case of stochastic external currents.

Since the probability must be bounded by 1,
a convenient choice for p(x) is the logistic func-
tion,

p(xi = 1|Ii) = eβIi

eβIi + e−βIi
= 1

1+ e−2βIi

≡ S(Ii), (6.3)

where S is the logistic function defined by the
above equation. Normalization implies p(xi =
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0) = 1− p(xi = 1), and therefore,

p(xi = 0|Ii) = e−βIi

eβIi + e−βIi
= e−2βIi

1+ e−2βIi

= 1

1+ e2βIi
. (6.4)

We can therefore write p(xi) compactly as

p(xi |Ii) = S(Ii)
xi (1− S(Ii))

1−xi , xi = {0, 1}.
(6.5)

S(Ii) is plotted in Fig. 6.1a for several values of
β. Note that when β → ∞, we retrieve the deter-
ministic model of spike emission (see Fig. 6.1a,
dotted line). On the other hand, when β → 0,
p(xi = 1) = 0.5, and the network becomes a
population of independent neurons. Hence, β also
controls the degree ofmutual influence among the
neurons. Because of Eq. 6.3, we call this model
the (binary) logistic neuron.

At every discrete time step, all neurons’ activi-
ties are updated at the same time, according to the
probabilistic rule Eq. 6.5.

6.3 Characterization of Neural
Activity

The activity of a population of logistic neurons
is shown in Fig. 6.1b for a given choice of pa-
rameters. This is an example of “raster plot,”
where each line is the spike train emitted by
one neuron, and each dot is a spike time. We
note that the activity of the network is stationary
in the following sense: the mean input current
Ii , and therefore the probability of emitting a
spike given Ii , does not change with time. The
activity still looks erratic, because the neurons
probabilistically flip their states over time. This
dynamical behavior is called the “asynchronous
irregular” regime of cortical neurons (Abbott and
van Vreeswijk, 1993; Amit and Brunel, 1997b;
Gerstner, 2000;Renart et al., 2010; vanVreeswijk
and Sompolinsky, 1996), to distinguish it from
other collective behaviors such as global oscilla-
tions, regular spiking, bursting, and so on (a full
account of the possible dynamical behaviors of

one relevant model can be found in refs. Brunel
(2000); Brunel and Hakim (1999)).

The asynchronous regime is therefore the one
in which the firing rates are constant in time, but
the activities of the single neurons are uncorre-
lated and erratic, resembling a stochastic process.
This regime is often observed in cortical circuits
when recordings are made in behaving animals
(Amit, 1995; Compte et al., 2003; Holt et al.,
1996; London et al., 2010), and it can be repro-
duced also in networks of neurons via a number of
mechanisms.Wewill saymore about this later on.
In the asynchronous irregular regime, the average
spike counts do not change, an observation that
often motivates arguments of firing rate coding
(Amit, 1995; London et al., 2010). Even so, firing
rates do not completely characterize the dynamics
of populations of neurons. The variability of the
inter-spike intervals could also be of interest. An-
other relevant property is the temporal correlation
of each neuron (Compte et al., 2003; Joelving
et al., 2007) as well the pattern of pair-wise spike
count correlations among different neurons (Do-
iron et al., 2016; Josić et al., 2009). In princi-
ple, all higher-order correlations among neurons
would be of interest, although they are much
harder to quantify (Gao et al., 2017; Ohiorhenuan
et al., 2010; Riehle et al., 1997).

Although mean field theory is “custom-made”
to succeed in the asynchronous irregular regime,
it can often provide information on the other
aspects of the dynamics mentioned above. In this
introductory account, we shall limit ourselves to
the characterization of the asynchronous regime.

6.3.1 Firing Rate

As pointed out in the previous section, when
the general goal is to understand the aggregate,
macroscopic behavior of populations of cortical
neurons, a collection of firing rates is a relevant
place to start. Intuitively, the firing rate is a
measure of the average activity of a neuron (or
the whole network) based on the spike count,
however there exists more than one definition
of firing rate (see e.g. chapter 1 of Dayan and
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Abbott (2001)). For the logistic neuron, the firing
rate of neuron xi (at any time t) can be defined

with respect to the probability measure Eq. 6.5
and is a function of Ii(t):

fi(t) = 〈xi(t)〉 = 1× p(xi(t) = 1|Ii(t)) + 0× p(xi(t) = 0|Ii(t)) (6.6)

= p(xi(t) = 1|Ii(t)) (6.7)

= S(Ii(t)). (6.8)

Here, the symbol 〈·〉 is used for the average with
respect to the distribution Eq. 6.5. Since Ii(t) =∑

j �=i Jijxj (t)+ Ii,ext , fi is a function of all xj (t)

with j �= i. Since the latter are random variables,
fi is also a randomvariable.We have averaged the
spiking activity of unit i, but this average depends
on the activities of the other neurons. Therefore,
in some cases we further average fi(t) over the
remaining xj :

〈fi(t)〉x = 〈S(Ii(x(t)))〉x
=

∑

x

S(Ii(x(t))) p(x(t)), (6.9)

where the vector x
.= {x1, . . . , xN} does not

contain xi . We call this quantity the average firing
rate to distinguish it from the firing rate fi(t). One
could also be interested in higher moments of fi

or, in general, in its probability distribution. We
will see later that this probabilistic notion of firing
rate is useful also in deterministic networks that
are nevertheless capable of generating stochastic-
like activity. Note that in a recurrent network, the
xj will depend in turn on {fk}; in other words,
Eq. 6.9 is a self-consistent equation (more on this
later). We now provide a few concrete examples
that are relevant for the following.

Constant Input If the neuron is probed by a con-
stant input current Ii , then from Eq. 6.8, we sim-
ply have

fi = S(Ii) = 1

1+ e−2βIi
. (6.10)

This quantity is analogous to the frequency–
current (f -I ) curve in neurophysiology (La Cam-
era et al., 2008). In more general contexts,
this function goes under such names as “gain
function,” “transfer function,” or “response

function.” Figure 6.1 shows that the response
function of the logistic neuron is a sigmoidal
function of the input current. Mean field theory
reflects the generic properties of the response
function such as its sigmoidal shape—although
its detailed shape may also qualitatively change
the behavior of some networks (Kadmon and
Sompolinsky, 2015; Mattia and Del Giudice,
2002).

Note that different neurons may have different
f -I curves Si , in which case Eq. 6.10 is replaced
by fi = Si (Ii), but the arguments given below
proceed in much the same way. Also note that,
since f ∈ [0, 1], f values should be interpreted
in units of maximal firing rate; for example, in-
terpreting each time step as a time bin of 10 ms,
f = 0.1 would correspond to a firing rate of
10 spikes/s.

Gaussian Input Current In mean field theory,
one considers the input current to be either a
constant, as in Eq. 6.10, or a Gaussian random
variable Ii(t) = Ii(z(t)). At every step, z(t)

takes a random value according to a distribution
G(z) that we consider time-independent through-
out this chapter. When the spiking activity of
the neuron depends only on the current value of
the input, as is the case of our logistic neuron,
the firing rate is given by an average over the
distribution of z(t):

〈fi〉z = 〈S(Ii)〉z =
∫

dzG(z) S(Ii(z)). (6.11)

Here we have suppressed the dependence on time
due to our assumption of stationary distribution
G(z). Note that, in a recurrent network, z in turn
depends on the activity of the network. We will
see examples later on.
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Fig. 6.1 (a) Plot of the logistic function S(x) = 1
1+e−2βx

(Eq. 6.3) as a function of x = Ii for several values of β.
For infinite β, the curve becomes the Heaviside function
�(x) = 0 if x < 0 and �(x) = 1 if x ≥ 0 (dotted
line). (b) Spiking activity of a population of 1000 binary
neurons (only 25 shown; each line is a neuron, and each
dot is a spike). Here, β = 2, the external currents and

the synaptic weights were uniformly distributed across
neurons: Ii,ext = −1.1u, Jij = 2u/N , where u is a
random variable uniformly distributed between zero and
one: u ∼ U(0, 1). At each time step, all neurons are
updated simultaneously, based on the value of their input
current

Measuring the Firing Rate How do we measure,
in practice, the firing rate of neurons? When the
neural activity is stationary, i.e., the spiking prob-
ability does not change with time, the average
firing rate can also be computed as the average
spike count over time:

〈fi〉 = lim
T →∞

1

T

T∑

t=1

xi(t) ≈ ni(T )

T
, (6.12)

where ni(T ) is the number of spikes emitted by
neuron i over a sufficiently long time T . Note
that 〈fi〉 gives the average firing rates of the
neurons even as they will continuously flip their
activity states (between spiking and non-spiking),
as shown in Fig. 6.1b. Since the spike trains are
erratic, local temporal fluctuations of activity
around the mean firing rates are expected, but
they are suppressed by the dynamics of the net-
work if the asynchronous state is stable. When all
neurons in a population have the samemean firing
rate, the latter can be estimated more accurately
via an ensemble average, such as that defined
in Appendix A.1.1. The ensemble average also
allows to measure the temporal modulations of
firing rate in non-stationary situations.

6.4 TheMean Field Equations

The goal of mean field theory is to predict the
behavior of our network and in particular how this
behavior depends on its parameters. This is not
an easy task, due to the interactions between the
neurons.

The main idea of the mean field approximation
is to replace the interaction between a neuron and
its afferents with a mean field generated by the
latter.

In other words, one assumes that the neurons
in the network receive an input current equal to
the mean input generated by their presynaptic
neurons (in physics, where this approach was in-
vented, atoms and elementary particles are under
the effect of “fields,” which explains the name
“mean field”). The argument is as follows. One
notes that the input current is a sum of N random
variables. If the individual variables are indepen-
dent and N is large, the central limit theorem
tells us that the sum tends to follow a Gaussian
distribution. Therefore, we write

Ii(t) =
N∑

j �=i

Jijxj + Ii,ext ≈ 〈Ii〉 + η(t), (6.13)
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where η(t) is a temporally fluctuating Gaussian
variablewith stationary statistics (the extension to
time-dependent processes will not be considered
in this chapter). We later show how to include the
effect of η in ourmean field approximation. But to
start, we simply assume that the fluctuations of Ii

can be neglected. If the weights Jij are constants,
this leads to the mean field approximation:

Ii ≈ 〈Ii〉 =
∑

j �=i

Jij 〈xj 〉 + Ii,ext

=
∑

j �=i

Jijfj + Ii,ext , (6.14)

where, to lighten the notation, by fj we mean
the firing rate averaged over the activity of the
whole network, 〈fj(x)〉x , see Eq. 6.9. Each neu-
ron therefore experiences an input current that
is equal to its mean. Replacing Ii with its mean
value into Eq. 6.10, we get

fi = S
⎛

⎝
∑

j �=i

Jijfj + Ii,ext

⎞

⎠ , i = 1, . . . , N.

(6.15)

This is our first example of mean field equations.
They are a set of N coupled equations for the
firing rates fi of theN neurons in our population.
Comparison with Eq. 6.9 shows that we have re-
placed 〈S(I )〉 with S(〈I 〉):

〈fi〉 = 〈S(Ii)〉 = S(〈Ii〉). (6.16)

Since S is a non-linear function, this relationship
cannot be correct, in principle. The idea is that
the input currents Ii(x), as random variables, con-
verge to their means 〈Ii(x)〉 in the limit N → ∞,
in which case fi → S(〈Ii(x)〉). This procedure
is basically an application of the law of large
numbers to Ii(x). This requires some care, an
issue we consider in Sect. 6.7.1.

Note the following about Eq. 6.15:

• Spiking has disappeared, and it has been re-
placed by smooth variables fi .

• The mean field equations are self-consistent
equations in that the same mean firing rates
appear on both the left- and right-hand sides
of the equations.

The self-consistency requirement is due to the
recurrent nature of the network, wherein the out-
put of a neuron is also an input to all the other
neurons. This is even more apparent if we write
these equations in vectorial form, after defining
the vector of firing rates f = {f1, f2, . . . , fN},
the vector of external inputs Iext , and the synaptic
matrix J (having elements Jij with Jii = 0):

f = S(Jf + Iext ). (6.17)

In this equation, the vector f is required to be the
same on the left- and right-hand sides, and for
this reason, it is called a “fixed point”:

Definition 1 (Fixed Points) The self-consistent
solutions of the mean field equations are called
fixed points of the network’s activity.

Depending on the nature of the model, there may
be multiple fixed points, which may be stable or
unstable. Often the aim is to build a model with
fixed points having desired properties. We shall
see examples later.

In summary, the mean field equations are self-
consistent equations for the average firing rates,
obtained under the hypothesis that we can re-
place the input to each neuron with its mean
value.

6.4.1 Solving theMean Field
Equations

One way to solve the mean field equations is to
use a fictitious dynamics that converges to the so-
lution. One convenient dynamics is the following:

{
fj = S(Ij )

τI İi = −Ii +∑N
j �=i Jij fj + Ii,ext .

(6.18)
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At equilibrium, this system gives our mean field
equations 6.14–6.15 for the pair (I ∗, f ∗), where
f ∗ = S(I ∗(f ∗)) are the fixed points of this
coupled system.

The full dynamics of the pair (I, f ) would re-
quire closing an equation for the moments of I as
a function of f (see, e.g., Bressloff (2009); Buice
and Chow (2013) for examples of this kind of
approach); however, the simplified dynamics 6.18
is effective at finding the fixed points of our
network.

Remark 1 The model Eqs. 6.18 is an example
of “rate model” of Cowan–Wilson type (Wilson
and Cowan, 1972) and has been used in different
contexts. For symmetric synaptic weights, it can
be used as a “mean field version” of a stochastic
network called the Boltzmann machine (which is
closely related to our binary logistic network), see
Hopfield (1984) and Ch. 7 of Dayan and Abbott
(2001). For Gaussian random weights with zero
mean and variance g2/N , it has been analyzed to
explore the ability of neural networks to produce
chaotic dynamics in the firing rates (Sompolinsky
et al., 1988). In general, rates models are ad
hoc descriptions of neural dynamics that can be
derived as mean field approximations of micro-
scopic models. Note that the same rate model can
be interpreted as the mean field approximation
of more than one microscopic description, see
e.g. Chow and Karimipanah (2020); Cowan et al.
(2016) for recent reviews.

6.4.2 RandomWeights

A highly relevant case is when the synaptic
weights are random variables sampled from
a given distribution. This is motivated by the
fact that weight distributions in cortex are
wide (Buzsáki and Mizuseki, 2014). As we are
interested in the typical behavior of the network,
we must average our quantities of interest over
the distribution of synaptic weights. Importantly,
once the weights are sampled, they are kept
fixed (or “quenched”). It is said that they give
rise to quenched noise, in contrast to fast noise
emerging from the spiking dynamics of the

neurons. Quenched noise is very important as
it allows to include the effect of heterogeneities
in the description of the collective behavior of
neural circuits.

Also in this case, themean field approximation
assumes that we can replace the current with its
mean:

〈〈Ii〉〉 =
∑

j �=i

〈〈Jijxj 〉〉 + Ii,ext , (6.19)

where we have used the symbol 〈〈·〉〉 to indicate
an average with respect to the distribution of the
weights and with respect to the distribution of the
temporal values of the activities xj (t). We shall
use the symbol [·] for the former and 〈·〉 for the
latter, so that

〈〈Ii〉〉 =
∑

j �=i

[Jij ]〈xj〉 + Ii,ext = J
∑

j �=i

fj + Ii,ext ,

(6.20)

where we have assumed the weights are inde-
pendent samples from a distribution with mean
J and that the neural activities and the weights
are uncorrelated variables. Note that the aver-
age 〈xj 〉 now depends on the distribution of the
weights (this will be clearer in Sect. 6.5.1); how-
ever, we simply write 〈xj 〉 to simplify the nota-
tion.

Performing the mean field approximation,
Eq. 6.16, we get the mean field equations:

fi = S
⎛

⎝J

N∑

j �=i

fj + Ii,ext

⎞

⎠ , i = 1, 2, . . . , N.

(6.21)

We defer an analysis of the approximations
performed so far to a later section (Sect. 6.7); first,
we show how the theory can be used to make
predictions on the network’s activity.

6.4.2.1 Heterogeneous Population
From the mean field equations 6.21, we guess
(see the next subsection) that they can admit a
solution with different firing rates across neurons
only if the external input currents (or the response
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Fig. 6.2 Heterogeneous network with mean field predic-
tions. (a) A raster plot from the network of Fig. 6.1b (only
25 neurons shown). (b) The firing rates predicted in mean
field (vertical axis) vs. the firing rates observed in the
simulation of panel A via Eq. 6.12 (with T = 10,000 time

steps). The dashed line is the identity line. Note how the
firing rates in the network span almost the entire range
of admissible values, and the points are mostly located
along the identity line, which confirms the good agreement
between the mean field predictions and the actual firing
rates

functions) are different for different neurons. An
example is shown in Fig. 6.2a for a network of
excitatory neurons with a uniform distribution of
external currents. The firing rates are widely dis-
tributed across neurons and are well captured by
the mean field equations (panel B). This network
can be interpreted as a collection of neurons with
different characteristics (e.g., by choosing θi =
−Ii,ext and setting all external currents to zero),
and therefore, it is a model of a heterogeneous
network.

There is another meaning in which a network
can be considered heterogeneous, i.e., in the pres-
ence of random connectivity. This will be consid-
ered in Sect. 6.5.2.

6.4.2.2 Homogeneous Population
If the neurons are identical and receive identi-
cal external current, then the mean field equa-
tions 6.21 have an evident symmetry: for largeN ,
the input current will be the same for all neurons
and all neurons in the network will have the same
firing rate, as shown in Fig. 6.3a.

Under the hypothesis of equal firing rates
across neurons, the mean input current becomes

μi = J

N∑

j �=i

fj + Iext = (N − 1)Jf + Iext

≈ NJf + Iext (6.22)

and is the same for all neurons. Note that we have
used the symbol μi for the mean input current.
This is a customary notation and will be used
extensively later on.

By using 6.22, the mean field equations 6.21
become N copies of the scalar equation

f = S(NJf + Iext ). (6.23)

The graphical solution of this equation is shown
in Fig. 6.3b for J = 1/N and is f ∗ = 0.13,
in agreement with the firing rate observed in the
simulation of Fig. 6.3a. Note how the activity
of a single neuron (and hence the single-neuron
response function) is sufficient in this case to
describe the activity of the whole population.

Remark 2 The scaling of J with N is motivated
by the fact that the input current is proportional
to N ; as the size of the population increases (as
required by the mean field approximation), the
input will saturate the activity of all the neurons.
Instead, by taking J = g/N , where g is a
constant, Eq. 6.23 reads

f = S(gf + Iext ), (6.24)

an equation in which N has disappeared—hence
valid in the infinite network. Synaptic weight
scaling will be considered in more detail in
Sect. 6.7.1.



The Mean Field Approach for Populations of Spiking Neurons 133

0 100 200 300 400 500
0  

0.2

0.4

0.6

0.8

1  

a

0 0.5 1
0

0.2

0.4

0.6

0.8

1
b

Fig. 6.3 Homogeneous network with mean field predic-
tion. (a) Raster plot from the same network of Fig. 6.1b
except N = 100 and Iext = −0.6 for all neurons. All
neurons have the same firing rate. The thick curve is the
ensemble average (see Appendix A.1.1) with a fixed bin
size of 10 time steps (average firing rate across time bins
is 0.13, or 13 spikes/s in suitable units). (b) The firing rate
of the neurons in A can be obtained from the graphical
solution of the mean field equation 6.24 with g = 1. The

dashed line represents the equation y = f , while the full
line is y = S(f ). The intersection point of these two
lines (circle) gives the fixed point f ∗ (here f ∗ = 0.13, in
agreement with the firing rates observed in panel A). Since
the slope of S(f ) is < 1 at the fixed point, the activity of
the network is stable at this point. Inset: network’s activity
(top) in response to an input perturbation (bottom) shows
that the fixed point is stable

Remark 3 The approach used in this section
illustrates a typical reasoning of mean field
theories: one lays out hypotheses that are intuitive
consequences of the mean field assumptions
(Gaussian current, uniform firing rates); one then
derives and solves the equations; and finally one
checks, a posteriori and self-consistently, that the
hypotheses were correct.

Stability of the Fixed Points The mean field
equations also tell us about the stability of the
fixed point, at least with respect to the dynamics
Eq. 6.18. For the model of Eq. 6.24, the dynamics
is the same for all neurons and reads

τI İ = −I + gS(I ) + Iext . (6.25)

A fixed point f ∗ of this model is stable if the slope
of the transfer function at f ∗ is smaller than 1,

∂S
∂f

∣∣∣∣
f ∗

< 1, (6.26)

while it is unstable if this slope is larger than one.
This is a standard result of linear stability analysis
and can be understood as follows. The fixed point
x∗ of the system ẋ = −x + �(x) is obtained for

�(x∗) = x∗. For x > x∗ but very close to x∗,
stability requires ẋ = �(x)−x < 0 (so that x will
decrease back to x∗), which is true if �(x) lies
below x. In turn, this is true if the slope of�(x) at
the fixed point is smaller than the slope of y = x,
i.e., for �′(x∗) < 1. One can similarly work out
the other cases. Using the fact that I ∗ = gf ∗ +
Iext together with the chain rule of derivation, we
obtain Eq. 6.26.

Although Eq. 6.25 is not the real dynamics of
the network, it captures the stability of its fixed
points—as long as the network is large enough.
This is shown in the inset of Fig. 6.3b, where the
activity returns to f ∗ after the removal of a rather
strong perturbation. Note that we only have N =
100 in this example.

Bistability For a suitable choice of parameters,
the single homogeneous population of Fig. 6.3
can be bistable, in the sense that it can have
two stable points of activity: one at low firing
rate and one at high firing rate. This is shown
in Fig. 6.4. Note that, given S(x), the mean field
equations 6.24 depend only on g and Iext . As
g is increased, the shape of S(f ) will change.
For g = 1.2, there are three intersection points.
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Based on Eq. 6.26, the middle point (white circle)
is unstable, while the other two are stable (black
circles). Thismeans that the network can be found
in one of the two stable activity regimes: one at
low firing rate and one at high firing rate.

Bistability is an important property that
has been used to model perception (Moreno-
Bote et al., 2007), memory (Amit and Brunel,
1997b), and decision-making (Wang, 2002), and
therefore, it is of interest to establish under what
conditions a neural circuit can be bistable. This is
done with the aid of a bifurcation diagram, which
plots the fixed points as a function of the mean
synaptic weight, as shown in Fig. 6.4b. From the
diagram, we see that the network is bistable for
1.16 < g < 1.3, whereas outside this interval the
network is monostable (there is only one fixed
point). Inside the bistable region, a vertical line
will intersect the diagram at three points, two
stable and one unstable (located on the dashed
branch). These points correspond to intersection
points in the related plot of panel A. The values
g = 1.16 and g = 1.3 are the critical points, since
as they are crossed by g, a qualitative different
behavior emerges.

Figure 6.4c illustrates the bistable network as a
model of short-term memory (Amit, 1995; Funa-
hashi et al., 1989; Miller et al., 1996; Miyashita
and Chang, 1988). Let us assume that our net-
work contains neurons that respond to a particular
sensory stimulus (such as a visual image). In the
absence of the stimulus, the network is in the
lower fixed point. At time 300, an input current
mimicking the presence of the sensory input is
turned on, causing the activity to rise. After the
stimulus is removed, the activity settles on the
higher fixed point. Since the activity at the higher
fixed point persists after the removal of the stim-
ulus, it may be interpreted as an internal repre-
sentation of the stimulus. In this example with a
single population, one can only accommodate one
memory; however, this restriction can be avoided

by partitioning the network into subpopulations
of neurons (Amit and Brunel, 1997b). This model
is discussed next.

6.4.3 Clustered Networks

The homogeneous network is the basis for an
important generalization, one in which the net-
work is partitioned intoM homogeneous subpop-
ulations or clusters. We now consider this case.
Given populations α and β with mean synaptic
weights Jαβ for all i ∈ α and j ∈ β, proceeding
as done in Sect. 6.4.2, we have

〈〈Ii〉〉 =
∑

j �=i

〈〈Jijxj 〉〉 =
∑

j �=i

[Jij ]〈xj 〉 =
M∑

β=1

NβJαβfβ,

(6.27)

where Nβ is the number of neurons in cluster
β (not to be confused with the parameter of the
logistic function) and fβ is the population average
of the neuronal firing rates in cluster β. Note
that 6.27 is the same for all neurons in cluster α.
The mean firing rate of any neuron in population
α is therefore given by the mean field equations:

fα = S
⎛

⎝
M∑

β=1

NβJαβfβ + Iα,ext

⎞

⎠ , α = 1, . . . , M, (6.28)

where we have assumed all neurons of the
same population receive the same external
current. Note that now determining the fixed
points and their stability requires a gen-
eralization of the analysis of Sect. 6.4.2.2
(Mascaro and Amit, 1999; Mazzucato et al.,
2016).

One special case of clustered network is
the excitatory–inhibitory recurrent network.
In this case, we have two populations, one
having excitatory (E) neurons and one having
inhibitory (I ) neurons, and 4 types of mean
synaptic weights Jαβ : JEE , JII , JEI , and JIE ,
where, e.g., JEI are the mean synaptic weights
from inhibitory to excitatory neurons. Note
that this model respects Dale’s law, stating that
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Fig. 6.4 Bistability in the network of Fig. 6.3. (a)
Graphical solution of the mean field equations 6.24 for
g = 1.2. There are now three intersection points, two
of which stable (black circles, firing rates 0.17 and 0.83,
respectively). (b) Bifurcation diagram of the network of
panel A. The plot shows the fixed points as g is varied.
The interval 1.16 < g < 1.3 (vertical full lines) is the
bistability interval with three fixed points: one unstable

(on the dashed branch) and two stable. Vertical dotted
line corresponds to g = 1.2 used in panel A. (c) Raster
plot and ensemble average for the network in panel A
with N = 1000 (same keys as in Fig. 6.3a). The activity
is initially at the lower fixed point and, after a transient
stimulation (shown at the bottom), enters the higher fixed
point. See the text for details

neurons can be excitatory or inhibitory, but not
both.

Clustered networks are much studied, espe-
cially in the context of integrate-and-fire neurons.
Since the fluctuations of the neural activity play
an essential role in clustered networks, we first
show how to incorporate these ingredients in the
theory and defer a discussion of clustered net-
works to the end of Sect. 6.6.

6.5 Extensions

In this section, we consider two very important
extensions of the theory, the incorporation of the
variability of the input current generated by the
network itself and the random connectivity of the
neurons. We start from the former.

6.5.1 The Impact of the Input
Variance on theMean Firing
Rates

In deriving our mean field approximation, we
have replaced the current with its mean input.
The input is the sum of many contributions and
therefore, by the central limit theorem, converges
to a Gaussian random variable in the thermody-
namic limit N → ∞. A Gaussian distribution is
characterized by its mean and variance. Hence,
by incorporating the impact of the variance of
Ii into our model, we can go beyond mean field
and provide a more accurate description of the
network’s behavior.

We can deduce heuristically the effect of Gaus-
sian fluctuations arguing as follows. We replace
the input current with its Gaussian approximation
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valid in the large N limit:

Ii(t) =
N∑

j �=i

Jijxj (t) + Ii,ext ≈ 〈Ii〉 + ηi(t) ≡ μi + σiz(t), (6.29)

where z(t) ∼ N (0, 1) is a standard Gaussian
variable and μi, σ 2

i are the mean and variance of
Ii , respectively. Figure 6.5a shows that the tem-
poral fluctuations of the input current are indeed
well described by a Gaussian distribution.

For convenience, the constant term Ii,ext has
been included into the mean μi . The firing rate,
for a given value of z(t) = z, is given by Eq. 6.8

fi(z) = 1

1+ e−2β(μi+σi z−θ)
, (6.30)

where β is constant. Mean field amounts to set-
ting z = 0. Now we can relax this hypothe-
sis and compute the average firing rate Eq. 6.11
by adding up all contributions μi + σiz, each
weighted by the probability of z:

fi(μi, σi) =
∫ +∞

−∞
dz√
2π

e−
z2

2
1

1+ e−2β(μi+σiz−θ)
.

(6.31)

This is the response function of the binary logistic
neuron when the fluctuations of the input current
are taken into account, as shown in Fig. 6.5b. This
function is closely approximated by a logistic
function with a different parameter β ′ (see, e.g.,
Maragakis et al. (2008) and Fig. 6.5b):

fi(μi, σi) ≈ 1

1+ e−2β ′(μi−θ)
, (6.32)

where

2β ′
i =

(
1

4β2
+ πσ 2

i

8

)−1/2

. (6.33)

Now there are two sources of noise: β and σi ,
where the latter originates from the activity of the
network itself.

When σi is small, this function approaches
fi = S(μi), i.e., Eq. 6.10 evaluated at the mean

current, from which we recover our mean field
equation Eq. 6.15. When σi is large enough,
though, it endows the network with its own
source of variability due to Gaussian nature of
the input current. Hence, it is no longer necessary
to assume an intrinsic form of noise β, and
we can allow our model to be deterministic by
setting β → ∞. In this limit, one immediately
gets

fi(μi, σi) → 1

1+ e
−
√

8
π

(
μi−θ

σi

) . (6.34)

Comparison with Eq. 6.3 shows that this is our
previous response function S(μi) with β ∝ σ−1

i

(recall that in Eq. 6.3 we had set θ = 0). There
are important differences, however:

• Now the noise affecting the spike probability
(hence, the firing rate) is the result of the
random input current rather than intrinsic noise
in the spiking mechanism (which is now deter-
ministic).

• Unlike β, σi is not constant but depends on
the activity of the network—in particular, it de-
pends on the firing rates of the other neurons,
as we shall see shortly.

• Equation 6.34 shows that the firing rate is a
sigmoidal function of μi , with σi controlling
its slope.

It turns out that this heuristic picture, including
the dependence of the firing rate on μi , σi in
the form (μi − θ)/σi , is correct also for more
realistic models of spiking neurons (Sect. 6.6).
The reason is intuitively simple: the firing rate
is determined by the distance between μi and
θ in units of σi : the difference μi − θ , on its
own, is not sufficient to determine the firing
rate.
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Fig. 6.5 (a) Distribution of input currents across time
for the network of Fig. 6.3 at the fixed point. To avoid
variations in current across neurons, equal weights equal
to g/N were used (with N = 1000). The distribution
is described well by a Gaussian distribution with mean
and variance predicted by mean field theory Eqs. 6.39

(dashed). (b) Response function of the noise-driven lo-
gistic neuron: comparison of Eq. 6.31 (full line) and its
approximation Eq. 6.32 (dashed) with simulations of the
logistic neuron driven by Gaussian input current (dots).
The output firing rates are functions of the input firing
rates through μi(fin), σi (fin) given by Eqs. 6.39

Remark 4 What does, in the deterministic model
where β → ∞, make the input current behave
as a stochastic variable? This has to do with the
chaotic nature of the dynamics resulting from
ingredients such as quenched synaptic weights,
random connectivity (discussed later), and the
recurrent nature of the network. More details will
be given later.

6.5.1.1 The Moments of the Input
Current

To close the self-consistency loop of the mean
field equations, we need to determine the depen-
dence of μi, σi on the firing rates of the presy-
naptic neurons. For the mean, we have Eq. 6.20,
which we write here in the equivalent form:

μi =
∑

j

[Jij ]fj + Ii,ext . (6.35)

To compute the variance, we can use the formula
for the variance of the product of two independent
random variables applied to Jij xj (in the follow-
ing,E(z) denotes the generic expectation of z, and
note that x2

j = xj ):

V ar(Jijxj )

= V ar(Jij ) E(x2
j ) + V ar(xj ) E

2(Jij )

= V ar(Jij )fj + fj (1− fj ) E
2(Jij )

= (V ar(Jij ) + E
2(Jij ))fj − E

2(Jij )f
2
j

(6.36)

≈ E(J 2
ij )fj , (6.37)

where the approximation is valid for small fj ,
which is a relevant case in cortex. Although we
know the exact result Eq. 6.36, we chose to em-
phasize the approximate result in 6.37, because,
as we shall see later, there is a sense in which
this result is exact in networks of spiking neu-
rons. Also, low firing rates tend to decorrelate the
activities of the neurons, an assumption required
to apply the central limit theorem and to add up
the variances coming from the N neurons of the
network, which from Eq. 6.37 gives

σ 2
i ≈

N∑

j

[
J 2

ij

]
fj . (6.38)

For the homogeneous population of Fig. 6.5
where the synaptic weights were set equal to
g/N , using these formulae, we obtain

μi = gf + Iext , σ 2
i ≈ g2f

N
, (6.39)

which are the same for all neurons. The Gaussian
density function with these parameters predicts
well the current’s temporal fluctuations, as shown
in Fig. 6.5a. Note how in this case the variance
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will vanish in the thermodynamic limit due to our
choice Jij ∼ 1/N (but see Sect. 6.7.1).

6.5.1.2 Extended Mean Field Theory
When taking into account the variance of the
input, the self-consistent mean field equations
read, in vectorial notation, as

f = S(μ(f ), σ (f )). (6.40)

An important example is the clustered network
of Sect. 6.4.3. In that case, all neurons in the same
cluster receive current with the same input and
variance, and we obtain

μα =
M∑

β=1

Nβ[J ]αβfβ + Iα,ext ,

σ 2
α =

M∑

β=1

Nβ[J 2]αβfβ, (6.41)

where [J ]αβ and [J 2]αβ are the mean and
the second moment of the synaptic weights
between neurons of populations α and β.
Note that while the terms in the mean input
can be positive or negative (depending on the
sign of [J ]αβ , which is negative if population
β is inhibitory), the variance is the sum
of positive terms. This is because we have
assumed that the inputs coming from different
neurons are independent, i.e., their covariances
vanish.

Strictly speaking, the theory is valid in the
thermodynamic limit, which in the clustered
network requires some care. Approximately,
however, we expect good predictions for a large
enough number of neurons in each cluster. Also,
it is possible to have situations in which σ 2

α → 0
in the limit (see, e.g., Eqs. 6.39), and if no
external fluctuations are added, the network’s
behavior becomes deterministic. We discuss
ways to keep a finite variance for N → ∞ in
Sect. 6.7.1.

6.5.2 Random Connectivity

So far, all neurons were connected to all other
neurons in the network (with the exclusion of
themselves). In real cortical circuits, however,
neurons are connected to different numbers and
types of other neurons. Even neglecting the het-
erogeneity in cell types, random connectivity can
have a meaningful impact on the dynamics of the
network and its stationary activity regimes.

A simple, and widely used, model of random
connectivity is to assume that any two neurons
are connected by a synapse with probability c.
Calling cij ∈ {0, 1} the random variable rep-
resenting whether or not a synaptic connection
exists from presynaptic neuron j , its mean and
variance are c and c(1 − c), respectively. To
leverage our previous result Eq. 6.37, now in need
of generalization, it is convenient to redefine the
synaptic weight to include cij :

Jij → cijJij
.= Ĵij . (6.42)

We further assume that cij and Jij are indepen-
dent random variables (i.e., synapses of different
strengths are equally likely to exist). It follows
that the mean input in mean field becomes

μi = c
∑

j

[Jij ]fj + Ii,ext , (6.43)

while for the variance, we have, from Eq. 6.37
(note that c2ij = cij ),

V ar(Ĵij xj ) ≈ c E(J 2
ij )fj , (6.44)

and therefore,

σ 2
i ≈ c

∑

j

[J 2
ij ]fj . (6.45)

For a network with M clusters, denoting with cαβ

the mean connectivity from neurons in clusters
β to neurons in clusters α, summing up over the
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neurons in each cluster, we obtain the generaliza-
tion of Eq. 6.41:

μα =
M∑

β=1

cαβNβ[J ]αβfβ + Iα,ext , σ 2
α =

M∑

β=1

cαβNβ[J 2]αβfβ. (6.46)

The fixed points (and their stability) can be found
with a linearized dynamics for the coupled vec-
tors {μα, σ 2

α }, which generalizes the methods of
Sect. 6.4.2.2, see e.g. Mascaro and Amit (1999);
Mazzucato et al. (2016).

Remark 5 In some models, the input current to
population α comes from Next Poisson spike
trains with rate fext , connectivity cα,ext , and
synapses Jα,ext , in which case the external current
has both a mean and a variance,

μα,ext = cα,extNα,ext [J ]α,extfext ,

σ 2
α,ext = cα,extNα,ext [J 2]α,extfext , (6.47)

which enter the right-hand sides of Eqs. 6.46.

In the next section, we introduce clustered net-
works of spiking neurons in continuous time, and
we will see that the mean field equations are
given, also in that case, by Eqs. 6.40 and 6.46. The
only difference will be in the sigmoidal response
function S.

In the example considered in this section,
connections among neurons are made randomly
and independently with a fixed probability,
a structure sometimes called Erdös–Rényi
connectivity. However, mean field theory can
also be developed in networkswith more complex
connectivity structures (see, e.g., Nykamp et al.
(2017)).

6.6 Networks of
Integrate-and-Fire Neurons

The theory developed so far can be applied to
networks of integrate-and-fire neurons. This is a
more relevant case because of its greater biologi-

cal significance and the possibility for the theory
to be directly tested in experiment.

6.6.1 Leaky Integrate-and-Fire
Neuron

For concreteness, we shall develop the theory for
networks of leaky integrate-and-fire (LIF) neu-
rons. LIF neurons are characterized by their mem-
brane potential V (t) at time t according to the
standard model

dVi

dt
= − Vi − VL

τ
+

N∑

j �=i

Jij

∑

k

δ(t − t
j

k )+Ii,ext .

(6.48)

Here, VL is the resting potential, τ is the mem-
brane time constant, Jij are the synaptic weights
in voltage units, δ(t) is the Dirac’s delta function,
and t

j

k is the time of the kth spike emitted by
presynaptic neuron j . The two rightmost terms
represent the input current: the synaptic and ex-
ternal current, respectively. Note that both terms
are in units of voltage/time; to obtain these terms
in units of current, one should divide them by
Cm, the membrane capacitance. To simplify the
formulae, here we assume Cm = 1 and keep
the input current in units of voltage/time. When
the inputs contain excitatory and inhibitory spike
trains, this model goes also under the name of
Stein’s model (Stein, 1965). Since this model
lacks the non-linear conductances responsible for
action potential generation, we complement it
with boundary conditions on V to mimic the
emission of a spike. Specifically: when V hits a
threshold θ , a spike is said to be emitted and V

is immediately reset to a value Vr , where it is
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clamped for a refractory period τr . After a time
τr , the dynamics Eq. 6.48 resumes.

This behavior is illustrated in Fig. 6.6 for the
case of a single excitatory input spike train and

synaptic weight J . As shown in the left panel, V
jumps by J upon arrival of a presynaptic spike
and decays exponentially in between spikes, in
keeping with the solution to Eq. 6.48:

Vi = V ∗
i,L(1− e−t/τ ) + Vi(0)e−t/τ +

∑

jk

Jij e
−(t−t

j

k )/τ�(t − t
j

k ), (6.49)

where V ∗
i,L

.= VL + τIi,ext is a constant term
that represents the new equilibrium value of the
membrane potential in the presence of a constant
external current. Figure 6.6b shows the emission
of spikes (followed by a reset) when V hits the
threshold θ = −45mV.

6.6.1.1 The Moments of the Free
Membrane Potential

Analogously to the situation with the binary neu-
ron, we need to determine the response function
of this model neuron, i.e., its firing rate as a
function of the input current. After reabsorbing
Ii,ext into V ∗

i,L, the input current is given by the
synaptic input current, i.e. (see Eq. 6.48)

Ii(t) =
N∑

j �=i

Jij

∑

k

δ
(
t − t

j

k

)
. (6.50)

However, the neuron emits a spike when Vi , not
Ii , exceeds the threshold. Assuming a stationary
input, after a transient Vi reaches the steady state
(from Eq. 6.49):

Vi(t) = V ∗
i,L+

∑

jk

Jij e
−(t−t

j

k )/τ�(t−t
j

k ). (6.51)

We are therefore interested in characterizing
this term.

Just as before, Vi is the sum of contributions
coming from many neurons. Assuming indepen-
dent or, at most, weakly correlated neurons, Vi

follows approximately a Gaussian distribution

with mean μi and variance σ 2
i . Let us indicate

with JE the excitatory weights and with JI the
inhibitory ones. Moreover, we assume that the
inputs

∑
k δ(t − t

j

k ) are independent Poisson
spike trains with mean fE and fI , respectively.
Then (see appendix A.1.2 for details),

μi = V ∗
i,L + NE[JE]fEτ − NI [JI ]fIτ, σ 2

i = 1

2
NE[J 2

E]fEτ + 1

2
NI [J 2

I ]fI τ. (6.52)

Note that Eq. 6.52 is valid for the free membrane
potential, i.e., in the absence of output spikes.
Nevertheless, μi and σi also determine the firing
rate of the neuron, as we show next.

6.6.1.2 The Response Function of the
LIF Neuron

The response function of the LIF neuron is dif-
ficult to compute despite the simplicity of the
model. Fortunately, a closed formula is known
under the so-called diffusion approximation, an
approximation valid when:

(i) The number of presynaptic inputs is large, but
each synaptic input contributes a very small
perturbation to the membrane potential.

(ii) The values of the input current in successive
time bins are independent (this is true if, e.g.,
the input current is the sum of independent
Poisson spike trains).

The diffusion approximation is pictorially illus-
trated in Fig. 6.7.

We note that condition (i) is rather realistic
in cortex, where values of J are estimated to
be about 1/20 or less of the difference θ − VL

(for example, J ≈ 0.5mV with spike thresh-
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Fig. 6.6 Membrane potential of the LIF neuron, Eq. 6.48,
driven by one excitatory Poisson spike train with fir-
ing rates 300Hz for sub-threshold input (panel A) and
1200Hz for supra-threshold input (panel B). The input
spike train is shown at the bottom of each panel (vertical

ticks). Neuron parameters: VL = −65mV (dashed line
in A), θ = −45mV (dashed line in B), Vr = −60mV,
τr = 2ms, τ = 20ms, J = 1mV. The external current
was set to zero

a

b
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Fig. 6.7 Diffusion approximation for the LIF neuron. (a)
LIF neuron response to two spike trains (shown below
the membrane potential trace), one excitatory (upward
tickmarks) and one inhibitory (downward tickmarks). (b)
Diffusion approximation to (a): same neuron driven by
fluctuating Gaussian input current with the samemean and
variance as the Poisson input in (a). Note that although the

membrane potential and the spike times differ in the two
cases, the firing rates of the output spike trains match. (c)
Same as (a) for smaller J but larger input firing rates. The
membrane potential looks smoother than in (a) and already
rather similar to its diffusion approximation shown in (d).
(d) Diffusion approximation to (c).

olds 10–20mV above rest; see e.g. Shadlen and
Newsome (1994)). Condition (ii), also known as
the white noise approximation, should hold self-
consistently in the whole network, and for finite
values of the synaptic weights, it remains an
approximation (Lerchner et al., 2006; Pena et al.,
2018; Vellmer and Lindner, 2019) (we will say
a bit more on this in Sect. 6.7.2). For feedforward
input, however, the diffusion approximation gives
excellent results for the firing rate of the LIF
neuron, as shown in Fig. 6.8. The response func-
tion shown in the figure reads (Amit and Brunel,

1997b; Amit and Tsodyks, 1992; Johannesma,
1968)

�(μ, σ)

=
(

τr + τ
√

π

∫ θ−μ√
2σ

Vr−μ√
2σ

dxex2
(1+ erf(x))

)−1

,

(6.53)

where erf(x) is the error function and μ, σ are
given by Eqs. 6.52. As a reminder, the error func-
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tion is defined as

erf(x) = 2√
π

∫ x

0
dze−z2 = 2

∫ √
2x

0

dz√
2π

e−
z2

2 = P
(
|z| <

√
2x

)
, (6.54)

where z ∼ N (0, 1) is a standard Gaussian
random variable. Two different derivations of
Eq. 6.53 can be found e.g. in Johannesma (1968)
and Brunel (2000) (see also Siegert (1951)).
Figure 6.8 shows that Eq. 6.53 is in excellent
agreement with simulations despite a finite J (in
figure, J = 1 and θ − VL = 20). It has also been
determined experimentally that this response
function describes quite accurately the response
function of real cortical neurons (La Camera
et al., 2008).

With the response function in hand, we can
write the self-consistent mean field equations for
this model (in vectorial notation):

f = �(μ(f ), σ (f )), (6.55)

where �i is given by 6.53 and μi, σi are given
by 6.52. In the more general case of M clusters
with random connectivity, Eq. 6.52 generalizes to
(see Sect. 6.5.2)

μα = V ∗
α,L +

M∑

β=1

cαβNβ[J ]αβfβτα, σ 2
α = 1

2

M∑

β=1

cαβNβ[J 2]αβfβτα, (6.56)

where [J ]αβ < 0 if β is an inhibitory population,
and some terms may reflect a synaptic input
coming from external pools of neurons (see
Eq. 6.47). For simplicity, we have assumed
the same equilibrium value for all neurons in
the same population (V ∗

α,L

.= VL + τIα,ext ), a

10 20 30 40
0

50

100

Fig. 6.8 Response function of the LIF neuron driven by
synaptic input. The plots show the stationary firing rate as
a function of fin, the firing rate of excitatory presynaptic
inputs. Dots: firing rate from simulations of Eq. 6.48 with
Jij = 1 and input firing rate reported on the horizontal
axis. Line: response function under the diffusion approxi-
mation, Eq. 6.53

restriction that can be easily removed. Note the
similarity of Eqs. 6.56 with the relations 6.46
valid for the binary neuron, and note that 6.56
holds for the membrane potential. For the input
current, Eq. 6.50, expressions identical to 6.46
hold (see appendix A.1.2 for details).

Although we have outlined the theory for net-
works of LIF neurons, the same theory applies
to networks of other integrate-and-fire neurons,
such as the quadratic and exponential integrate-
and-fire neurons, and even to some conductance-
based models. The main difference is in the re-
sponse function to be used; see, e.g., Fourcaud-
Trocmé et al. (2003); Fusi and Mattia (1999);
La Camera et al. (2004); Richardson (2004).

Spiking networks with inhibitory and
excitatory populations can exhibit a repertoire of
different behaviors. They can produce fast global
oscillations with asynchronous spiking in single
neurons, globally synchronized states as well
as states of asynchronous activity (e.g., Brunel
(2000); Brunel and Hakim (1999); Gerstner
(2000); Mattia and Del Giudice (2002); van
Vreeswijk and Sompolinsky (1998)). In the
presence of multiple clusters, complex network
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configurations are possible (Mazzucato et al.,
2015), including configurations wherein an
excitatory cluster is active on the backdrop of
a globally spontaneous activity state. Such a
model was first introduced and analyzed in Amit
and Brunel (1997b) with the mean field approach
outlined here and was proposed as a biologically
plausible model of working memory capable
of storing and retrieving multiple memories.
In particular, if single neurons can code for
multiple stimuli (as observed in real cortical
neurons), an extensive number of stimuli can
be accommodated (Curti et al., 2004). These
networks are rather complex but still amenable to
amean field analysis that is a direct generalization
of the approach outlined here. Networks of this
kind have also been proposed as mechanistic
models of decision-making in cortical circuits,
see, e.g., Wang (2008). More recently, similar
models have been used to explain the emergence
of slow fluctuations in firing rates. We discuss
them in Sect. 6.7.3.

6.7 Validity of the Mean Field
Approximation

In the mean field procedure carried out in
Sect. 6.4, we have assumed that the sum over
many independent inputs causes the input current
Ii to be distributed as a Gaussian-distributed
variable. We have then neglected the fluctuations
of Ii . By doing so, we have assumed that each
neuron receives the mean input generated by
the other neurons and by the external currents.
In Sect. 6.5, we have included the effect of the
Gaussian fluctuations into the theory, as well as
the effect of random connectivity. In this picture,
each neuron receives a Gaussian input current
with given mean and variance that depend, self-
consistently, on the activities of the other neurons.

In this section, we consider the assumptions
made so far and some of the consequences of
violating those assumptions.

6.7.1 Implications of the
Thermodynamic Limit and
Synaptic Scaling

We first note that the theory applies only to
large networks. Only when the input is the
sum over many independent terms, we can
apply the central limit theorem and replace
the input current with a Gaussian variable.
Therefore, this assumption requires to perform
the thermodynamic limit N → ∞, which in turn
implies that the synaptic weights must be scaled
with N for the input current to remain finite in
the limit.

For concreteness, we consider a single
population of binary neurons with constant
external current. The input is a sum of N terms
of order 1; assuming independent contributions
from presynaptic neurons, both the mean
and the variance will grow as N (neglecting
Ii,ext for now, we focus on the recurrent
contributions):

〈Ii〉 = 〈〈
N∑

j

Jij xj 〉〉 ∼ O(N), V ar(Ii) = V ar

⎛

⎝
N∑

j

Jij xj

⎞

⎠ ∼ O(N), (6.57)

where the symbol O(N) means “order N"
as N → ∞, i.e., O(N)/N → constant .
Receiving a large input, all neurons will saturate
to their maximal activity value, which would
render the state of the network useless for
computation. Therefore, we must rescale the
synaptic weights so as to produce a finite
activity.

Two main scaling options have been used: one
is to scale the weights as Jij ∼ g/N and the other
is to scale them as Jij ∼ g/

√
N .

• With the first choice, Jij ∼ g/N , we obtain

〈Ii〉 ∼ O(1), V ar(Ii) ∼ 1

N
. (6.58)

The variance vanishes in the limit. In this case,
the input current ceases to fluctuate, and all
neurons receive exactly the same input and
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therefore will have the same neural activity.
The mean field prediction in this case is fi =
f for all i, with f given by the self-consistent
Eq. 6.24,

f = S(gf + Iext ), (6.59)

analyzed in Sect. 6.4.2.2.
• With the second choice, Jij ∼ g/

√
N , we have

〈Ii〉 ∼ O(
√

N), V ar(Ii) ∼ O(1). (6.60)

In this case, the mean input tends to increase
with N , while the variance remains finite (“or-
der 1”). The prediction is that all neurons’ ac-
tivities will saturate to their maximal value, as
in the absence of scaling. This can be avoided
by adding inhibitory populations of neurons,
as shown next.

6.7.1.1 Balanced Networks
The problem encountered with the 1/

√
N scaling

may be rescued by inhibition. Let us consider a
network with one excitatory and one inhibitory
population, each of size N . For simplicity, we
consider constant synapses in each population.
By rescaling all weights as Jαβ = J̃αβ/

√
N

and the external current as μE,ext ∼ μ̃E,ext

√
N ,

Eq. 6.41 gives

μE = √
N(J̃EEfE − J̃EI fI + μ̃E,ext ) (6.61)

μI = √
N(J̃IEfE − J̃II fI + μ̃I,ext ). (6.62)

In the same limit, the variances remain finite:

σ 2
E = J̃ 2

EEfE + J̃ 2
EI fI (6.63)

σ 2
I = J̃ 2

IEfE + J̃ 2
II fI . (6.64)

Nowwe require that themean inputs remainO(1)
in the limit of largeN . This requires the inhibitory
and excitatory components in Eq. 6.61 to cancel
out in the limit, at least within order 1/

√
N :

J̃EEfE − J̃EIfI + μ̃E,ext = μE√
N

→ 0 (6.65)

J̃IEfE − J̃II fI + μ̃I,ext = μI√
N

→ 0, (6.66)

or, in matrix notation,

J̃ f = −μ̃ext . (6.67)

Networks with this property are known as “bal-
anced” networks (van Vreeswijk and Sompolin-
sky, 1996, 1998) and are the object of much
research because they share many properties of
real cortical circuits, including erratic spike trains
that are difficult to explain without the balance
hypothesis (see the next section). Note that the
input current retains its variability in the thermo-
dynamic limit, justifying the introduction of σ in
the extended mean field theory of Sect. 6.5.1 (an
alternative justification would be the presence of
an external fluctuating input for any N (Amit and
Brunel, 1997a,b), in which case the synapses can
be scaled as 1/N ).

Remark 6 We must observe that cortical neu-
rons are not connected to all other neurons in
their neural circuit, but they are connected to,
say, K � N neurons, where K can be large.
Therefore, the theory outlined above can be made
more realistic by assuming random connectivity
with mean c = K/N , in which case Eq. 6.46
holds. In the limit N → ∞, K → ∞ with
K/N → 0, and Jαβ ∼ 1/

√
K , from the above

equations, we see that the mean will grow as√
K , while the variance will remain finite. All

the arguments remain the same, except that we
replace N with K . In this version of the theory,
synapses are required to scale as the inverse of
the square root of their mean number of affer-
ents K , rather than the total number of neurons.
Partial evidence for a 1/

√
K scaling of cortical

synapses has been reported in Barral and Reyes
(2016).

Remark 7 We should notice that the argument of
the previous remark holds only if one can prove
that correlations vanish in the thermodynamic
limit. Technically, this requires K < lnN (Der-
rida et al., 1987). However, it turns out that, in a
balanced network, such requirement is not neces-
sary (Renart et al., 2010). See also Sect. 6.7.2.
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6.7.1.2 Mean Field Theory of Balanced
Networks

The mean field theory of the balanced network
proceeds as follows: the balanced solution f ∗ is
given by the solution to Eq. 6.67, i.e.,

f ∗ = −J̃−1μ̃ext . (6.68)

This is a necessary condition for the existence of
the balanced state; additional conditions must be
imposed to guarantee positive, non-saturating fir-
ing rates (vanVreeswijk and Sompolinsky, 1998).
In a recurrent network, we have the additional
requirement that the output rate of a neuron in a
population must match its own input firing rate:

fE = �E(μE(fE, fI ), σE(fE, fI )) (6.69)

fI = �I(μI (fE, fI ), σI (fE, fI )), (6.70)

where �α is the response function of the neurons
in the α population. Note that f ∗

E and f ∗
I given

by Eq. 6.68 provide a value for the variances (ac-
cording to Eq. 6.63) but do not provide a value for
the input means μE,I defined in Eq. 6.61 (these
are of order 1 but are not necessarily zero, even
in the thermodynamic limit). Therefore, one im-
poses the balance condition and derivesμE,I self-
consistently:

find μE, μI so that:

f ∗
E = �E(μE, σE(f ∗

E, f ∗
I )) (6.71)

f ∗
I = �I (μI , σI (f

∗
E, f ∗

I )). (6.72)

Note thatμE,I depend on f ∗
E,I : for example, if the

external currents are varied, one obtains new f ∗
E,I

values and thus newμE,I from the self-consistent
equations above.

We make a few more important remarks re-
garding balanced networks:

• Equation 6.67 shows that the balanced state
requires an external current, and the external
current must be of order

√
K (see Remark 6).

Without an external current, Eq. 6.67 reads
J̃ f = 0. This case is problematic in several
ways. For example, when a non-zero solution

exists for the firing rates, the latter could have
large fluctuations in the null subspace of J̃ ,
and the asynchronous state could be lost. Mean
field theory with a singular synaptic matrix is,
in general, problematic.

• Equation 6.68 implies that the balanced rates
depend linearly on the external input current,
which is at odds with the bistability studied in
Sect. 6.4.2.2 resulting in macroscopic changes
in firing rates. In other words, a network can-
not be balanced and bistable at the same time
(Renart et al., 2007). To obtain a bistable bal-
anced network, other sources of non-linearity
must be leveraged, such as short-term plastic-
ity (Barbieri and Brunel, 2007;Mongillo et al.,
2012).

• In a balanced network, rates dynamically ad-
just to balance excitatory and inhibitory inputs,
so that the mean and the variance of the input
remain of order 1 (van Vreeswijk and Som-
polinsky, 1998).When themean input is below
threshold, firing is due to input fluctuations
and this regime is stable for continuous per-
turbations of the input. This produces erratic
spike trains without the need for fine tuning.

6.7.2 The Role of Correlations

Correlations of neural activity come in two main
flavors, spatial (called cross-correlations) and
temporal (called autocorrelations). Mean field
theory makes specific assumptions about them:
in the most basic form, both forms of correlations
are supposed to vanish in the thermodynamic
limit. We briefly discuss the role of correlations
in this section.

Spatial Correlations The application of the cen-
tral limit theorem invoked in Sect. 6.7.1 also re-
quires negligible correlations between the activi-
ties of the neurons. For example, if the synaptic
weights are symmetric, Jij = Jji , then the ran-
dom variables Jijxj and Jjixi could be correlated.
If the variables are highly correlated, global os-
cillations of the firing rates may emerge, and the
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asynchronous regime is lost. Sparse connections
typically reduce the correlations between neurons
and are very often invoked (see below); other
mechanisms, such as the balance of excitation
and inhibition discussed in the previous section,
are effective at reducing correlations even in net-
works that are not sparse (Helias et al., 2014;
Renart et al., 2010).

Definition 2 (Sparseness) A network is sparse
when its neurons receive a mean number of con-
nections K � N , such that the average connec-
tivity c = K

N
→ 0 as N → ∞.

Note that the definition above does not exclude
the possibility that K → ∞ in the thermody-
namic limit. In fact, in the theory of balanced
networks, we take both N → ∞ andK → ∞. In
finite networks, where K , N , and J are all finite,
sparseness becomes a messier concept. A more
useful approach in that case might be to specify
the conditions on the values of K and J result-
ing in negligible correlations between the spike
trains coming from different neurons. Normally,

in this regime, mean field theory will be quite
accurate.

In the presence of correlations, some of the
formulae derived earlier may not hold. For ex-
ample, consider Eq. 6.20 and its generalization to
random connectivity: by using the general fact
that 〈yx〉 = 〈y〉〈x〉 + Cov(y, x), we get (with
〈y〉 = 〈cijJij 〉 = c[J ])

〈〈
N∑

j

cijJij xj 〉〉 = cN [J ]f + c

N∑

j

Cov(Jij xj )

(6.73)

= K[J ]f + K〈Cov〉, (6.74)

where c = K/N and 〈Cov〉 .= N−1 ∑N
j

Cov(Jijxj ). We see that if the mean covariances
do not vanish in the limit, the two terms on the
right-hand side have the same order ofmagnitude.
A similar argument applies to the sum over the
presynaptic neurons of quantity 6.37. In this case,
we have to use the more general formula for the
variance of

∑N
j cijJijxj :

V ar

⎛

⎝
N∑

j

cij Jijxj

⎞

⎠ =
∑

j

V ar(cijJijxj ) + 2
∑

j<k

Cov(cijJij xj , cikJikxk). (6.75)

Note that the first term of 6.75 is a sum over N

terms, whereas the second is a sum over O(N2)

terms, and therefore, the second term may not
negligible compared to the first.

It must be noted that introducing scaling laws
for c = K/N and Jij in these formulae may
not be sufficient to determine the impact of the
covariance terms. For example, if the network is
in the asynchronous regime, the covariance terms
vanish by definition. In general, several ingredi-
ents in addition to connectivity contribute to the
degree of cross-correlations between spike trains
in a recurrent network of spiking neurons (see,
e.g., Ostojic et al. (2009)), and each case may
have to be analyzed separately. Two important
examples in which cross-correlations vanish in
large networks are balanced networks (even dense

ones (Helias et al., 2014; Renart et al., 2010)) and
networks with K < lnN (Derrida et al., 1987).

Temporal Correlations Another important
assumption of the theory is the absence of
temporal correlations in the activity of single
neurons, as quantified by their autocovariance
(AC). Whereas the firing rate is the average of
the activity, e.g. 〈xi〉, the AC at lag τ is given by

ACi(τ) = 〈xi(t)xi(t + τ)〉 − 〈xi(t)〉〈xi(t + τ)〉.
(6.76)

Often one computes the autocorrelation instead,
which is just a normalized version of the AC.
The AC is a measure of the similarity between
the activities of a neuron at two time points. For
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example, the AC of x(t) = cos(ωt) is itself a
cosine function. In the asynchronous regime with
stationary firing rate, the AC is a delta function,

ACi(τ) = ACi(0)δ(τ ). (6.77)

We refer to this assumption as the “white noise”
approximation. The presence of temporal corre-
lations poses two main problems to the theory:

• Determination of the firing rates. When the
activity depends only on the current value of
the input, as in our network of binary logistic
neurons, the autocorrelation does not affect the
determination of the firing rates. The activity
of LIF neurons, however, depends on the pre-
vious history at least back to the time of their
previous spike. The response function of the
LIF neuron (Eq. 6.53) correctly describes the
firing rate only for white noise input. It is often
argued that in a large network, the sum ofmany
input spike trains will converge to a delta-
correlated input current, but in general this is
not strictly correct (Câteau and Reyes, 2006;
Lindner, 2006;Moreno-Bote et al., 2008). The
temporal correlations present in the input spike
trainsmay therefore survive in a large network.
Examples of such correlations in spiking neu-
rons are due to a finite refractory period, which
introduces a negativeAC at very short lags, the
finite rise and decay time of receptor-mediated
current, and firing rate adaptation. Improved
response functions in the presence of synap-
tic filtering have been found, e.g., Fourcaud
and Brunel (2002); Moreno-Bote and Parga
(2004). However, the recurrent nature of the
network may induce finite correlation times in
a network that otherwise has no built-in tempo-
ral correlations (Fulvi Mari (2000); Lerchner
et al. (2006)), which leads us to the next point.

• Self-consistent theory of correlations. Aside
from the firing rates, a satisfactory theory
should also determine self-consistently the
autocovariance of the activity of a recurrent
network. Self-consistent descriptions of AC
have been obtained with a variety of methods,
some also applicable to spiking networks
(Harish and Hansel, 2015; Lerchner et al.,

2006;Mastrogiuseppe and Ostojic, 2017; Pena
et al., 2018; Sompolinsky et al., 1988; Vellmer
and Lindner, 2019). These efforts have shed
light on the dynamical behaviors of neural
networks, as well as the transitions among
them, as one or a few key parameters are
varied.

6.7.3 Finite Size Effects

The theory requires the thermodynamic limit
N → ∞. However, it typically works well
also in finite networks, as confirmed by the
agreement with numerical simulations. In a finite
network, however, discrepancies from the mean
field predictions can be observed. Fluctuations in
the network’s activity can destabilize fixed points
that would otherwise be stable in the infinite
network (for some relevant applications, see
e.g. Braun and Mattia (2010); Miller and Wang
(2006)). In this section, we briefly discuss two
possible consequences of having a finite number
of neurons: a spatial variation of firing rates and
metastability.

Spatial Variation of Firing Rates Mean field the-
ory assumes that all neurons of a homogeneous
population have the same firing rate. Due to ran-
dom connectivity, neuronswill receive input from
a mean number of K = cN neurons, with vari-
ance c(1− c)N = K(1−K/N). The cell-to-cell
fluctuations in the number of inputs scale there-
fore as

√
K . WhenK is large, the fluctuations are

negligible compared to the mean (the distribution
converges to a δ function centered in K), so that
all neurons receive the same number of inputs K .
In a finite network, however, fluctuations in the
number of inputs can induce variability in the fir-
ing rates across neurons. This is especially true in
a balanced network, where the mean input scales
as

√
K , the same order of magnitude of the spa-

tial fluctuations (van Vreeswijk and Sompolin-
sky, 1998). Both in these models and real cortical
circuits, the spatial distributions can be quite wide
but are well predicted by a mean field analysis
that treats the distribution of firing rates self-
consistently, see, e.g., Amit and Brunel (1997a).
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Metastability The spatially distributed firing
rates mentioned in the previous paragraph tend
to be stable despite the finite size of the network.
A different phenomenon is metastability, where
the firing rates in subpopulations of neurons
are homogeneous and well predicted by mean
field theory, but the activity of the network is
not stationary. Metastability occurs when the
stable fixed points of activity are destabilized by
fluctuations due to finite N . For metastability to
occur, one needs at least two stable fixed points
that lose stability in the finite network. This case
is illustrated in Fig. 6.9a, b for the network of

Fig. 6.4 with g = 1.1, Iext = −0.6/g, and
N = 100.When this network has fewer than 1000
neurons, there are enough fluctuations to cause
the network’s activity to randomly flip between
the two fixed points shown in panel A. The larger
N , the longer the time spent in each point.

In a network partitioned into many clusters
and including recurrent inhibition, a mean field
analysis shows the existence of a large variety
of fixed points (Mazzucato et al., 2015), and the
interplay of recurrent inhibition and finite size
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Fig. 6.9 Metastability due to finite size effects. (a)
Graphical solution of the mean field equations for the bi-
nary network of Fig. 6.4 with g = 1.1, Iext = −0.6/g. (b)
Rasters and ensemble average of the network of panel A
with N = 100 neurons. Finite size effects cause the activ-
ity of the network to flip among the two fixed points shown
in (a). (c) Mean field analysis of a clustered network of
LIF neurons with 30 excitatory clusters, analogous to the
bifurcation diagram of Fig. 6.4b. In this case, there are

multiple upper branches, each characterized by a different
number of simultaneously active clusters (from 1 to 8).
A new branch appears as soon as the relative potentiation
of synaptic weights inside clusters (J+) crosses a critical
point (vertical red lines). (d) Raster plot of the network
of panel C for J+ = 5.2 (green vertical line) showing rich
metastable dynamics. Note that this network is completely
deterministic. Panels C and D adapted from Mazzucato
et al. (2015)
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fluctuations brings about a rich metastable dy-
namics (Deco and Hugues, 2012; Litwin-Kumar
and Doiron, 2012; Mazzucato et al., 2015), as
shown in Fig. 6.9c, d.

This occurs when the mean synaptic weights
inside the excitatory clusters are strong enough,
with the critical point being accurately predicted
by mean field theory. In fact, there are a multitude
of critical points for themean synaptic weights, as
shown by the vertical red lines in Fig. 6.9c. Above
the smallest critical point, only one excitatory
cluster can be active at any given time. Above a
second critical point, up to 2 clusters can be ac-
tive, and in general beyond the nth critical point,
up to n clusters can be active. SeeMazzucato et al.
(2015) for details.

6.8 Discussion and Conclusions

In this chapter, we have presented an elementary
introduction to the mean field approach for pop-
ulations of spiking neurons. This is an approach
borrowed from physics that allows to study the
behavior of large networks by replacing the input
to a neuron with a mean field generated by its af-
ferent neurons. A key feature is self-consistency,
which has two meanings: in the first, it means
that the properties of input and output neurons
in homogeneous populations must match; in the
second, it means that the conditions assumed ab
initio to develop the theory (such as Gaussian
current) must indeed occur. In the most basic set-
ting, we focus on matching self-consistently the
firing rates and neglect other important properties
such as the autocorrelations of the neurons. The
theory, however, can be generalized to include
those properties as well.

It may seem strange that a theory based on
neglecting fluctuations or assuming stationary be-
havior can give useful predictions in the presence
of both fluctuations and temporal dynamics. Yet
we are familiar with the success of such theories
in physics where, in studying large systems com-
posed of interacting particles, thermal fluctua-
tions will cause the particles to move around or to
flip their spins, while macroscopic properties of
the system, such as volume, pressure, or energy,
may remain constant.

The theory is, strictly speaking, only valid in
the thermodynamic limit and under restrictive
conditions, such as stationary activity and low
correlations among neurons. However, it can be
extended in a number of ways, for example by
including the fluctuations of the input current or
determining, self-consistently, the spatial varia-
tion of firing rates across the neurons of a finite
network. The theory has allowed an understand-
ing of the behavior of networks partitioned into
populations of excitatory and inhibitory neurons,
each of which can be further partitioned into sub-
clusters of different cell types along the lines
discussed in Sects. 6.5.2 and 6.7.3.

There are many other ways in which the
theory can be extended. By looking at the self-
consistent autocorrelation in mean field, it was
found that rate models such as Eqs. 6.18 can
exhibit deterministic chaos in the dynamics of
the firing rates (Aljadeff et al., 2015; Kadmon
and Sompolinsky, 2015; Molgedey, 1992; Rajan
et al., 2010; Sompolinsky et al., 1988). In
this context, the mean field approach is more
commonly referred to as “dynamical mean
field theory” (Crisanti and Sompolinsky, 2018;
Schuecker et al., 2016). Similar efforts are
being carried out in spiking networks, where
the possibility of firing rate chaos is still
an open question (Harish and Hansel, 2015;
Ostojic, 2014; Wieland et al., 2015). Other
ways in which the theory can be extended
include ways to determine self-consistently the
effects of firing rate adaptation (Gigante et al.,
2007; La Camera et al., 2004; Treves, 1993),
neuromodulators (Brunel and Wang, 2001),
temporal and spatial correlations (Ginzburg,
1994; Lerchner et al., 2006; Meyer and van
Vreeswijk, 2002; Vellmer and Lindner, 2019),
short-term plasticity (Barbieri and Brunel,
2007; Mongillo et al., 2012), voltage-dependent
conductances (Capone et al., 2019; Kumar et al.,
2008; Sanzeni et al., 2020), spatial topology
(Pyle and Rosenbaum, 2017; Wilson and Cowan,
1973), and more. Within these extensions, mean
field theory has been applied to increasingly more
realistic models of neural activity.

Mean field theory can also be useful when its
assumptions are violated, as, e.g., in metastable
networks. These networks can have a large num-
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ber of stable configurations for N → ∞, which
give rise to rich metastable dynamics in the case
of a network of finite size. This type of metastable
dynamics has been found in the neural activity of
humans and other behaving animals (La Camera
et al., 2019; Miller, 2016). Mean field theory
allows to locate the metastable regime on a bifur-
cation diagram and accurately predict the firing
rates of neural clusters (Mazzucato et al., 2015)
during metastable activity. Metastable networks
can also explain the emergence of slow fluctua-
tions and the quenching of trial-to-trial variability
in response to sensory stimulation (Deco and
Hugues, 2012; Litwin-Kumar and Doiron, 2012).

Some of the studies mentioned above were
actually performed using a version of mean field
theory known as the population density approach
(Abbott and van Vreeswijk, 1993; Brunel, 2000;
Brunel and Hakim, 1999; Fusi and Mattia, 1999;
Knight, 1972, 2000; Mattia and Del Giudice,
2002; Nykamp and Tranchina, 2000; Treves,
1993; Vellmer and Lindner, 2019). In this
approach, one obtains not only the stationary
distribution of the firing rates, but also the distri-
bution of the membrane potentials. By leveraging
perturbative solutions of a Fokker–Planck equa-
tion, this approach can help uncover the dynamics
emerging from the instability of the asynchronous
regime, and it has been used to build complete
phase diagrams of networks of spiking neurons
(Brunel, 2000; Brunel and Hakim, 1999). In some
special cases, exact results in the thermodynamic
limit for the dynamics of both the firing rate
and the membrane potential have been obtained
(Montbrió et al., 2015). Mean field theory,
dynamical field theory, and the population density
approach are complementary approaches for the
practitioner, who may choose one approach or
the other according to the problem at hand.

In conclusion, models of neural circuits are
complex dynamical systems capable of a large
repertoire of behaviors. Mean field theory, in his
diverse incarnations, is one of the few tools at
our disposal (and arguably the most successful) at
predicting the collective behavior of such models.
As we learn more about the potential link be-
tween neural dynamics and brain function, these
methods are being rediscovered and sharpened to
deal with increasingly more sophisticated appli-

cations. We hope that this elementary introduc-
tion can be useful as a first exposure to the ideas
and methods of this approach as applied to net-
works of spiking neurons, while referring, e.g., to
Amit (1989); Hertz et al. (1991) for comprehen-
sive treatments in the field of neural computation
and to Del Giudice et al. (2003); Gerstner et al.
(2014);Hertz et al. (2004); Renart et al. (2004) for
applications to spiking neurons and related topics.
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A.1 Appendix

A.1.1 Ensemble Average

To measure the stationary firing rates observed
in simulations, we can use Eq. 6.12, but when all
neurons have the same firing rate, we gain preci-
sion by using an ensemble average (EA) across
the whole population. Due to the average across
neurons, the EA can be accurate also in small
time bins, providing a time-dependentmeasure of
firing rate as shown in, e.g., Fig. 6.3a (thick line
superimposed to the rasters).

More formally, the EA associates each small
time bin �t = (t, t + �t) with the mean spike
count across the population of neurons in that bin:

EA(t) = 1

N�t

N∑

k=1

nk(t), (A.1)

where N is the number of neurons in the popula-
tion and nk(t) is the spike count of neuron #k in
bin �t .
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As N → ∞ and �t → 0 (or �t → 1
in the case of discrete time dynamics), the EA
converges to the mean instantaneous firing rate
of each neuron inside the population, tracking
accurately changes in firing rate over time. In the
case of stationary asynchronous activity, the EA
for N → ∞ is by definition a flat function of
time. This is evident from Fig. 6.3a, although, due
to finite N , bin-by-bin fluctuations around the
mean are also visible. The stationary firing rate
of any neuron over a time interval T

.= n�t can
be estimated through the temporal average of the
EA: 1

n

∑n−1
t=0 EA(t).

Note that the EA defined here is closely re-
lated to the so-called peristimulus time histogram
(PSTH), a widely used measure of neural activity.
The different between the two is that in the PSTH,
instead of the spike trains of N neurons recorded
in the same trial, one has the spike trains of 1
neuron recorded over N trials of the same kind
(e.g., in response to the same stimulus), with all
trials being aligned to the same reference event
time (e.g., stimulus onset).

A.1.2 Mean and Variance for the LIF
Neuron

To main goal of this appendix is to derive
Eq. 6.52. We shall derive the more general
Eq. 6.56. To goal is to compute the mean and
variance of (see Eq. 6.49)

Vi(t) = Vi(0)e−t/τ

+
N∑

j

N
j
t∑

k

Jij e
−(t−t

j

k )/τ�(t − t
j

k ),

(A.2)

where N
j
t is the number of spikes arriving in

the interval (0, t) from presynaptic neuron j . We
assume Poisson, independent presynaptic spike
trains with firing rates fj . Note that to simplify
the upcoming formulae, we have identified Vi

with Vi − VL − τIi,ext , or equivalently, we have
set V ∗

i,L = VL + τIi,ext = 0. The value of V ∗
i,L

does not affect the variance but must be added to
the mean E(V ) derived below.

Mean of Vi(t) Recall that Jij is a random vari-
able. Since the N

j
t are themselves random vari-

ables and t can take any positive value, we must
use Wald’s identities (see e.g. the appendix of
Soula et al. (2006)) to determine the mean and
variance of Vi(t). The first Wald identity states
that, ifNt andXk are random variables with finite
means, then E(

∑Nt

k Xk) = E(Nt)E(Xk). We
need to apply this identity to the sum

N∑

j

N
j
t∑

k

Jij e
−(t−t

j

k )/τ�(t − t
j

k )

=
Nt∑

t
j

k

Jij e
−(t−t

j

k )/τ�(t − t
j

k ), (A.3)

where we have defined the total number of spikes
Nt = N1

t + N2
t + . . . + NN

t .
To lighten the notation, we shall use the sym-

bol �k to mean �(t − t
j

k ). Applying Wald’s
identity, we get

E

⎛

⎝
Nt∑

t
j

k

Jij e
−(t−t

j

k )/τ�k

⎞

⎠

= E(Nt) E(Jij e
−(t−t

j

k )/τ�k). (A.4)

During the interval (0, t), the neuron receives N

Poisson spike trains with rate f ; hence,

E(Nt) = Nf t. (A.5)

Moreover,

E(Jij e
−(t−t

j

k )/τ�k) = E(Jij )
1

t

∫ t

0
e−t/τ

= [J ]1
t
τ (1− e−t/τ ), (A.6)

where [J ] is the mean with respect to the
quenched distribution of the weights. We
conclude, taking the product with E(Nt),

E(Vt) = N [J ]f τ(1− e−t/τ ). (A.7)
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In the presence of random connectivity (Sect.
6.5.2), E(Jij ) is replaced by E(cijJij ) =
E(cij )E(Jij ) = c[J ]. If V (0) �= 0, we must
add the (transient) term V (0)e−t/τ to the mean.
If the initial condition is a random variable V0

(say, random reset value after a spike), then we
addE(V0)e

−t/τ to the time-dependent mean (note
that this term is transient):

E(Vt) = E(V0)e
−t/τ + cN [J ]f τ(1− e−t/τ ).

(A.8)

In the stationary case (t � τ ), we finally
obtain, for the mean of the free membrane

potential,

μ = cN [J ]f τ. (A.9)

Adding up the inputs from distinct populations
and the constant term V ∗

α,L (equal for all
neurons in population α), we obtain the first
of Eq. 6.56.

Variance of Vi(t) Using similar arguments, we
can compute the variance:

V ar(Vt) = E(V 2
t ) − μ2

t (A.10)

= E

⎛

⎜⎝
NtN

′
t∑

t
j

k ,t
j ′
k′

JijJij ′e−(t−t
j

k )/τ�ke
−(t−t

j ′
k′ )/τ�k′

⎞

⎟⎠− μ2
t (A.11)

= E

⎛

⎝
Nt∑

t
j

k

J 2
ij e

−2(t−t
j

k )/τ�k

⎞

⎠+ E
t
j

k �=t
j ′
k′
(. . .) − μ2

t . (A.12)

If the spike trains {tjk } and {tj ′
k′ } are independent,

E
t
j

k �=t
j ′
k′
(. . .) − μ2

t = 0, and we are left with

V ar(Vt) = E

⎛

⎝
Nt∑

t
j

k

J 2
ij e

−2(t−tk )/τ�k

⎞

⎠ (A.13)

= E(Nt) E(J 2
ij )

1

t

∫ t

0
e−2t/τ (A.14)

= 1

2
N [J 2]f τ(1− e−2t/τ ). (A.15)

If V (0) is a random variable V0, the total variance
is the sum of the variances:

V ar(Vt) = V ar(V0)e
−2t/τ

+ 1

2
N [J 2]f τ(1− e−2t/τ ). (A.16)

Note that during transients, the variance is twice
as fast as the mean. In the case of random connec-
tivity, we need to replace [J 2] with E(cijJ

2
ij ) =

c[J 2] (since cij and Jij are independent, and c2ij =
cij ). After the transient, the variance converges to

σ 2 = 1

2
cN [J 2]f τ, (A.17)

and adding up the variances from M homo-
geneous populations, we obtain the second of
Eq. 6.56.

TheGaussian Picture For largeN , the freemem-
brane potential follows approximately a Gaussian
distribution with mean and variance computed
above. Note that, in the formulae derived above,
t ≥ 0 is the time elapsed since the initial time
0. Those formulae can be used to derive the
moments of any increment dVt = Vt+dt − Vt

in a small interval dt conditioned on an (fixed)
initial condition Vt (being fixed, it does not con-
tribute to the variance). This is done by replac-
ing t with dt in Eqs. A.8 and A.16 and using
1 − e−ndt/τ ≈ ndt/τ , obtaining, for the generic
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neuron i,

E(Vt+dt − Vt) = (−Vt/τ + μ̃)dt,

V ar(dV ) = V ar(Vt+dt − Vt ) = σ̃ 2dt,

(A.18)

where

μ̃ = cN [J ]f, σ̃ 2 = cN [J 2]f. (A.19)

Hence, we can write

dVt =
(
−Vt

τ
+ μ̃

)
dt + σ̃

√
dt z, (A.20)

where z ∼ N (0, 1) is, as usual, a standard
Gaussian variable.1 Note that A.20 makes it ex-
plicit that the fluctuations of dVt are proportional
to the square root of time,

√
dt , a well-known

property of diffusion. Eq.A.20 is the precursor
of a stochastic differential equation that one can
write for V (t) under the diffusion approximation.
In this elementary account, we shy away from
stochastic calculus; the interested reader can con-
sult a textbook such as Cox and Miller (1965);
Gardiner (2004); van Kampen (2007). Eq. A.20
can be used to compute the moments of the input
current, as shown next.

TheMoments of the Input Current Recall that the
synaptic input current of the LIF is the term

Ii(t) =
N∑

j �=i

Jij

∑

k

δ(t − t
j

k ). (A.21)

From Eq. 6.48, we see that I has dimensions of
voltage/time:

I (t) = V̇ + Vt

τ
. (A.22)

1 Recall that in these formulae Vt meant Vt − V ∗
L = Vt −

VL−τIext ; by reintroducing these terms into Eq. A.20, we
get the more general

dVt =
(
−Vt − VL

τ
+ μ̃ + Iext

)
dt + σ̃

√
dt z.

This also shows that, to know its mean and
variance, we need to compute the mean and vari-
ance of dV/dt . This is easy to do using e.g.,
Eqs.A.18:

lim
dt→0

E(dV )

dt
= −Vt

τ
+ μ̃,

lim
dt→0

V ar(dV )

dt
= σ̃ 2. (A.23)

From this, using A.22 and recalling that our re-
sults are conditioned on Vt being fixed, we ob-
tain

E[Ii(t)] = E

[
V̇ + Vt

τ

]
= −Vt

τ
+ μ̃ + Vt

τ
= μ̃.

(A.24)
For the variance, we get σ̃ 2, since Vt/τ is fixed.
In summary, recalling the definitions A.19, we
have

E(It ) = μ̃ = cN [J ]f,

V ar(It ) = σ̃ 2 = cN [J 2]f. (A.25)

Adding up the contributions from distinct
populations, we obtain relations that are identical
to Eqs. 6.46 valid for binary neurons (the external
current will pop up from E[V̇ ] after redefinition
of Vt , see footnote 1). This shows that Eq. 6.37
(and hence the second of Eq. 6.46) is exact
for integrate-and-fire neurons. The reason is
the following: the discrete step in the binary
model is analogous to the elementary time
step dt in the LIF model (xj is really an
increment); in the LIF model, the probability
of spiking in bin dt (analogous to f in
Eq. 6.36) is f dt; hence, it is legitimate to
neglect f 2dt2 as dt → 0 and obtain Eq. 6.37.
This condition means that, in a very small
interval, the probability of finding 2 spikes
is negligible, which holds for Poisson spike
trains.

Although derived here in the context of
LIF neurons, the result Eq. A.25 holds in
general, as the definition of the input current
I = ∑

jk Jij δ(t − t
j

k ) does not depend on the
neuron model (while the moments of V depend
on both I and the specific neuron model).
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7Multidimensional Dynamical Systems
with Noise

Population Density Techniques for
Neuroscience

Hugh Osborne, Lukas Deutz, and Marc de Kamps

Abstract

The problem of how to create efficient multi-
scale models of large networks of neurons is
a pressing one. It requires a balance between
computational efficiency and a reduction of
the number of parameters involved against
biological realism. Simulations of point-
model neurons show very realistic features
of neural dynamics but are very hard to
configure and to analyse. Instead of using
hundreds or thousands of point-model
neurons, a population can often be modeled
by a single density function in a way that
accurately reproduces quantities aggregated
over the population, such as population
firing rate or average membrane potential.
These techniques have been widely applied
in neuroscience, mainly on populations
comprised of one-dimensional point-model
neurons, such as leaky-integrate-and-fire
neurons. Here, we present very general density
methods that can be applied to point-model
neurons of higher dimensionality that can
represent biological features not present in
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simpler ones, such as adaptation and bursting.
The methods are geometrical in nature and
lend themselves to immediate visualisation
of the population state. By decoupling the
neural dynamics and the stochastic processes
that model inter-neuron communication, an
efficient GPGPU implementation is possible
that makes the study of such high-dimensional
models feasible. This decoupling also allows
the study of different noise models, such as
Poisson, white noise, and gamma-distributed
interspike intervals, which broadens the
application domain considerably compared
to the Fokker–Planck equations that have
traditionally dominated this approach. We
will present several examples based on high-
dimensional neural models. We will use
dynamical systems that represent point-model
neurons, but inherently there is nothing
to restrict the approach presented here to
neuroscience. MIIND is an open-source
simulator that contains an implementation
of these techniques.
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neurons
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7.1 Introduction

Population density techniques (PDTs) were in-
troduced in the 1960s (Johannesma, 1969; Stein,
1965). The idea is to consider repeat experiments
on a single neuron and subject it to spike trains
generated by some random process. The parame-
ters of the process are kept constant, but each new
experiment experiences a different realisation of
the point process used to generate spikes, leading
to different outcomes for each experiment. PDTs
consider an ensemble of such experiments and
employ a density function to represent the distri-
bution of state space variables, such as membrane
potential, quantifying the probability for their dif-
ferent realisations as a response to the incoming
spike trains. From the density function, one can
calculate ensemble-based quantities, such as the
expected firing rate. The response of an individual
neuron cannot be predicted, but in the thermody-
namic limit, the response of the ensemble can be
predicted with arbitrary precision.

PDTs have found widespread application
outside this formal ensemble-based approach.
By modeling neural populations as homogeneous
groups of neurons, the repeat experiments are not
done sequentially, like in repeat measurements in
identical experimental settings, but in parallel by
many neurons in the population simultaneously.
Each neuron performs its own noisy computation,
but the population response can be modeled
accurately. Many simulations of neural circuits
are set up with neural populations comprised
of identical point-model neurons. Under such
circumstances, PDTs can predict firing rates
of spiking neuron simulations with remarkable
accuracy, so much so that they are sometimes
used to tune simulations of spiking neurons
(Mazzucato et al., 2016).

PDTs are concerned with point-model
neurons, i.e., they ignore the spatial structure
of real neurons. While this is a considerable
drawback, this can be appropriate whenmodeling
large neural systems in cases where the neural
morphology is not critical to computation. For
one-dimensional point-model neurons, such as
leaky- and quadratic-integrate-and-fire (LIF, QIF)
neurons, they are remarkably efficient, reducing

simulation times by an order of magnitude
(de Kamps et al., 2019).

In the vast majority of applications, it is
assumed that synaptic efficacies are small. It then
becomes possible to reduce the PDT equation
to a Fokker–Planck equation, which in one
dimension has very efficient numerical solution
schemes (Haskell et al., 2001; Nykamp and
Tranchina, 2000; Richardson, 2007). Analytic
solutions are known for its stationary state
distribution and consequently for the steady-state
population firing rate through the famous Siegert
formula (Siegert, 1951). When combined with
stability analysis, these analytic results can make
predictions about the stability of network activity
and predict transitions from stable to unstable
regimes.

Substantial effort has also gone into perturba-
tive approaches, where the response to a small
perturbation of the steady-state activity can be
characterised in terms of the stimulus and the
properties of the neural population. In this way,
for example, transmission spectra for populations
comprised of various point-model neurons have
been determined. Somewhat surprisingly, these
methods have not led to a successful general
derivation of rate-based equations: first-order or-
dinary differential equations in terms of the firing
rate or averagemembrane potential, e.g.,Wilson–
Cowan equations, although in some cases a re-
duction to such equations has been demonstrated
to be feasible (Gerstner et al., 2014; Mattia and
Del Giudice, 2002).

The approach we present here is not based
on the diffusion approximation and is two-
dimensional (2D). This means that the state
space of point-model neurons is characterised
not only by membrane potential (which is usually
chosen as the “first” state variable; it is hard to
imagine a neural model without it), but by a
second one as well that can represent the state
of adaptation, the influence of an ion channel
or many other features. While many consider the
gold standard of neuroscience to be the Hodgkin–
Huxley model, which is four-dimensional, in
practice many models of this type are reduced
to lower-dimensional models by eliminating
particularly fast or slow phenomena (Izhikevich,
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2007). An added advantage is that 2D models
are particularly amenable to visualisation, often
leading to striking images that provide insight
into the state of a population at a given time.

An example is given in Fig. 7.1, where a popu-
lation of conductance-based leaky-integrate-and-
fire neurons is simulated, both directly, using
NEST (Fardet et al., 2020) and by using a PDT
method. From the figure, one can see that the state
of individual neurons at any given point in time
can be represented as a point in state space. In
a given simulation, in this case of a population
of neurons receiving spike trains that are individ-
ually different but whose statistics are uniform
across the population, the points do not randomly
distribute through state space, but cluster instead.
PDTs calculate a single density function. From
the figure, it is clear that the calculated density
function predicts the density of the point-model
neuron clusters accurately.

Why would one bother with these methods?
Why not just run a direct simulation instead?
As already indicated above, there are analytic
results on PDT solutions, in particular in the
steady state, that make predictions about simu-
lation outcome. For one-dimensional PDTs, effi-
ciency provides a direct argument: for LIF or QIF
neurons, PDTs are simply faster than direct sim-
ulations. For 2D techniques, the arguments are a
bit more subtle, but nonetheless compelling: in
terms of simulation speed, direct simulation and
PDTs are comparable (de Kamps et al., 2019), but
the formulation as a network in terms of mean
field parameters rather than as a fully realised
network of connections achieves two reductions:
first, providing the parameters that specify the
connection between populations as a distribution
rather than a large number of connections be-
tween individual neurons reduces the complex-
ity of networks considerably. Second, because
communication between populations is in terms
of firing rates, rather than individual spikes, no
spike buffers are necessary and this leads to a
reduction of memory use by at least an order
of magnitude. Because the algorithms we will
describe here are amenable to GPU implemen-
tation, sizeable networks can be simulated on a
single PC when equippedwith a GPGPU. Finally,

working with the density immediately produces
population-based aggregates. There is no need
to post-process simulation results to get from a
large list of spike times to firing rates, for exam-
ple.

7.2 The Formalism

For completeness, we provide a thorough descrip-
tion of the PDT formalism: a visual explanation
of the same principles will be given below.

Consider a density ρ(V1, V2, t), which
describes the state of a neural population of
point-model neurons, whose individual state
space is defined by two variables V1, V2.
ρ(V1, V2, t)dV1dV2 is by definition the fraction
of neurons of the population that is present in
dV1dV2, so ρ is a density. The total amount
of probability mass in a given region of
state space can be obtained by integrating
the density function over that region of state
space.

Given that we know the behaviour of
individual neurons, what can we say about the
density? A large number of neuron models are
given as a set of differential equations. For
example, a conductance-based leaky-integrate-
and-fire model can be described as follows
(Apfaltrer et al., 2006):

τ
dV

dt
= −gl(V − EL) − ge(t)(V − Ee)

τe

dge

dt
= −ge(t) + Isyn(t) . (7.1)

Here, V is the membrane potential, while gl ,
EL, Ee, τ , and τe are the constants representing
the leak conductance, the leak equilibrium po-
tential, a positive equilibrium potential associated
with the ion channel that is modeled, the mem-
brane time constant, and the time constant of ge,
respectively. Additionally, ge is a state variable
indicating the fraction of ion channels that are
open.

This system is driven by a synaptic input cur-
rent Isyn that could be continuous in a lab setting
but in a cortical setting is assumed to be delivered
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Fig. 7.1 Comparison of a Monte Carlo simulation
(NEST) with a density simulation at four different mo-
ments (a). Each plot shows the probability density function
produced in MIIND at four different times during the sim-
ulation (normalised to the maximum probability density
value in the distribution). White areas represent maximum
probability density, and the scale reduces in a logarithmic
fashion such that red is extremely low probability density
and black is zero. The heat plots are overlaid with a
realisation ofMonte Carlo points (neuron states). The state
space is that of a conductance-based leaky-integrate-and-
fire neuron with two state variables: membrane potential
V and fraction of openness g. When the ion channel is
open, neurons tend to drift to a positive equilibrium po-
tential. When closed, to a negative rest potential. Neurons

that pass a threshold are reset to a reset potential but
retain the same value for g. The white areas represent
parts of state space that are not considered by the PDT
software, MIIND. Apart from the endogenous neuronal
dynamics, neurons are subjected to Poisson-distributed
spike trains. When a neuron receives a spike, it undergoes
an instantaneous transition in state space, in this case a
jump in the vertical direction of magnitude h, the synaptic
efficacy. The fraction of neurons per unit time that cross
the threshold contributes to the population firing rate.
In (b), the firing rate is calculated from the probability
mass crossing the threshold per unit time (the solid line),
which is in good agreement with the NEST simulations
(red crosses). Illustration from de Kamps et al. (2019),
originally published under CC BY 4.0
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by brief pulses caused by spikes from other neu-
rons. The consequence of each incoming spike
in this model is an instantaneous jump in the
conductance state ge by an amount determined
by the synaptic efficacy. In this type of modeling,
the neural dynamics is modeled as a determin-
istic dynamical system, whereas synaptic input
is modeled as a stochastic process. Under these
assumptions, one can derive an equation of mo-

tion for the density using mean field techniques
(Omurtag et al., 2000).

Assuming that a neural model in 2D or 3D
without synaptic input is given by

τ
d  V
dt

=  F(  V ),

mean field considerations (Omurtag et al., 2000)
show that the evolution of the density is given by

∂ρ

∂t
+ ∂

∂  v ·
(  Fρ

τ

)
=

∫

M

d  v′
{
W( v |  v′)ρ(  v′) − W( v′ |  v)ρ( v)

}
. (7.2)

Here,W(  v′ |  v) gives the transition probability
per unit time for an individual neuron to undergo
an instantaneous transition  v′ →  v.

For a Poisson process,

W(v′ | v) = νδ(v′ − v − h) − νδ(v − v′).

Here, h is the synaptic efficacy and ν is the rate of
the Poisson process generating the spikes arriving
at neurons in the population. For LIF neurons,
F(V ) = −V , and substitution in Eq. 7.2 leads
to

∂ρ

∂t
− ∂

∂V

(
Vρ

τ

)
= ν(ρ(v − h)− ρ(v)), (7.3)

which is the equation emerging from Omurtag
et al. (2000). This can easily be extended to a ver-
sion where the synapses are distributed according
to some distribution p(h).

In a suitable limit where νh remains finite but
ν → ∞ and h → 0, one can show (de Kamps,
2013) that the solutions of Eq. 7.3 can be approx-
imated by solutions of a Fokker–Planck equation:

∂ρ

∂t
+ ∂

∂v

{
ρ

F (v) + μ

τ
− σ 2

2τ

∂ρ

∂v

}
= 0

with

μ = νhτ

σ 2 = νh2τ.

It is probably in this guise that PDTs are most
familiar and that most analytic results have been
obtained. We consider the diffusion approxima-
tion unduly restrictive: de Kamps (2013); Iyer
et al. (2013) have shown that when circuits with
finite-sized synapses aremodeled, substantial dif-
ferences with diffusion results emerge. de Kamps
(2013) has shown that it is possible to model a
neural population in partial synchrony, something
that is impossible in the diffusion approximation
as the neurons in synchrony are represented by
a Dirac delta function in the density profile, a
peak that immediately will be diffused away by
a diffusive process.

Many neuron models contain a threshold and
a reset mechanism: this results in extra boundary
conditions that must be imposed on the solution
of Eq. 7.2. However, since we do not present
a traditional numerical solution of Eq. 7.2, we
will not discuss these boundary conditions here:
we refer the interested reader to, among others,
Omurtag et al. (2000), Nykamp and Tranchina
(2000), Gerstner et al. (2014), Augustin et al.
(2017).

We present two related methods here for mod-
eling the evolution of density profiles that are
not directly based on numerical schemes for the
solution of Eq. 7.2 and are easy to understand and
implement and amenable to parallel implemen-
tation. We further describe how easily derivable
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population quantities such as average firing rate
and average membrane potential allow multiple
populations to be coupled together into networks.
In the following, we will implement these meth-
ods and show that they are largely independent
of the neuronal dynamics under consideration
and give several examples of results obtained
by their use. In the last section, we will spec-
ulate on our methods as operational definitions
of Eq. 7.2 and indicate possibilities for future
work.

7.3 A Geometric View

When considering a population of point-model
neurons that receive random input, two factors
control its evolution. First, each neuron’s state
changes according to the predefined dynamics of
the model. For example, for a conductance-based
leaky-integrate-and-fire neuron, as described in
Fig. 7.1, the membrane potential develops at a
rate dictated by the conductance variable that
itself decays over time. The change in the state is
deterministic. The system may be thought of as
a vector field and neurons without synaptic input
trace out integral curves of this vector field in
state space.

The second factor influencing each neuron is
the non-deterministic number of input spikes re-
ceived from external sources such as other neuron
populations or non-specific background activity.
These deterministic and non-deterministic factors
govern the evolution of the density function itself
and are separable (as shown in Sect. 7.2) so can
be tackled independently of each other.

We will consider the deterministic dynamics
first. It is usually a set of equations that
specify the derivatives of the state space
variables as functions of time, such as the
one given by Eq. 7.1. These equations can
be interpreted as a vector field in state
space and in the absence of synaptic input
neurons will follow integral curves of this
vector field. Consider again our conductance-
based leaky-integrate-and-fire model as an
example.

In Fig. 7.2, we show the vector field defined
by Eq. 7.1. Individual neurons will follow integral
curves of this field, except when they hit a thresh-
old potential, when they are removed from the
system and re-entered, possibly after a refractive
period, at a reset potential, retaining the conduc-
tance state it had before reset. We did not mention
this threshold in Sect. 7.2. The presence of the

Fig. 7.2 Vector field
defining the
conductance-based
leaky-integrate-and-fire
model. Individual neurons
follow integral curves such
as A, B, and C towards the
stationary point at −65mV
with 0 conductance. A
neuron following curve C
crosses the threshold
potential and is taken out of
the system and re-entered
at a reset potential while
retaining the state of the
conductance variable.
Illustration modified from
de Kamps et al. (2019),
originally published under
CC BY 4.0
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threshold and reset mechanism complicates the
numerical solution of Eq. 7.2, but in the method
described below, it can be handled in a simple
manner.

Owing to the uniqueness of the solution of
an initial value problem, integral curves cannot
cross, so a neuron placed between two nearby
integral curves must remain between these curves
in the absence of synaptic input. If we draw a line
connecting these integral curves, the connecting
line defines a point on each integral curve. If we
follow each point during evolution over a period
�t under the dynamics imposed by the vector
field, they will move “down” the integral curve.
After evolution,we can connect both points again,
and we will have created a cell. By repeating this
process, we create a strip as shown in Fig. 7.3. The
key insight of this method is that a neuron state
contained in one cell is guaranteed to move to the
next consecutive cell along the strip after one time
step. The mass value describing the probability
of finding a neuron from the population in a
single cell is transferred to the next cell along the
strip after one time step. By covering the entire

Fig. 7.3 Two example strips that follow the dynamics of
the adaptive exponential-integrate-and-fire neuron model.
Each strip approaches the stationary point where the dotted
and broken lines (nullclines) cross. The trajectories get
closer together and slow down, and so the cells become
smaller. The red shaded cell in each strip represents an
example area of uniform probability mass that after one
time step will be shifted to the next cell along the strip
towards the stationary point. Illustration from Osborne
et al. (2021), originally published under CC BY 4.0

state space with many strips, forming a mesh,
the deterministic evolution of the density function
can be calculated by simply passing probability
mass from one cell to the next in each strip.

The occurrence of random incoming spikes to
each neuron in the population means that prob-
ability mass can be moved out of one cell into
neighbouring strips. So solving the deterministic
dynamics using the mesh is not enough. How-
ever, the change in the density function due to
this non-deterministic input can be simplified to
successive applications of a single matrix that
describes the movement of probability mass in
the event of a single incoming spike. In the sim-
plest case, a single incoming spike is assumed
to produce an instantaneous jump in either of
the two variables. Most often, the jump is in
membrane potential but in the conductance-based
leaky-integrate-and-fire neuron model, the jump
is made in the openness (conductance) variable
because an incoming spike causes the conduc-
tance to increase and indirectly causes a change
in membrane potential. The transition matrix can
be generated by calculating the proportion of
mass that moves from each cell to every other
cell in the event of a single spike. To perform
this calculation, each quadrilateral cell in turn
is translated by the value of the instantaneous
jump, then its overlap with untranslated cells in
the original mesh is calculated using successive
line intersections and triangulations as shown in
Fig. 7.4e. Because the translated cell often only
overlaps with a few other cells, the resulting tran-
sition matrix is sparse. An approximation to the
transition matrix can be generated using a so-
called Monte Carlo technique such that points
are randomly placed inside each cell and then
translated according to the intended jump. The
proportion of mass that transitions to each cell is
calculated according to the proportion of points
contained within. Generating the transition ma-
trix is a one-time pre-processing step with one
transition matrix required for each jump value.
The algorithm for simulating the behaviour of a
population proceeds as follows:

1. Shift each probability mass value to the next
cell along the strip.
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2. Transfer probability mass that shifted beyond
the end of each strip to a designated stationary
cell.

3. If the underlying neuron model has a
threshold-reset mechanism, transfer proba-
bility mass in cells that lie across the threshold
to designated cells at the reset value. Use the
total mass transferred to calculate the average
firing rate of the population.

4. For each external input, apply the appropriate
transition matrix multiple times to the proba-
bility mass vector as shown in Fig. 7.4.

Stationary cells are used to store probability
mass in a single location in state space that is
not influenced by the deterministic dynamics, for
example, above a stationary point if one exists.
Many strips will approach the stationary point
due to the deterministic dynamics of the neuron
model, with nearby cells becoming negligible in
size. Before this point, the strips are cut off and
a mapping is required to list the cells from which
probabilitymass will be transferred to a stationary
cell representing mass at the stationary point.
As with the stationary cell mapping, a similar

Fig. 7.4 (a to d) Plots show successive applications of
the transition matrix causing mass to move across the
mesh. The brightness of each cell gives an indication of
the proportion of probability mass. Dotted cells show the
translation caused by a single spike. For clarity, only trans-
lations of cells with significant mass have been shown.
(e) Each cell is translated according to the value and
direction defined by the instantaneous jump from a single

incoming spike. The translated cell is then recursively split
into triangles, and each triangle is tested for intersections
with the original mesh until no more triangulations can
be made. For each cell of the original mesh, the summed
area of all triangles contained within is used to calculate
the proportion of mass that is transferred from the original
cell. In this case, four cells receive some mass from the
original cell due to a single incoming spike
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mapping is required to describe how probability
mass should be transferred from a cell that lies
across the threshold potential (if the model has
one) to the appropriate cell or cells at the reset
threshold. The total probability mass transferred
in one time step divided by the time step value
itself gives the average firing rate of the popula-
tion.

7.3.1 Average Firing Rate vs.
AverageMembrane Potential

Summary metrics about a given population are
easily produced by this population density tech-
nique. If the underlying neuron model has no
threshold-reset functionality, the average mem-
brane potential of the population can still be ob-
tained easily and gives as effective a measure of
activity. Indeed, even if the underlying neuron
model does have a threshold-reset function, the
average membrane potential gives a measure of
the activity of the population that is proportional
to the firing rate because the threshold represents
the highest membrane potential that neurons can
attain.

It should be clear, however, that the full density
function is of interest when simulating population
behaviour as it gives insights that would be hidden
with only the aggregate results.

7.3.2 TheMesh as Visualisation

Considerable insight into the behaviour of a neu-
ral model can be gained by inspecting the mesh.

Figure 7.5 demonstrates the mesh of an adap-
tive exponential-integrate-and-fire (AdExp) neu-
ron and explains how adaptation operates. There
are two forms of adaptations in the model. Cur-
rent adaptation is generated at higher values of pa-
rameterw where the equilibrium potential, which
can be seen in the mesh as a pile up of small
cells, is lower. The strength of the push towards
equilibrium is also stronger, as indicated by larger
cells at higher values of w. The figure shows
that gaps are present in the mesh as cells become
negligibly small as they approach one of the null-
clines (shown in red). These gaps are small, and
de Kamps et al. (2019) give technical details on
how to handle such gaps.

Fig. 7.5 A simplified (low-resolution) mesh for an Ad-
Exp neuron. The arrows indicate the direction of the neural
flow field, and nullclines are shown by red solid lines.
Boxes (a) and (b) magnify areas of state space that are

not covered by the mesh. In these areas, the size of the
cells becomes negligibly close to the nullcline. Illustration
modified from de Kamps et al. (2019), originally pub-
lished under CC BY 4.0
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Fig. 7.6 (a) The joint density distribution (normalised
to the maximum probability density value) in (V,w),
with NEST simulation results overlaid. Along the ver-
tical and horizontal axes are the marginal densities. (b)
The predicted firing rate for neurons without adaptation
(green), only current adaptation (blue), and spike adap-

tation (red). (c) The transmission spectra with (blue) and
without (green) adaptation. Although these results are in
line with what is expected of an exponential LIF neuron,
the results show that a single linear response theory cannot
be developed for AdExp neurons. Illustration modified
from de Kamps et al. (2019), originally published under
CC BY 4.0

The AdExpmodel also describes spike adapta-
tion: upon crossing the threshold on the very right
of the plot, neurons are reintroduced at a reset
potential, but theirw value is incremented consid-

erably. This leads to a gap of neurons that spiked
compared to neurons that have not yet spiked. In
Fig. 7.6, groups of neurons that have produced
a different number of spikes can be clearly dis-
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tinguished as they are separated in w values.
The marginal distributions are interesting. The
distribution in membrane potential looks familiar
from LIF neurons. The marginal distribution inw

clearly shows the effect of spike adaptation.
The effect can also be seen in the firing rates

that are predicted by this simulation. When nei-
ther spike nor current adaptation is included, the
model is a simple exponential LIF neuron. With
only current adaptation, the neurons do not reach
highw values and the firing rate is only somewhat
suppressed. With spike adaptation, most mass
can be found at a much higher value where it is
harder for neurons to spike and the firing rate is
suppressed considerably. Moreover, this process
takes time because only if neurons have spiked
several times do they reach their steady state.
In the firing rate, this is reflected by a steady
ongoing suppression for neurons with adapta-
tion.

Exponential LIF neurons are expected to have
(Fourcaud-Trocmé et al., 2003; Köndgen et al.,
2008) a 1

ω
frequency dependency, when the spec-

trum of the population response to small sinu-
soidal stimuli superimposed on a constant back-
ground is considered.We find such a dependency,
but it is very different for neurons with and with-
out adaptation (Fig. 7.6c), suggesting that AdExp
neurons cannot be described by a single linear
spike response theory.

Extending the AdExp mesh to negative values
for the adaptive variable exposes the dynamics
responsible for a rebound spike that happens after
inhibiting the population strongly and then re-
moving the inhibition. This is clearly seen in the
strips that traverse the full width of the membrane
potential indicating that once mass enters these
strips, no other input is required for it to cross the
threshold.

7.3.3 Fitzhugh–NagumoModel

The Fitzhugh–Nagumo neuron model (FitzHugh,
1961) provides a two-dimensional approximation
for producing the full spiking behaviour of a neu-
ron and does not use a threshold-reset mechanism

as inAdExp neurons or conductance-based leaky-
integrate-and-fire neurons. The dynamics include
a limit cycle on which the majority of neurons
travel to produce tonic spiking behaviour. Be-
cause of the limit cycle, building amesh for a pop-
ulation of Fitzhugh–Nagumo neurons is difficult,
but the results are instructive about the behaviour
of neurons that are pushed off the limit cycle
by a noisy input. Fig. 7.7 shows the mesh and
an example density. Also shown is the behaviour
of the population where the Poisson input is on
average not high enough to push the majority of
the population onto the limit cycle to produce
spiking but noisy enough such that there is a low
but non-zero probability that neurons are pushed
onto the limit cycle to occasionally spike. The
ability to produce and visualise a clear snapshot of
this scenario is a major benefit of the population
density technique.

7.3.4 Izhikevich Model

The effect of noise can have many different
effects on the overall behaviour of the population
separated from the behaviour of the underlying
neurons. The Izhikevich neuron model (Izhike-
vich, 2003) can produce bursting behaviour
where an individual neuron has a repeated
period of tonic firing followed by a period of
quiescence. In a population of such neurons
receiving Poisson-distributed input, each neuron
individually will perform this bursting behaviour.
The population as a whole will also show bursting
behaviour as all neurons synchronously enter and
exit the bursting phase. Over time, however, the
randomness of incoming spikes will cause the
synchronicity to entirely disappear so that the
average firing rate of the population reaches a
steady state even though all individual neurons
are bursting. Fig. 7.8 shows the trace of the
average firing rate of a population of Izhikevich
neurons over time. Once again, the ability to
easily produce and observe the effect of noise
on a population of neurons while keeping a
connection to the underlying model is a benefit
of this technique.
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Fig. 7.7 (a) The constructed mesh for the Fitzhugh–
Nagumo neuron model. The variables V and W have
arbitrary units. High cell density is used to improve
accuracy. Strips travel in an anticlockwise direction
approaching the limit cycle. The limit cycle itself is a
single strip. Approaching strips are cut off, and mass
is transferred to the nearest cell on the cycle strip after
each iteration. (b) An example of the density after

some time when mass has been distributed along and
near the limit cycle due to the random input. (c) Even
if the input is not enough to push the entirety of the
population onto the limit cycle, noise causes some neurons
to spike and therefore some mass is distributed along the
cycle. Illustration modified from de Kamps et al. (2019),
originally published under CC BY 4.0

Fig. 7.8 (a) A density plot (normalised to the maximum
probability density value in the distribution) of a popula-
tion of Izhikevich neurons. There is no limit cycle here,
but the threshold-reset functionality creates a period of fast
firing followed by a quiescent period producing bursting
behaviour. As with the Fitzhugh–Nagumo model, initially
the density is situated in a small area of state space that
follows the cycle so that most neurons are in the firing

phase and move together into the quiescent phase. Because
of the random input, however, neurons eventually become
incoherent and spread across the cycle. (b) The average
firing rate of the population, therefore, initially shows
coherent oscillations, but after some time, this degrades to
a constant value. Illustration from Osborne et al. (2021),
originally published under CC BY 4.0

7.3.5 Difficulties withMesh
Building

Building the mesh to discretise the state space
and “pre-solve” the deterministic dynamics of
the density function can be non-trivial for cer-
tain neuron models. An example of such is the
Izhikevich neuron model defined by the system
of Eqs. (7.4) where V is the membrane potential,

W is the slow excitability variable, and a,b,c,d are
the parameters.

dV

dt
= 0.04V 2 + 5V + 140− W + I,

dW

dt
= a(bV − W), (7.4)

ifV = 30mVthenV ← c, W ← W + d.
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Fig. 7.9 Neuron models in which state trajectories con-
verge to a single path, such as in the Izhikevich neuron
model, are difficult to define using a mesh of strips. A
solution is to manually produce a strip that follows this
path and “stitch” the ends of strips to it using the reversal
mapping method

Figure 7.9 shows the state space for this system
of equations. The nullclines indicated by bro-
ken and dashed lines define where the deriva-
tives of the state variables are equal to zero. As
demonstrated by the vector arrows, for each of
the two variables, trajectories increase or decrease
depending on which side of the nullcline they
appear. Neurons with states that are above or
above and to the left of the quadratic membrane
potential nullcline approach the nullcline and fol-
low a very similar trajectory. Along this path,
well-formed cells cannot be generated as all tra-
jectories are co-linear. A solution to this problem
is to cut off all strips before they reach the shared
trajectory and become too small or shear. Then
a separate strip is defined, which travels along
the shared trajectory. Using the reversal mapping
technique for moving mass from one strip to
another, the end of each strip is mapped to the
nearest cell on the shared trajectory strip.

7.3.6 Current Compensation

Most neuron models can include a current term,
I, which approximates an injected current into
the cell. In the context of this population density
technique, the injected input contributes to the
deterministic dynamics of the density function.
It can be approximated, however, by the non-
deterministic random spike input with a suitably

high rate and low jump size so that the mean
input matches the desired injected current and the
variance or noise is a low as possible. Swapping
a non-deterministic input for an injected current
in the model and vice versa is called current
compensation. The benefit is that, for simulations
in which the random input to a population is
always close to some non-zero value, error in-
troduced by the non-deterministic dynamics can
be reduced if a portion of the input is “baked”
into the mesh and the remaining random input
is given relative to this value. There is also the
practical benefit that a mesh can sometimes be
more easily constructed with a change to I, which
can then be compensated for in the random in-
put at the cost of more variability. The fact that
current compensation still works well even if the
mesh is completely changed with a different I
value shows how the density function can bear
almost no resemblance to the underlying mesh
and still produce correct results. Figure 7.7c also
demonstrates this as the limit cycle traced by the
low amount of probability mass is nowhere near
the limit cycle strip in the mesh.

7.3.7 The GridMethod

Another related method for solving Eq. 7.3 again
relies on the separability of deterministic and non-
deterministic parts and performs a discretisation
of the state space of the underlying model. How-
ever, instead of using a mesh to discretise the
state space, a regular grid is constructed as shown
in Fig. 7.10. Each cell holds probability mass as
with the mesh method. However, because cells
are not constructed using the neuron model, mass
can move to more than one cell in each time step
according to the deterministic dynamics. Ellipse
A in Fig. 7.10 shows how the mass in one cell
of the grid moves to neighbouring cells after
one time step according to how the vertices are
translated by the underlying neural dynamics.
The movement of mass due to the deterministic
dynamics can be captured in a single transition
matrix that is applied once per time step. Gener-
ating the transition matrix for the grid is a pre-
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processing step performed before a simulation
and can be automated for any underlying neuron
model. When solving the non-deterministic dy-
namics, the regularity of the grid cells means that
a single incoming spike produces the same rela-
tive shift of mass for every cell in the grid (ellipse
B in Fig. 7.10). A transition matrix is therefore
not required, and the single transition that applies
to all cells can be calculated during simulation
time allowing the jump value to change on the
fly if required. The algorithm for simulation pro-
ceeds in a similar way to the mesh method. The
transition matrix for the deterministic dynamics
is applied once to the probability mass vector. If
there is a threshold-reset mechanism, probability
is transferred from the grid cells that lie above
the threshold to the appropriate cells along the
reset potential. Finally, the single transition for
the non-deterministic dynamics is applied to all
cells multiple times to solve the master equation.

Both the grid and mesh methods introduce
error during each iteration. In both methods,
probability mass spreads artificially through

state space due to the approximation of uniform
mass across each cell. Its effect in the mesh
method can be seen clearly in Fig. 7.4. The
probability mass in the shaded cell of plot A
should be shifted to the dotted area by a single
spike. However, the discretisation means that
mass is spread to all four overlapping cells as
shown in plot B. When building a mesh, in
areas of state space where the dynamics change
dramatically, some trajectories can travel further
through state space than others in the same
number of time steps leading to very shear
cells that cause increased error when solving
the non-deterministic dynamics. This is where
the mesh method introduces the most error.
Only by knowing the dynamics of the model
and experimenting with different starting points
for strips can a “good” mesh be constructed
that covers the majority of state space with
well-formed and sized cells. Conversely, the
grid method introduces the greatest error when
solving the deterministic dynamics as this is
when the transition matrix is applied and mass is

Fig. 7.10 In the grid method, the two-dimensional state
space is discretised into a regular grid. Ellipse A shows
how each regular grid cell is transformed according to the
dynamics of the underlying neuron model. The overlap of
the transformed cell with the original grid gives the transi-
tions required to approximate the movement of probability

mass due to the deterministic dynamics of the density
function. Ellipse B shows how, for a given instantaneous
jump, all cells in the grid perform the same translation and
the resulting relative transition is uniform across the whole
grid. Illustration from Osborne et al. (2021), originally
published under CC BY 4.0
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uniformly spread across cells. The mesh method
should be used in preference to the grid method
for neuron models that have isolated areas of
slow dynamics in the state space, such as near
the threshold of an exponential-integrate-and-
fire neuron. The grid method should be used for
models in which trajectories follow tight curves
such as the Izhikevich neuron model.

7.3.8 Higher Dimensions

As shown in the previous sections, two time-
dependent variables are often all that is required
to approximate neuronal behaviour. However,
some models that more closely match real
behaviours need higher numbers of dimensions.
The Hodgkin–Huxley neuron model, for
example, needs four time-dependent variables to
capture the activation and inactivation of different
ion channels. Multi-compartment neuron models
and models that support plasticity are also often
higher-dimensional. The automated way in which
the transition matrix is generated for the 2D grid
method can be extended to higher dimensions
so that the population density technique can
be applied to more complex underlying neuron
models.

In the 2D approach, the vertices of each grid cell
are translated according to a single integration
step of the underlying neuron model. The result-
ing quadrilateral is then split into two triangles,
and each is subdivided according to intersections
with the axis-aligned edges of the original grid
cells. The process is recursive and stops once
no more subdivisions can be made. The areas
of all triangles lying within each original cell
are summed to provide the proportion of mass
that moves from cell to cell. For three dimen-
sions, the original grid cell is a cuboid that is
transformed into a 3D polygon and triangulated
into multiple tetrahedrons (3-simplices). In the
general case, the triangulation splits each cell
into a number of N-simplices where N is the
number of dimensions for the underlying neuron
model. For the non-deterministic dynamics, even
in higher dimensions, only a single transition
value is needed, which applies to all cells. In fact,
calculating the transition value is independent of
the number of dimensions as it is simply the ratio
between the jump value and the cell width in the
direction of the jump. Figure 7.11 shows den-
sity plots for a population of three-dimensional
Hindmarsh–Rose neurons (Hindmarsh and Rose,
1984) and a population of Hodgkin–Huxley neu-
rons with a reduced sodium activation. Although

Fig. 7.11 (a) The 3D density of a population of
Hindmarsh–Rose neurons. Spiking neurons travel in the
horizontal plane to produce action potentials and slowly
move upwards in the vertical axis eventually transitioning
to the quiescent period in which they travel along the

vertical striations before beginning the burst cycle again.
(b) The density plot of a population of Hodgkin–Huxley
neurons in which the sodium activation has been reduced
to a non-time-dependent constant. Figure A from Osborne
et al. (2021), originally published under CC BY 4.0
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simulations for populations of 3D neuron mod-
els are feasible on current computer hardware,
both the memory and processing requirements
for greater than three dimensions are beyond the
capability of a single CPU or GPU and quickly
surpass the capability of high-performance com-
puting systems. The so-called curse of dimen-
sionality applies to this technique as the num-
ber of cells required to discretise the state space
grows exponentially with each additional dimen-
sion.

7.3.9 Population Networks

As discussed earlier, the average firing rate of
a population can be calculated from the prob-
ability mass passing the threshold during each
time step. An assumption can be made that the
distribution of output spikes from a population
should be the same as that of the input because,
in general, the majority of probability mass that
passes the threshold is pushed across by incoming
spikes. For Poisson-distributed input spikes and
neurons with no refractory period, this is strictly
true. Refractoriness complicates this somewhat.
Usually, a simplifying assumption is made that
the refractory period reduces the firing rate: νP =

1
τP +τref

, where τref is the refractory period of the

model neuron and τP = 1
νP
, where νP is the firing

rate predicted by mass crossing the threshold due
to Poisson input.

The benefit of these assumptions is that
populations can be connected together where
the average output firing rate of one population
directly specifies the input firing rate of another.
A network of multiple interacting populations
can be set up quickly and easily under this
framework. Each population has an associated
density, and the average firing rate of each is
passed between the connections as described in
the model.

A simple example is that of a fully connected
network of two populations of LIF neurons, one
excitatory and one inhibitory, both driven by an
external input. A connection in this technique can
usually be characterised by three numbers, al-

though the number of parameters can be flexibly
extended. At the very least, the tuple (N, J, δ)

needs to be specified. Suppose these numbers
specify a connection between population I (in)
and O (out), these numbers are to be interpreted
as follows. Given a neuron in O, there will be
on average N neurons connecting to it. Each
connection is characterised by efficacy h, which
specifies the jump in state space associated with
this connection and therefore requires a transition
matrix in the mesh and grid methods. The in-
stantaneous average firing rate of population I is
buffered in a pipeline and arrives with a delay of δ
at populationO where it is used as the input firing
rate associated with this connection. Numerically,
this means that in O a Poisson Master equation
is solved for each connection connected to it.
These solutions are combined linearly at each
time step.

Results of a simulation of such a network are
shown in Fig. 7.12. The simulation is available
as program LifTwoCanvas in the MIIND frame-
work (de Kamps et al., 2008) at http://miind.sf.
net. The network parameters are documented in
its source. The steady-state density distributions
are nearly Gaussian with means well away from
the threshold. This explains the low firing rates,
which are mainly driven by the variability. This
closely corresponds to the analysis of such net-
works by Amit and Brunel (Amit and Brunel,
1997a,b).

Larger networks can be simulated as well.
An extensive model for the dynamics within a
cortical column was given by Potjans and Dies-
mann (Potjans and Diesmann, 2014). It models a
population as a network of layer 2/3, layer 4, layer
5, and layer 6 populations. Each layer consists
of an excitatory and inhibitory population. This
model was adapted by Cain and collaborators
(Cain et al., 2016) and simulated with another
PDT simulator, DIPDE (Cain et al., 2015). We
adopted their connectivity scheme and ran the
same simulation inMIIND. The results are shown
in Fig. 7.13. There is excellent agreement be-
tween both simulators, in the transient dynamics
as well as the steady-state firing rate. DIPDE at
present cannot handle 2D models.

http://miind.sf.net
http://miind.sf.net
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Fig. 7.12 A simulation of a network of two popula-
tions, an excitatory and an inhibitory ones. Firing rates
(a) and steady-state membrane potential distributions (b).
Excitatory results in black, and inhibitory ones in red,
dashed. The network is fully connected, including self-
connections. The simulation starts with all neurons at
equilibrium potential. The inhibitory neurons are faster,
and some neurons reach threshold before excitatory ones.
At this stage, the inhibitory populations are then inhibiting
themselves, which results in oscillatory behaviour. Once

the excitatory neurons reach threshold, firing rates in both
populations start to rise rapidly, and it is a close match
whether inhibitory firing rates rise fast enough to coun-
teract the effect of the excitatory self-connections. In this
simulation, this happens just before blow-up results. The
two populations settle in steady-state solutions that are
nearly Gaussian with a mean well below threshold. The
relatively small synaptic efficacies are a reason why the
diffusion is appropriate in this case
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Fig. 7.13 Comparisons between DIPDE, MIIND,
and NEST for a single population with a single
input (a); time-varying input (b); balanced exci-
tation/inhibition together with a NEST simulation

(c); The Potjans–Diesmann model with MIIND in
crosses, DIPDE lines (d). Figure D from Osborne
et al. (2021), originally published under CC BY 4.0

7.4 Discussion

We have presented two closely related methods
that differ considerably from conventional meth-
ods for solving the population density equation
described by Eq. 7.2. We do not solve the equa-
tion directly. Instead, we model the movement
of probability mass under intrinsic neuronal dy-
namics in state space in a way that can be made
exact, and produce a numerical solution for the
mass transfer due to Poisson input. Our numerical
solution scheme is unlike any other method we
know, e.g., Gerstner et al. (2014); Nykamp and
Tranchina (2000); Omurtag et al. (2000).

To emphasise the benefits of this technique
over other numerical solution schemes, observe
that the two methods can describe discontinuous

density profiles (Fig. 7.6a). A further benefit of
the mesh method is that no numerical dispersion
occurs due to the neuronal dynamics. It is clear
that neurons that are deposited in the same cell
should travel the mesh together: neurons in one
cell end up in the next cell along the strip after
a single time step in the absence of incoming
stochastic spikes. If neurons are all deposited in
the same cell at the start of the simulation, they
will move together corresponding to a density
peak that moves through state space. Other nu-
merical schemes to solve the density would cause
a quick dispersion of this peak due to numeri-
cal diffusion. When synaptic input does occur,
this peak is decorrelated over time as has been
modeled analytically by Sirovich (2003) for LIF
neurons. In earlier work (de Kamps, 2003), we
have shown that this decorrelation is handled ac-
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curately by the mesh method and that we can ac-
curately describe a density profile that describes
a population that is only partly correlated as in
Fig. 7.7c.

The mesh method assumes that phase space
can be covered by a mesh for some small but
finite time step that cannot be made arbitrarily
small but must be fixed to retain a reasonable
efficiency. For conductance- and current-based
methods, this is true at least in the relevant part of
state space. For more complex dynamical models,
some parts of state space are covered by cells
of vanishing measure, in particular when null-
clines cross. In many cases, this reflects genuine
indeterminacies of the deterministic model. The
mesh for the AdExp neuron in Fig. 7.5 has a hole
in the centre, and neurons that are placed there
can end up in very different parts of state space.
We are able to integrate at high precision when
constructing such meshes, since they only need to
be constructed once, but it does raise the question
of how general purpose simulators deal with such
areas of state space.

The grid method circumvents these problems
at the expense of introducing numerical disper-
sion in the modeling of the numerical process.
But it integrates out the difficult regions of state
space and attributes a finite surface area to regions
of state space that would require an infinitude of
infinitesimal state space cells in themeshmethod.
In general, it is much easier to set up and automate
for arbitrary dynamical systems.

Both methods raise the question of whether
the density is really the fundamental quantity that
should bemodeled, something which is implicitly
assumed when the solution of Eq. 7.2 is consid-
ered to be a numerical issue. But consider the
following example: a group of neurons is placed
at the same position in state space, which would
correspond to a Dirac delta peak. In practice, any
method would pick a small bin, and let the density
come out at a magnitude such that the correct
amount of probability mass is centred at this
position. But the shape of this bin is somewhat
arbitrary as long as the bin is small and even
the size is not that important. This suggests that
not the density, which can easily change by a
factor of two if we half an already small bin, is

the fundamental quantity that we are interested
in, but the placement of probability mass that by
some measure is “reasonably accurate” in a finite
volume of state space. Both the grid and mesh
methods satisfy this principle—admittedly for-
mulated very imprecisely—better than traditional
numerical solution schemes.

7.5 Software

MIIND is available at http://miind.sf.net.
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8Computing Extracellular Electric
Potentials fromNeuronal Simulations
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Abstract

Measurements of electric potentials from
neural activity have played a key role in neuro-
science for almost a century, and simulations
of neural activity is an important tool for
understanding such measurements. Volume
conductor (VC) theory is used to compute
extracellular electric potentials stemming
from neural activity, such as extracellular
spikes, multi-unit activity (MUA), local
field potentials (LFP), electrocorticography
(ECoG), and electroencephalography (EEG).
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Further, VC theory is also used inversely
to reconstruct neuronal current source
distributions from recorded potentials through
current source density methods. In this
book chapter, we show how VC theory can
be derived from a detailed electrodiffusive
theory for ion concentration dynamics in
the extracellular medium, and we show
what assumptions must be introduced to
get the VC theory on the simplified form
that is commonly used by neuroscientists.
Furthermore, we provide examples of how
the theory is applied to compute spikes, LFP
signals, and EEG signals generated by neurons
and neuronal populations.
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8.1 Introduction

Arguably, most of what we have learned about
the mechanisms by which neurons and networks
operate in living brains comes from recordings
of extracellular potentials. In such recordings,
electric potentials are measured by electrodes that
are either placed between cells in brain tissue, like
spikes or local field potentials (LFPs); at the corti-
cal surface, like electrocorticography (ECoG); or
at the scalp, like electroencephalography (EEG)
(Fig. 8.1). Spikes are reliable signatures of neu-
ronal action potentials, and spike measurements
have been instrumental in mapping out, for exam-
ple, receptive fields accounting for how sensory
stimuli are represented in the brain. The analy-
sis of the LFP signal, the low-frequency part of
electric potentials recorded inside gray matter,
as well as the ECoG, and EEG signals is less
straightforward.While it is clear that these signals
reflect (and therefore contain valuable informa-
tion about) the underlying neural activity (Cohen,
2017; Einevoll et al., 2013a; Pesaran et al., 2018),
interpretation of these signals in terms of the
underlying neural activity has been difficult. So
far, most analyses of LFP, ECoG, and EEG data
have therefore been purely statistical (Buzsáki
et al., 2012; Einevoll et al., 2013a; Ilmoniemi and
Sarvas, 2019; Nunez and Srinivasan, 2006).

There are however good reasons to believe
that much could be gained by moving toward a
more mechanistic understanding of LFP, ECoG,
and EEG signals, similar to what has been the
tradition in physics. Here candidate hypotheses
are typically formulated as specific mathemati-
cal models, and predictions computed from the
models are compared with experiments. In neu-
roscience this approach has been used to model
activity in individual neurons using, for example,
biophysically detailed neuron models based on
the cable equation formalism (see, e.g., Koch
(1999); Sterratt et al. (2011)). These models have
largely been developed and tested by compari-
son with membrane potentials recorded by in-
tracellular electrodes in in vitro settings (but see
Gold et al. (2007)). To pursue this mechanistic
approach to network models in layered structures
such as cortex or hippocampus, one would like

to compare model predictions with all available
experimental data, that is, not only spike times
recorded for a small subset of the neurons, but
also populationmeasures such as LFP, ECoG, and
EEG signals (Einevoll et al., 2019). This chapter
addresses how to model such electric population
signals from neuron and network models.

In addition to allowing for validation on large-
scale network models mimicking specific biolog-
ical networks, e.g., Billeh et al. (2020); Markram
et al. (2015); Reimann et al. (2013), we believe a
key application is to generatemodel-based bench-
marking data for validation of data analysis meth-
ods (Denker et al., 2012). One example is the
use of such benchmarking data to develop and
test spike-sortingmethods (Buccino and Einevoll,
2021; Hagen et al., 2016) or test methods for
localization and classification of cell types (Buc-
cino et al., 2018;DelgadoRuz and Schultz, 2014).
Another example is testing of methods for analy-
sis of LFP signals, such as CSD analysis (Łȩski
et al., 2011; Ness et al., 2015; Pettersen et al.,
2008) or ICA analysis (Gła̧bska et al., 2014),
or joint analysis of spike and LFP signals such
as laminar population analysis (LPA) (Gła̧bska
et al., 2016).

The standard way to compute extracellular
potentials from neural activity is a two-step pro-
cess (Hagen et al., 2018; Holt and Koch, 1999;
Lindén et al., 2014):

1. Compute the net transmembrane current in all
neuronal segments in (networks of) biophysi-
cally detailed neuron models, and

2. Use volume conductor (VC) theory to com-
pute extracellular potentials from these com-
puted transmembrane currents.

In this chapter we describe the origin of VC
theory, that is, how it can be derived from a
more detailed electrodiffusive theory describing
dynamics of ions in the extracellular media. We
further provide examples where our tool LFPy
(LFPy.github.io) (Hagen et al., 2018; Lindén
et al., 2014) is used to compute spikes, LFP
signals, and EEG signals generated by neurons
and neuronal populations.
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Fig. 8.1 LFP, ECoG, and
EEG. The same basic
building blocks, that is,
currents caused by large
numbers of synaptic input
are contributing to several
different measurable
signals

8.2 From Electrodiffusion to
Volume Conductor Theory

In this section we describe the origin of extracel-
lular potentials from fundamental electrodiffusive
processes. The mathematical derivations we go
through can be challenging for people without
schooling in mathematics or physics, and readers
which are not interested in these mathematical
details can consider jumping ahead to Sect. 8.2.3.
We have however attempted to supply some in-
tuitive understanding of what the different equa-
tions represent.

Extracellular potentials are generated by
electric currents in the extracellular space. The
currents are in turn mediated by movement
of ions and can in principle include several
components:

1. A drift component (ions migrating in electric
fields).

2. A diffusion component (ions diffusing due to
concentration gradients).

3. An advective component (extracellular fluid
flow drags ions along).

4. A displacement component (ions pile up and
changes the local charge density).

Since the extracellular bulk fluid has very
fast relaxation times and is very close to
electroneutral, the latter two current components

(3–4) are extremely small and are typically
neglected (Gratiy et al., 2017; Grodzinsky, 2011).
The diffusive component (2) is acknowledged
to play an important role for voltage dynamics
on a tiny spatial scale, such as in synaptic
clefts or in the close vicinity of neuronal
membranes, where ion concentrations can change
dramatically within very short times (Holcman
and Yuste, 2015; Pods, 2017; Savtchenko et al.,
2017). At the macroscopic tissue level, it is
commonly assumed that the diffusive current
is much smaller than the drift current, so that
in most studies, only the drift component (1) is
considered. The extracellular medium can then
be treated as a volume conductor (VC), which
greatly simplifies the calculation of extracellular
potentials (Holt and Koch, 1999; Lindén et al.,
2014).

However, if large ion concentration gradients
are present, diffusive currents could in principle
affect measurable extracellular potentials (Halnes
et al., 2016, 2017; Solbrå et al., 2018). Thus
in scenarios involving dramatic shifts in
extracellular concentrations, such as spreading
depression and related pathologies, diffusive
effects are likely to be of key importance for
shaping the extracellular potential (Almeida et al.,
2004; O’Connell and Mori, 2016). For such cases
VC theory is insufficient, and computationally
much more expensive electrodiffusive modeling
must be used.
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8.2.1 Ion Concentration Dynamics

In this section the starting point is the general
assumption of ion movement under the combined
influence of electric fields and concentration gra-
dients. Building on this, we first describe com-
putational schemes for modeling electrodiffusive
processes, and nextwe show how the electrodiffu-
sive theory reduces to the fundamental equations
for VC theory when we assume negligible effects
from diffusion.

The movement of ions in the brain are de-
scribed in terms of fluxes (Freeman, 1975). In
electrodiffusive processes, the flux density of an
ion species k is given by (see e.g., Grodzinsky
(2011)):

jk = −Dk∇ck − Dkzkck

ψ
∇φ. (8.1)

The mathematical operator ∇ computes the spa-
tial derivative (gradient) of scalars. The first term
on the right is Fick’s law for the diffusive flux
density j diff

k , and it implies that the diffusive flux
is proportional to the gradient of the concentra-
tion, ck . The second term is the drift flux den-
sity j drift

k , and it implies that the drift flux is
proportional to the gradient of the voltage, φ.
This equation expands Fick’s law in the case
where the diffusing particles also move due to
electrostatic forces with a mobility Dk/ψ (cf. the
Einstein-relation, Grodzinsky (2011)). Here Dk

is the diffusion coefficient of ion species k, φ

is the electric potential, zk is the valency of ion
species k, and ψ = RT/F is defined by the
gas constant (R), Faraday’s constant (F ), and the
temperature (T ). The ion concentration dynamics
of a given species is then given by the Nernst–
Planck continuity equation,

∂ck

∂t
= −∇ · jk + fk = ∇ ·

[
Dk∇ck + Dkzkck

ψ
∇φ

]
+ fk,

(8.2)

where fk represents any source term in the sys-
tem, such as, an ionic transmembrane current
source (Solbrå et al., 2018). Note that ∇· com-
putes the divergence of vectors (such as flux

densities), which represents the volume density
of the outward flux from an infinitesimal volume
around a given point. Essentially, this equation
just tells us that if there is a net movement of ions
into or out of a volume (from any source within
the volume (fk), and/or moving in from the sides
(∇ · jk)), then the local concentration (ck) must
change (left hand side of equation).

In order to solve a set (i.e., one for each ion
species present) of equations like Eq. (8.2), one
needs an expression for the electric potential
φ. There are two main approaches to this. The
physically most detailed approach is to use
the Poisson–Nernst–Planck (PNP) formalism
(Cartailler et al., 2018; Gardner et al., 2015;
Léonetti and Dubois-Violette, 1998; Léonetti
et al., 2004; Lopreore et al., 2008; Lu et al.,
2007; Nanninga, 2008; Pods et al., 2013). Within
this formalism, φ is determined from Poisson’s
equation from electrostatics,

∇2φ = −ρ/ε. (8.3)

Here ∇2 is called the Laplacian. The Laplacian
of a function is the sum of second partial deriva-
tives with respect to each independent variable.
Poisson’s equation is used to find the electric
potential arising from a given charge distribution.
Further, ε is the permittivity of the system, and
ρ is the charge density associated with the ionic
concentrations, as given by

ρ = F
∑

k

zkck. (8.4)

An alternative, more computationally efficient
approach is to replace the Poisson equation
with the simplifying approximation that the bulk
solution is electroneutral (Ellingsrud et al., 2020;
Halnes et al., 2013, 2015; Mori, 2009; Mori and
Peskin, 2009; Mori et al., 2008, 2011; Niederer,
2013; O’Connell and Mori, 2016; Pods, 2017;
Solbrå et al., 2018; Sætra et al., 2020; Tuttle
et al., 2019), which is a good approximation on
spatiotemporal scales larger than micrometers
and microseconds (Grodzinsky, 2011; Pods,
2017; Solbrå et al., 2018).
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Both the PNP formalism and the electroneutral
formalism allow us to compute the dynamics of
ion concentrations and the electric potential in the
extracellular space of neural tissue containing an
arbitrary set of neuronal and glial current sources.
For example, in recent work, a version of the
electroneutral formalism called the Kirchhoff–
Nernst–Planck (KNP) formalism was developed
into a framework for computing the extracellular
dynamics (of ck and φ) in a 3D space surround-
ing morphologically complex neurons simulated
with the NEURON simulation tool (Solbrå et al.,
2018). However, both the PNP and electroneutral
formalisms such as KNP keep track of the spatial
distribution of ion concentrations, and as such
they require a suitable meshing of the 3D space,
and numerical solutions based on finite difference
or finite element methods. In both cases, simu-
lations can become computationally demanding,
and for systems at a tissue level the required com-
putational demand may become unfeasible. For
that reason, there is much to gain from deriving
a simpler framework where effects of ion con-
centration dynamics are neglected, and for many
scenarios this may be a good approximation. Be-
low, we will derive this simpler framework, i.e.,
the standard volume conductor (VC) theory, using
the Nernst–Planck fluxes (Eq. (8.1)) as a starting
point.

8.2.2 Electrodynamics

If we multiply Eq. (8.1) by F · zk and sum over
all ion species, we get an expression for the net
electric current density due to all particle fluxes,

i = −
∑

k

F zkDk∇ck − σ∇φ, (8.5)

where the first term is the diffusive current density
idiff and the second term is the drift current density
idrift. We have here identified the conductivity σ

of the medium as (Grodzinsky, 2011):

σ = F
∑

k

D̃kz
2
k

ψ
ck. (8.6)

Current conservation in the extracellular space
implies that:

∇ · i = −
∑

k

F zkDk∇2ck − ∇ · (σ∇φ) = −C,

(8.7)

where C denotes the current source density
(CSD). This equation implies that because of
current conservation, the net amount of current
entering or leaving through the sides of a
certain volume of the extracellular space (∇ · i)
must be exactly balanced by the net amount
of current entering or leaving through current
sources and sinks within the volume (−C).
Here C will reflect, e.g., local neuronal or glial
transmembrane currents. We note that this is
essentially equivalent to Eq. (8.2) at the level
of single ion species, with the exception that
Eq. (8.2) contains a term ∂ck/∂t for accumulation
of ion species k, while Eq. (8.7) does not
contain a corresponding term (∂ρ/∂t) for charge
accumulation. Hence, in Eq. (8.7) it is implicitly
assumed that the extracellular bulk solution is
electroneutral (Solbrå et al., 2018). We note that
in general, the CSD term includes both ionic
transmembrane currents and transmembrane
capacitive currents, and that the latter means
that the local charge accumulation building up
the transmembrane potential still occurs in the
membrane Debye-layer.

Note that if we assume all concentrations to be
constant in space, the diffusive term vanishes, and
Eq. (8.7) reduces to

∇ · (σ∇φ) = −C. (8.8)

Importantly, this equation links the measurable
extracellular potentials directly to the neuronal
transmembrane currents, and it can therefore be
used to calculate extracellular potentials from
a given set of neural current sources. This is
also the standard expression used in CSD theory
(Mitzdorf, 1985; Nicholson and Freeman, 1975;
Pettersen et al., 2006), where spatially distributed
recordings of φ are used to make theoretical pre-
dictions of underlying current sources. When us-
ing Eq. (8.8), it is implicitly assumed that the
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Laplacian of φ exclusively reflects transmem-
brane current sources and that it is not contributed
by diffusive processes.

Note that there are two commonly used con-
ventions for defining the variables in Eqs. (8.1)–
(8.8). The variables can be defined either relative
to a tissue reference volume or relative to an
extracellular reference volume. The former con-
vention is the common convention used in volume
conductor theory. For this convention, concentra-
tions denote the number of extracellular ions per
unit tissue volume, sources denote the number
of ions or the net charge per unit tissue volume
per second, and flux or current densities are de-
fined per unit tissue cross-section area. Finally,
σ interprets as the tissue-averaged extracellular
conductivity, i.e., it is not the conductivity of the
extracellular solution as such, but accounts for
the fact that extracellular currents at the coarse-
grained scale (i) have tortuous trajectories around
neural and glial obstacles, and (ii) are mostly
confined to move only through the extracellular
fraction (typically about 0.2) of the total tissue
volume (Nicholson and Syková, 1998; Nunez and
Srinivasan, 2006).

As Eq. (8.7) indicates, also diffusive processes
can in principle contribute to the Laplacian of φ,
and if present, they could give rise to a non-zero
Laplacian of φ even in the absence of neuronal
sources (C = 0). Previous computational studies
have predicted that effects of diffusion on extra-
cellular potentials are not necessarily small, but
tend to be very slow, meaning that they will only
affect the very low-frequency components of φ

(Halnes et al., 2016, 2017). This is due to the
diffusive current being a direct function of ion
concentrations ck, which on a large spatial scale
typically vary on a much slower time scale (sec-
onds to minutes) than the fluctuations in φ that
we commonly are interested in (milliseconds to
seconds). Furthermore, electrodes used to record
φ typically have a lower cutoff frequency between
0.1 and 1Hz (Einevoll et al., 2013a), whichmeans
that most of the tentative diffusive contribution
will be filtered out from experimental recordings.
It may therefore be a good approximation to
neglect the diffusive term, except in the case of
pathologically dramatic concentration variations.

For the rest of this chapter, we shall do so and
assume that electrodynamics in neural tissue can
be determined by Eq. (8.8).

8.2.3 Volume Conductor Theory

In simulations of morphologically complex
neurons, one typically computes a set of
transmembrane current sources for each neuronal
segment (Koch, 1999). By assuming that
the tissue medium can be approximated as
a volume conductor (Holt and Koch, 1999;
Lindén et al., 2014), one can then use the
standard CSD equation (Eq. (8.8)) to perform a
forward modeling of the extracellular potential at
each point in space surrounding the neuron(s).
Since extracellular potentials are generally
much smaller than the membrane potential of
∼ − 70mV, it is common to assume that the
neurodynamics is not affected by extracellular
potentials, and to simulate the neurodynamics as
a first independent step, before computing the
extracellular potentials in the next step.

If we consider the simple case of a single
point-current source I1 at the origin in an isotropic
medium, the current density i = −σ∇φ through
a spherical shell with area 4πr2 must, due to the
spherical symmetry, equal I1/4πr2 r̂. Integration
with respect to r gives us:

φ = I1

4πσr
, (8.9)

where r is the distance from the source.
If we have several point-current sources,

I1, I2, I3, . . ., in locations r1, r2, r3 . . ., their
contributions add up due to the linearity
assumption (see Sect. 8.2.3.2), and the potential
in a point r is given by:

φ(r) = I1

4πσ |r− r1| +
I2

4πσ |r− r2| (8.10)

+ I3

4πσ |r− r3| + . . . =
∑

k

Ik

4πσ |r− rk | .

Equation (8.10) is often referred to as the point-
source approximation (Holt and Koch, 1999;
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Lindén et al., 2014), since the membrane current
from a neuronal segment is assumed to enter
the extracellular medium in a single point. An
often used further development is obtained by
integrating Eq. (8.10) along the segment axis,
corresponding to the transmembrane current
being evenly distributed along the segment axis,
giving the line-source approximation (Holt and
Koch, 1999; Lindén et al., 2014).

8.2.3.1 Current-Dipole Approximation
When estimating the extracellular potential far
away from a volume containing a combination of
current sinks and sources, it can often be useful
to express Eq. (8.10) in terms of a multipole ex-
pansion. That is, φ can be precisely described by
(Nunez and Srinivasan, 2006),

φ(R) = Cmonopole

R
+ Cdipole

R2

+Cquadrupole

R3
+ Coctupole

R4
+ . . . ,

when the distanceR from the center of the volume
to the measurement point is larger than the dis-
tance from volume center to the most peripheral
source (Jackson, 1998).

In neural tissue, there will be no current
monopole contribution to the extracellular
potential, Cmonopole = 0. This follows from
the requirement inherent in the cable equation
that the sum over all transmembrane currents,
including the capacitive currents, across the
neuronal surface has to be zero at all points
in time (Pettersen et al., 2012). Further,
the quadrupole, octupole and higher-order
contributions decay rapidly with distance R.
Consequently, the multipole expansion can be
approximated by the dipole contribution for large
distances, a simplification known as the current-
dipole approximation (Nunez and Srinivasan,
2006):

φ(R) ≈ Cdipole

R2
= 1

4πσ

|p| cos θ

R2
. (8.11)

Here, p is the current-dipole moment and θ is
the angle between the current-dipole moment and

the distance vectorR. The current-dipolemoment
can be found by summing up all the position-
weighted transmembrane currents from a neuron
(Nunez and Srinivasan, 2006; Pettersen et al.,
2008, 2014):

p =
N∑

k=1

Ikrk. (8.12)

In the case of a two-compartment neuron
model (see Sect. 8.3) with a current sink −I at
location r1 and a current source I at location r2,
the current-dipole moment can be formulated as
p = −Ir1 + Ir2 = I (r2 − r1) = Id, where d is
the distance vector between the current sink and
the current source, giving the dipole length d and
direction of the current dipole. The current-dipole
approximation is applicable in the far-field limit,
that is when R is much larger than the dipole
length. For an investigation of the applicability
of this approximation for the LFP generated by
a single neuron, see Lindén et al. (2010); Næss
et al. (2021).

8.2.3.2 Assumptions in Volume
Conductor Theory

The point-source approximation, Eq. (8.10) (or
the line-source version of it), and the current-
dipole approximation, Eq. (8.11), represent vol-
ume conductor theory in its simplest form, and are
based on a set of assumptions, some ofwhichmay
be relaxed for problems where it is relevant:

1. Quasi-static approximation of Maxwell’s
equations: Terms with time derivatives of the
electric andmagnetic fields are neglected. This
approximation appears to be well-justified for
the relatively low frequencies relevant for
brain signals, below about 10 kHz (Nunez and
Srinivasan, 2006).

2. Linear extracellular medium: Linear rela-
tionship (i = −σ∇φ) between the current
density i and the electric field, ∇φ. This is
essentially Ohm’s law for volume conductors,
and the relation is constitutive, meaning that it
is observed in nature rather than derived from
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any physical principle (Nunez and Srinivasan,
2006; Pettersen et al., 2012).

3. Frequency-independent conductivity:
Capacitive effects in neural tissue are assumed
to be negligible compared to resistive effects
in volume conduction. This approximation
seems to be justified for the relevant frequen-
cies in extracellular recordings (Logothetis
et al., 2007; Miceli et al., 2017; Ranta et al.,
2017), see Fig. 8.2. Note that it is possible to
expand the formalism to include a frequency-
dependent conductivity (Miceli et al., 2017;
Tracey and Williams, 2011).

4. Isotropic conductivity: The electric conduc-
tivity, σ , is assumed to be the same in all
spatial directions. Cortical measurements have
indeed found the conductivities to be com-
parable across different lateral directions in
cortical grey matter (Logothetis et al., 2007).
However, the conductivity in the depth direc-
tion, i.e., parallel to the long apical dendrites,
was found to be up to 50% larger than in
the lateral direction in rat barrel cortex (Goto
et al., 2010). Anisotropic electric conductiv-
ities have also been found in other brain re-
gions, for example in frog cerebellum (Nichol-
son and Freeman, 1975) and in guinea-pig hip-
pocampus (Holsheimer, 1987). The approxi-
mation that σ is homogeneous is still often
acceptable, as it normally gives fairly good
estimates of the extracellular potential, at least
in cortical tissue (Ness et al., 2015). However,
it is relatively straightforward to expand the
formalism to account for anisotropic conduc-
tivities (Ness et al., 2015).

5. Homogeneous conductivity: The extracel-
lular medium was assumed to have the same
conductivity everywhere. Although neural
tissue is highly non-homogeneous on the
micrometer scale (Nicholson and Syková,
1998), microscale inhomogeneities may
average out on a larger spatial scale, and
a homogeneous conductivity seems to be
a reasonable approximation within cortex
(Logothetis et al., 2007). In hippocampus,
however, the conductivity has been found
to be layer-specific (López-Aguado et al.,
2001). In situations where the assumption of a

homogeneous conductivity is not applicable,
Eq. (8.8) can always be solved for arbitrarily
complex geometries using numericalmethods,
like the Finite Element Method (FEM) (Logg
et al., 2012). For some example neuroscience
applications, see Buccino et al. (2019); Frey
et al. (2009); Haufe et al. (2015); Joucla and
Yvert (2012); Moffitt and McIntyre (2005);
Ness et al. (2015); Obien et al. (2019).
For some simple non-homogeneous cases
analytical solutions can still be obtained, for
example through the Method of Images for
in vitro brain slices (Ness et al., 2015), and
the four-sphere head model for EEG signals
(Sect. 8.5) (Næss et al., 2017).

6. No effects from ion diffusion: To account for
diffusion of ions, one would need to compute
the electrodynamics of the system using one
of the electrodiffusive frameworks presented
in Sect. 8.2.1.

Volume conductor theory is the fundament for
forward modeling of extracellular potentials at
different spatial scales, from extracellular spikes,
LFPs and MUAs, to ECoGs and EEGs. In the
following sections we shall review previous mod-
eling works, and insights from simulating elec-
tric potentials at these different scales. We use
the software LFPy (Hagen et al., 2018, 2019;
Lindén et al., 2014), which has volume conductor
theory incorporated and can in principle be used
to compute extracellular potentials on arbitrarily
large spatial scales, surrounding arbitrarily large
neuronal populations.

8.2.4 Modeling Electrodes

The simplest and most commonly used approach
when modeling extracellular recordings is to cal-
culate the extracellular potential at single points
following one of the approaches outlined above
and use this as a measure of recorded potentials.
Implicitly, this assumes ideal point electrodes,
that is, the electrodes (and electrode shank) do
not affect the extracellular potential and the extra-
cellular potential does not vary substantially over
the surface of the electrodes. (The point-electrode
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Fig. 8.2 Literature review of reported conductivities
in various species and experimental setups. Most stud-
ies seem to indicate a very weak frequency dependence of
the extracellular conductivity, which would have a negli-
gible effect on measured extracellular potentials (Miceli
et al., 2017). The very low and strongly frequency-
dependent values measured by Gabriel et al. (1996) rep-

resent an outlier, and although it has received substantial
attention, it has to the best of our knowledge not been
reproduced by any other study. For details about the data,
seeMiceli et al. (2017), and references therein (Elbohouty,
2013; Gabriel et al., 1996; Logothetis et al., 2007; Ranck,
1963; Wagner et al., 2014)

assumption was used for all simulation examples
in this chapter).

A numerically straightforward extension is the
disc-electrode approximation where the potential
is evaluated at a number of points on the elec-
trode surface, and the average calculated (Lindén
et al., 2014). This approach takes into account the
physical extent of the electrode, but not any effect
the electrode itself might have on the electric po-
tential. Close to the electrode surface the electric
potential will however be affected by the presence
of the high-conductivity electrode contact (McIn-
tyre and Grill, 2001; Moulin et al., 2008). A nu-
merically much more comprehensive approach to
modeling electrodes is to use the Finite Element
Method (FEM) to model the electrode (Moulin
et al., 2008; Ness et al., 2015), or the electrode
shank (Buccino et al., 2019; Moffitt and McIn-
tyre, 2005). Using FEM for validation, Ness et al.
(2015) found that the ideal point-electrode and
disc-electrode approximations where reasonably
accurate when the distance between the current
sources and the recording electrode was bigger
than ∼4 times and ∼2 times the electrode ra-

dius, respectively, indicating that the effects of the
electrodes themselves are negligible inmost cases
(Nelson and Pouget, 2010). The presence of large
multi-contact electrode probes can, however, sub-
stantially affect the extracellular potential in its
vicinity, by effectively introducing a large non-
conducting volume (Mechler and Victor, 2012),
and this can amplify or dampen recorded poten-
tials from nearby cells by almost a factor of two,
depending on whether the cell is in front of or
behind the electrode shank (Buccino et al., 2019).

Note that for modeling current stimulation
electrodes (as opposed to just recording elec-
trodes), more complex electrode models might
be needed due to electrode polarization effects
(Joucla and Yvert, 2012;Martinsen and Grimnes,
2008; McIntyre and Grill, 2001).

8.3 Single-Cell Contributions to
Extracellular Potentials

The transmembrane currents of a neuron
during any neural activity can be used to
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calculate extracellular potentials, by applying
the formalism described in Sect. 8.2.3, and in the
simplest case Eq. (8.10). Current conservation
requires that the transmembrane currents across
the entire cellular membrane at any given time
sum to zero (Koch, 1999; Nunez and Srinivasan,
2006), and since an excitatory synaptic input
generates a current sink (negative current), this
will necessarily lead to current sources elsewhere
on the cell. This implies that point neurons, that
is, neurons with no spatial structure, will have no
net transmembrane currents, and hence cause no
extracellular potentials (Fig. 8.3a). The simplest
neuron models that are capable of producing
extracellular potentials are therefore two-
compartment models, which will have two equal
but opposite transmembrane currents, giving rise
to perfectly symmetric extracellular potentials
(Fig. 8.3b).

Multi-compartment neuron models mimick-
ing the complex spatial structure of real neurons
will typically give rise to complicated patterns of
current sinks and sources, leading to complex,
but mostly dipolar-like extracellular potentials
(Fig. 8.3c) (Einevoll et al., 2013a). Note that this
framework for calculating extracellular potentials
is valid both for subthreshold and suprathresh-
old neural activity, that is, when a cell receives
synaptic input that does not trigger, or does trig-
ger an action potential, respectively (Fig. 8.3d
versus e).

8.4 Intra-Cortical Extracellular
Potentials from Neural
Populations

Extracellular potentials measured within neural
tissue are often split into two separate frequency
domains, which reflect different aspects of the
underlying neural activity. The low-frequency
part, the local field potential (LFP), is thought
to mostly reflect synaptic input to populations
of pyramidal cells, while the high-frequency
part, the multi-unit activity (MUA), reflects the
population spiking activity (Fig. 8.4).

8.4.1 Local Field Potentials

The LFP is the low-frequency part (� 500Hz)
of the extracellular potentials, and it is among
the oldest and most used brain signals in
neuroscience (Einevoll et al., 2013a). The
LFP is expected to be dominated by synaptic
inputs asymmetrically placed onto populations
of geometrically aligned neurons (Einevoll
et al., 2013b; Lindén et al., 2011; Nunez and
Srinivasan, 2006). In cortex and hippocampus,
neurons can broadly speaking be divided into
two main classes: the inhibitory interneurons
and the excitatory pyramidal neurons. Pyramidal
neurons typically have a clear axis of orientation,
that is, the apical dendrites of close-by pyramidal
neurons tend to be oriented in the same direction
(Fig. 8.4a). This geometrical alignment is
important because the LFP contributions from
the individual pyramidal cells also align and
therefore sum constructively. For example,
basal excitatory synaptic input (Fig. 8.4b, time
marked by red line) generates a current sink and
corresponding negative LFP deflection in the
basal region, and simultaneously a current source
and corresponding positive LFP deflection in the
apical region (Fig. 8.4d, time marked by red line),
while apical excitatory synaptic input leads to the
reversed pattern (Fig. 8.4b,d, time marked by
blue line). Importantly, this means that excitatory
input that simultaneously targets both the
apical and the basal dendrite will give opposite
source/sink patterns which will lead to substantial
cancelation and a weak LFP contribution
(Fig. 8.4b, d, time marked by orange line). The
same arguments also apply to inhibitory synaptic
inputs, with the signs of the currents and LFPs
reversed.

Note that, for example, the LFP signature
of apical excitatory synaptic input is inherently
similar to that of basal inhibitory input, and
indeed, separating between cases like this pose a
real challenge in interpreting LFP signals (Lindén
et al., 2010).
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Fig. 8.3 Single-cell contributions to the extracellular
potential. (a) Point neurons have no net currents (top),
and therefore cause no extracellular potentials (bottom).
(b) Two-compartment neuron models have two opposite
currents of identical magnitude (top) and cause perfectly
symmetric dipolar-like extracellular potentials (bottom).
(c) Multi-compartment neuron models (Hay et al., 2011)
give rise to complex source-sink patterns (top) and com-

plex (but mostly dipolar-like) extracellular potentials (bot-
tom). (d), (e) A single somatic synaptic input to a complex
multi-compartment cell model, either subthreshold (d) or
suprathreshold (e; double synaptic weight of d), illustrat-
ing that the same framework can be used to calculate
both the extracellular potential from subthreshold synaptic
input, and extracellular action potentials

In contrast to pyramidal neurons, interneurons
often lack any clear orientational specificity,
meaning that the current dipoles from individual
interneurons, which might by themselves be
sizable (Lindén et al., 2010), do not align,
leading to negligible net contributions to LFP
signals (Martínez-Cañada et al., 2021; Mazzoni
et al., 2015). Note, however, that the interneurons
may indirectly cause large LFP contributions
through their synaptic inputs onto pyramidal cells
(Hagen et al., 2016; Teleńczuk et al., 2017).

It has been demonstrated that correlations
among the synaptic inputs to pyramidal cells
can amplify the LFP signal power by orders of
magnitude, with the implication that populations
receiving correlated synaptic input can dominate

the LFP also 1–2mm outside of the population
(Łȩski et al., 2013; Lindén et al., 2011).

Somatic action potentials lasting only a
few milliseconds are generally expected to
contribute little to cortical LFP signals (Einevoll
et al., 2013a; Haider et al., 2016; Pettersen and
Einevoll, 2008; Pettersen et al., 2008): Their very
short duration with both positive and negative
phases (Fig. 8.3e) will typically give large signal
cancelations of the contributions from individual
neurons, and their high-frequency content is
to a large degree removed from LFPs during
low-pass filtering. Note, however, that in the
hippocampus the highly synchronized spikes
found during sharp wave ripples are expected to
also contribute to shaping of the LFP (Luo et al.,
2018; Schomburg et al., 2012).
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Other active conductances may contribute
in shaping the LFP, for example, the slower
dendritic calcium spikes (Suzuki and Larkum,
2017) or long-lasting after-hyperpolarization
currents (Reimann et al., 2013). Further,
subthreshold active conductances can also
shape the LFP by molding the transmembrane
currents following synaptic input, and the
hyperpolarization-activated cation channel Ih
may play a key role in this, both through asym-
metrically changing the membrane conductance,
and by introducing apparent resonance peaks in
the LFP (Ness et al., 2016, 2018).

8.4.2 MUA

While LFPs are thought to mainly reflect the
synaptic input to large populations of pyrami-
dal neurons, the multi-unit activity (MUA) can
be used to probe the population spiking activ-
ity (Einevoll et al., 2007; Pettersen et al., 2008)
(Fig. 8.4e,f). In other words, theMUA holds com-
plimentary information to the LFP. In particu-
lar, this can be useful for some cell types, like
excitatory stellate cells and inhibitory interneu-
rons, which are expected to have very weak LFP
contributions (Lindén et al., 2011), but might
still be measurable through their spiking activity.
Similarly, spatially uniformly distributed synaptic
input to pyramidal neurons results in a negli-
gible LFP contribution (Fig. 8.4c, time marked
by orange line), while the population might still
contribute substantially to the MUA through the
extracellular action potentials (Fig. 8.4e,f, time
marked by orange line).

8.5 ECoG and EEG

In order to measure electric potentials in the im-
mediate vicinity of neurons, like LFP and MUA
signals, we need to insert electrodes into the brain.
This highly invasive technique is quite common

in animal studies but can only be applied to hu-
mans when there is a clear medical need, for ex-
ample in patients with intractable epilepsy (Zan-
giabadi et al., 2019). However, electric potentials
generated by neural activity extend beyond neu-
ral tissue and can also be measured outside the
brain: Placing electrodes on the brain surface, as
in electrocorticography (ECoG), is a technique
that requires surgery. With electroencephalogra-
phy (EEG), on the other hand, potentials are
measured non-invasively, directly on top of the
scalp.

Since EEG electrodes are located relatively
far away from the neuronal sources, the current-
dipole approximation, Eq. (8.11), combined with
some head model, can be applied for computing
EEG signals (Ilmoniemi and Sarvas, 2019; Nunez
and Srinivasan, 2006; Næss et al., 2021). By
collapsing the transmembrane currents of a neu-
ron simulation into one single current-dipole mo-
ment, see Eq. (8.12), we can calculate EEG from
arbitrary neural activity (Fig. 8.5). The current-
dipole approximation is however not unproblem-
atic to use for computing ECoG signals, as the
ECoG electrodes may be located too close to the
signal sources for the approximation to apply, see
Næss et al. (2021).

8.5.1 HeadModels

Electric potentials measured on the scalp surface
will be affected by the geometries and conduc-
tivities of the different constituents of the head
(Fig. 8.6) (Nunez and Srinivasan, 2006). This can
be incorporated in EEG calculations by applying
simplified or more complex head models. A well-
known simplified head model is the analytical
four-sphere model, consisting of four concen-
tric shells representing brain tissue, cerebrospinal
fluid (CSF), skull, and scalp, where the con-
ductivity can be set individually for each shell
(Nunez and Srinivasan, 2006; Næss et al., 2017;
Srinivasan et al., 1998) (Figs. 8.6 and 8.7a,b).
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Fig. 8.5 EEG fromapical synaptic input to population
of pyramidal cells. (a) The four-sphere head model with
two orientations of the neural population from Fig. 8.4,
either radial, mimicking a population in a gyrus (top) or
tangential, mimicking a population in a sulcus (bottom).

(b) A snapshot of the EEG signal at the head surface for
apical input (timemarked with blue dotted line in Fig. 8.4),
for a radial population (top) or tangential population (bot-
tom). The center of the population is marked with a black
dot

More complex head models make use of high-
resolution anatomical MRI-data to map out a
geometrically detailed head volume conductor.
The link between current dipoles in the brain
and resulting EEG signals is determined applying
numerical methods such as the finite element
method (Larson and Bengzon, 2013; Logg et al.,
2012). Once this link is established we can in
principle insert a dipole representing arbitrary
neural activity into such a model, and compute
the resulting EEG signals quite straightforwardly
(Martínez-Cañada et al., 2021; Næss et al., 2021).

The New York Head model is an example of
one such pre-solved complex head model, see
Fig. 8.7c,d (Huang et al., 2016).

The head models themselves introduce no
essential frequency filtering of the EEG signal
(Nunez and Srinivasan, 2006; Pfurtscheller and
Cooper, 1975; Ranta et al., 2017); however,
substantial spatial filtering will occur (Fig. 8.6).
Additionally, the measured (or modeled) signals
represent the average potential across the
electrode surface, and the large electrode
sizes used in ECoG/EEG recordings can have
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Fig. 8.6 Effect of head inhomogeneities. The same cur-
rent dipole will give substantially different potentials on
the head surface if the different conductivities of the
head are included in a FEM model (Næss et al., 2017).

(a) Homogeneous sphere, with electrical conductivity,
σ = 0.33 S/m everywhere. (b) Standard four-sphere head
model, with σbrain = 0.33 S/m, σCSF = 5σbrain, σskull =
σbrain/20, σscalp = σbrain

Fig. 8.7 The four-sphere
head model and the New
York Head model. EEG
signals from population
dipole resulting from
waves of excitatory
synaptic input to 10,000
layer 5 pyramidal cells
from rat (Hay et al., 2011).
(a) The four-sphere model
consisting of four
concentrical shells: brain,
CSF, skull, and scalp. (b)
Maximum EEG signals (φ)
on scalp surface electrodes
resulting from population
dipole placed at location
marked by orange star,
computed with the
four-sphere model. (c)
Illustration of the New
York Head model (Huang
et al., 2016; Næss et al.,
2021). (d) EEG signals
computed with the New
York Head model,
equivalent to panel (b)
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important effect on the measured signals (Dubey
and Ray, 2019; Hagen et al., 2018; Nunez and
Srinivasan, 2006).

8.6 Conclusion

In the present chapter we have derived and
applied well-established biophysical forward-
modeling schemes for computing extracellular
electric potentials recorded inside and outside
the brain. These electric potentials include
spikes (both single-unit and multi-unit activity
(MUA)), LFP, ECoG, and EEG signals. The
obvious application of this scheme is computation
of electric signals from neuron and network
activity for comparison with experiments so
that candidate models can be tested (Einevoll
et al., 2019; Martínez-Cañada et al., 2021)
or inferred (Gonçalves et al., 2020; Skaar
et al., 2020). Another key application is the
computation of benchmarking data for testing
of data analysis methods such as spike sorting or
CSD analysis (Denker et al., 2012).

Inverse modeling of recorded electric
potentials, that is, estimation of the neural
sources underlying the signals, is inherently an
ill-posed problem. This means that no unique
solution for the size and position of the sources
exists. However, prior knowledge about the
underlying sources and how they generate the
recorded signals can be used to increase the
identifiability. For example, several methods for
the estimation of so-called current source density
(CSD) from LFP recordings have been developed
by building the present forward model into the
CSD estimator (Cserpán et al., 2017; Pettersen
et al., 2006; Potworowski et al., 2012).

The present chapter has focused on the
modeling of measurements of extracellular
electric signals. There are several other mea-
surement modalities where detailed forward
modeling could be pursued to allow for a more
quantitative analysis of recorded data, such
as magnetoencephalography (MEG), where
magnetic fields are recorded outside the head,
voltage-sensitive dye imaging (VSDI), which
reflects area-weighted neuronal membrane

potentials (Chemla and Chavane, 2012), two-
photon calcium imaging, which measures the
intracellular calcium dynamics (Helmchen,
2012), and functional magnetic resonance
imaging (fMRI), which reflects blood dynamics
(Bartels et al., 2012). While blood dynamics is
typically not explicitly included in neural network
models, MEG, VSDI, and calcium imaging are
accessible through neuronal simulations of the
type used to compute electric signals. Similar to
EEG, the MEG stems from the transmembrane
currents of neurons and can be computed based
on the current dipoles of the underlying neurons
(Hämäläinen et al., 1993; Ilmoniemi and Sarvas,
2019; Næss et al., 2021). The new version of
our tool LFPy, which was used in generating
the examples in the present chapter, thus also
includes the ability to compute MEG signals
(Hagen et al., 2018).
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Independent components of neural activity carry
information on individual populations. PLoS One
9(8):e105071. https://doi.org/10.1371/journal.pone.
0105071

Gła̧bska HT, Norheim E, Devor A, Dale AM, Einevoll GT,
Wójcik DK (2016) Generalized Laminar Population
Analysis (gLPA) for Interpretation of Multielectrode
Data from Cortex. Front Neuroinform 10:1

Gold C, Henze DA, Koch C (2007) Using extracellular
action potential recordings to constrain compartmental
models. J. Comput Neurosci 23(1):39–58. https://doi.
org/10.1007/s10827-006-0018-2

Gonçalves PJ, Lueckmann JM,DeistlerM,Nonnenmacher
M, Öcal K, Bassetto G, Chintaluri C, Podlaski WF,
Haddad SA, Vogels TP, Greenberg DS, Macke JH
(2020) Training deep neural density estimators to iden-
tify mechanistic models of neural dynamics. eLife
9:e56261

Goto T, Hatanaka R, Ogawa T, Sumiyoshi A, Riera J,
Kawashima R (2010) An evaluation of the conductivity
profile in the somatosensory barrel cortex ofWistar rats.
J Neurophysiol 104(6):3388–3412

Gratiy SL, Halnes G, Denman D, Hawrylycz MJ, Koch C,
Einevoll, GT, Anastassiou CA (2017) From Maxwell’s
equations to the theory of current-source density anal-
ysis. Eur J Neurosci 45(8):1013–1023

Grodzinsky F (2011) Fields, Forces, and Flows in Bio-
logical Systems. Garland Science, Taylor and Francis
Group, London

Hagen E, Dahmen D, Stavrinou ML, Lindén H, Tetzlaff
T, Van Albada SJ, Grün S, Diesmann M, Einevoll
GT (2016) Hybrid scheme for modeling local field
potentials from point-neuron networks. Cerebral Cortex
26(12):4461–4496

Hagen E, Næss S, Ness TV, Einevoll GT (2018) Multi-
modal modeling of neural network activity: computing
LFP, ECoG, EEG and MEG signals with LFPy 2.0.
Front Neuroinform 12:92

http://www.ncbi.nlm.nih.gov/pubmed/29847231
https://www.physiology.org/doi/10.1152/jn.00210.2018
https://www.physiology.org/doi/10.1152/jn.00210.2018
http://www.ncbi.nlm.nih.gov/pubmed/22595786
http://www.ncbi.nlm.nih.gov/pubmed/22595786
http://linkinghub.elsevier.com/retrieve/pii/S0166223617300243
http://linkinghub.elsevier.com/retrieve/pii/S0166223617300243
https://doi.org/10.1016/j.jneumeth.2014.05.037
https://doi.org/10.1016/j.jneumeth.2014.05.037
http://www.ncbi.nlm.nih.gov/pubmed/17182911
http://www.ncbi.nlm.nih.gov/pubmed/17182911
https://www.frontiersin.org/article/10.3389/fninf.2020.00011
https://www.frontiersin.org/article/10.3389/fninf.2020.00011
http://www.ncbi.nlm.nih.gov/pubmed/19157842
http://www.ncbi.nlm.nih.gov/pubmed/19157842
http://www.ncbi.nlm.nih.gov/pubmed/8938025
http://www.ncbi.nlm.nih.gov/pubmed/8938025
http://www.ncbi.nlm.nih.gov/pubmed/25260382
https://doi.org/10.1371/journal.pone.0105071
https://doi.org/10.1371/journal.pone.0105071
https://doi.org/10.1007/s10827-006-0018-2
https://doi.org/10.1007/s10827-006-0018-2


196 T. V. Ness et al.

Hagen E, Næss S, Ness TV, Einevoll GT (2019) LFPy—
multimodal modeling of extracellular neuronal record-
ings in Python. In: Encyclopedia of Computational
Neuroscience. Springer, New York, p 620286. https://
doi.org/10.1007/978-1-4614-7320-6_100681-1

Haider B, Schulz, D. PA, Häusser M, Carandini M (2016)
Millisecond coupling of local field potentials to synap-
tic currents in the awake visual cortex. Neuron 90:35–
42

Halnes G, Østby I, Pettersen KH, Omholt SW, Einevoll
GT (2013). Electrodiffusive model for astrocytic and
neuronal ion concentration dynamics. PLoS Comput
Biol 9(12):e1003386

Halnes G, Østby I, Pettersen KH, Omholt SW, Einevoll
GT (2015) An electrodiffusive formalism for ion con-
centration dynamics in excitable cells and the ex-
tracellular space surrounding them. In: Advances in
cognitive neurodynamics (IV). Springer, Netherlands,
pp 353–360 http://link.springer.com/chapter/10.1007/
978-94-017-9548-7_50

Halnes G, Mäki-Marttunen T, Keller D, Pettersen KH,
Andreassen, OA, Einevoll GT (2016) Effect of ionic
diffusion on extracellular potentials in neural tissue.
PLoS Comput Biol 12(11):e1005193

Halnes G, Mäki-Marttunen T, Pettersen KH, Andreassen
OA, Einevoll GT (2017) Ion diffusion may intro-
duce spurious current sources in current-source density
(CSD) analysis. J Neurophysiol 118(1):114–120. http://
jn.physiology.org/lookup/doi/10.1152/jn.00976.2016

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounas-
maa OV (1993) Magnetoencephalography—Theory,
instrumentation, and applications to noninvasive stud-
ies of the working human brain. Rev Mod Phys
65(2):413

Haufe S, Huang Y, Parra LC (2015) A highly detailed
FEM volume conductor model based on the ICBM152
average head template for EEG source imaging and
TCS targeting. Conf Proc IEEE Eng Med Biol Soc
2015:5744–5747

Hay E, Hill S, Schürmann F, Markram H, Segev I (2011)
Models of neocortical layer 5b pyramidal cells captur-
ing a wide range of dendritic and perisomatic active
properties. PLoS Comput Biol 7(7):1–18

Helmchen F (2012) Calcium imaging. In: Brette R, Des-
texhe A (eds) Handbook of neural activity measure-
ment. Cambridge University, Cambridge, pp 92–135

Holcman D, Yuste R (2015) The new nanophysiology:
regulation of ionic flow in neuronal subcompartments.
Nat Rev Neurosci 16(11):685–692

Holsheimer J (1987) Electrical conductivity of the hip-
pocampal CA1 layers and application to current-
source-density analysis. Exp Brain Res 67(2):402–410

Holt G, Koch C (1999) Electrical interactions via the extra-
cellular potential near cell bodies. J Comput Neurosci
6:169–184. http://link.springer.com/article/10.1023/A:
1008832702585

Huang Y, Parra LC, Haufe S (2016) The New York
Head–A precise standardized volume conductor
model for EEG source localization and tES targeting.

NeuroImage 140:150–162. https://doi.org/10.1016/j.
neuroimage.2015.12.019

Ilmoniemi RJ, Sarvas J (2019) Brain Signals - Physics and
Mathematics of MEG and EEG. MIT Press, Cambridge

Jackson JD (1998) Classical electrodynamics, 3rd edn.
Wiley, New York

Joucla S, Yvert B (2012) Modeling extracellular electrical
neural stimulation: from basic understanding to MEA-
based applications. J Physiol Paris 106(3–4):146–58.
http://www.ncbi.nlm.nih.gov/pubmed/22036892

Koch C (1999) Biophysics of computation: information
processing in single neurons., 1st edn. Oxford Univer-
sity, New York

Larson MG, Bengzon F (2013) The finite element method:
theory, implementation, and applications, vol. 10.
Springer, Berlin

Léonetti M, Dubois-Violette E (1998) Theory of elec-
trodynamic instabilities in biological cells. Phys
Rev Lett 81(9):1977–1980. https://doi.org/10.1103/
PhysRevLett.81.1977

Léonetti M, Dubois-Violette E, Homblé F (2004) Pattern
formation of stationary transcellular ionic currents in
Fucus. Proc Natl Acad Sci USA 101(28):10243–10248.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=478558&tool=pmcentrez&rendertype=abstract
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Abstract

For constructing neuronal network models
computational neuroscientists have access
to wide-ranging anatomical data that never-
theless tend to cover only a fraction of the
parameters to be determined. Finding and
interpreting the most relevant data, estimating
missing values, and combining the data and
estimates from various sources into a coherent
whole is a daunting task. With this chapter
we aim to provide guidance to modelers by
describing the main types of anatomical data
that may be useful for informing neuronal
network models. We further discuss aspects
of the underlying experimental techniques
relevant to the interpretation of the data,
list particularly comprehensive data sets,
and describe methods for filling in the gaps
in the experimental data. Such methods of
“predictive connectomics” estimate connec-
tivity where the data are lacking based on
statistical relationships with known quantities.
Exploiting organizational principles that link
the plethora of data in a unifying framework
can be useful for informing computational
models. Besides overarching principles, we
touch upon the most prominent features of
brain organization that are likely to influence
predicted neuronal network dynamics, with
a focus on the mammalian cerebral cortex.
Given the still existing need for modelers to
navigate a complex data landscape full of holes
and stumbling blocks, it is vital that the field of
neuroanatomy is moving toward increasingly
systematic data collection, representation, and
publication.

Keywords

Neuroanatomy · Cytoarchitecture · Brain
atlases · Brain connectivity · Predictive
connectomics

Department of Physics, Faculty 1, RWTH Aachen
University, Aachen, Germany

9.1 Introduction

Some of the defining characteristics of a neuronal
network model are the size of the neuronal pop-
ulations and the connectivity between the neu-
rons. To determine these properties, the modeler
has access to information in multiple forms and
based on various experimental methods, where
the completeness of the data varies widely across
species and brain areas. For instance, the connec-
tivity data for the nervous system of the nema-
tode (roundworm)C. Elegans are nearly complete
and have enabled full connectomes to be derived
with minimal extrapolation from the data (Cook
et al., 2019). These graphs encode all connec-
tions between all of the neurons of the male and
hermaphrodite worms. However, the 302 neurons
of the hermaphrodite and the 385 neurons of the
male worm pale in comparison to larger brains
such as the human brain with its roughly 86
billion neurons and trillions of connections. Here,
and for most species, measuring a full connec-
tome is still far from feasible in terms of technical
and computational effort. For this reason, the
anatomical data often need to be complemented
with statistical estimates in order to define com-
plete network models of the brain. Filling in the
gaps in the known connectivity in this way may
be referred to as predictive connectomics. The
corresponding predictions have to be validated in
some way, for instance by leaving out part of the
known anatomical data and determining howwell
these are reproduced by the statistical estimates.

Understanding the human brain is often con-
sidered the holy grail of neuroscience, not least
because of the hope of finding novel cures and
therapies for brain diseases. However, due to its
size and enormous complexity, it can be helpful
on the way to this goal to investigate simpler,
more tractable brains of other species. Eric Kan-
del took this approach in his famous studies on
the sea slug Aplysia (Kandel, 2007), and it is a
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guiding thought behind the OpenWorm project
on modeling C. Elegans. Furthermore, data ob-
tained with invasivemethods are, for obvious rea-
sons, much more abundant for non-human brains.
Of course, understanding the brains of species
besides humans can be seen as a valuable aim
in itself—for improving the well-being of ani-
mals, for inspiring industrial applications, or as
an intellectual pursuit, like cosmology or pale-
ontology, which enriches us culturally even if it
has no direct practical application. And, as it is
with all basic sciences, one never knows what
innovations the knowledge gained may inspire
many years into the future. For these reasons,
we do not restrict ourselves to the human brain,
but also consider various other species. However,
we focus on mammalian brains, which exhibit
qualitative similarity to the human brain and may
therefore teach us most about our own brains.
Non-human primate brains deserve particular at-
tention, as they are closest to the human brain
in terms of anatomy and function. Although ex-
tensive differences in detailed organization re-
main (Hutchison and Everling, 2012; Orban et al.,
2004; Sereno and Tootell, 2005), the anatomical
similarities and evolutionary path give hope that
universal principles can be discovered extending
to the human brain. Furthermore, the chapter has
an emphasis on our study object of choice—the
cerebral cortex.

To limit the scope of the chapter, we also
restrict ourselves to anatomical properties rel-
evant for networks of point neurons or neural
populations, neglecting most aspects of detailed
neuron morphology and placement of synapses
on the dendritic tree and axonal arborizations.
The anatomical characteristics entering into the
definition of such neural network models can be
classified into brain morphology, cytoarchitec-
ture, and structural connectivity. Brain morphol-
ogy describes geometric macroanatomical prop-
erties, for instance the thickness of the cerebral
cortex and its layers, or the curvature. Cytoarchi-
tecture refers to the composition of brain regions
in terms of the sizes, shapes, and densities of
neurons. Structural connectivity refers to proper-
ties of the synaptic connections between neurons,
including numbers of synapses between a given

pair of neurons, or the probability for neurons
from two given populations to be connected.

The type and level of detail of anatomical
information that is required depends on the type
and aim of the modeling study. A population
model, describing only the aggregate activity of
entire populations of neurons, does not require
the connectivity to be resolved at the level of
individual neurons, nor is it generally necessary
to know the number of neurons in each population
for such models. For models resolving individual
neurons, in some cases it may be of interest to
incorporate detailed connectivity patterns, while
sometimes population-level connection probabil-
ities suffice. The difference lies in the questions
that the different types of models allow one to ad-
dress. In one approach, the modeler tries to derive
as realistic a connectivity matrix as possible, in
the hope of obtaining the best possible predictions
of dynamics and information processing on the
anatomical substrate. Here, it always needs to be
kept in mind that more detail does not necessarily
mean better predictions: Adding more param-
eters can actually reduce the predictive power
of a model, for instance when these parameters
are not sufficiently constrained (Jolivet et al.,
2008; Teeter et al., 2018). However, if this ap-
proach is successful, it in principle allows the ef-
fects of detailed physiological parameter changes
on network dynamics to be predicted (somewhat
akin to weather forecasts), which may ultimately
find clinical applications. In a contrasting model-
ing approach, connectivity features are abstracted
and the influence of these abstract features (e.g.,
small-worldness, clustering, hierarchical organi-
zation, etc.) on graph theoretical, dynamical, or
functional properties of the network are inves-
tigated. This approach places less emphasis on
strict biological realism and attempts to provide
a more conceptual understanding of the links
between brain anatomy, dynamics, and function.
In practice there is a continuum of approaches
between these two extremes. For instance, models
may incorporate biologically realistic features at
an intermediate level of detail (e.g., population-
specific connection probabilities without detailed
connectivity at the single-neuron level) in or-
der to simultaneously enable conceptual scientific
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conclusions and a degree of validation of these
conclusions by direct model comparisons with
experimental data.

Formulating and parameterizing neuronal net-
work models is still often a painstaking effort,
where the researcher digs through a vast literature
to collect the relevant parameter values, from
disparate experimental methods and labs. This
systematization of the available knowledge into
a common framework forms a central part of
computational modeling work, and allows future
researchers to continue at the next level of com-
plexity. It is also highly specific to the modeling
problem and data modalities at hand, so that we
cannot give one-size-fits-all advice on how to
deal with and interpret anatomical data to develop
network models. However, we can provide gen-
eral guidance regarding what to look out for in
the various data modalities, and how to incor-
porate the corresponding data into models. Fur-
thermore, data are increasingly collected in sys-
tematic databases, which make the modeler’s life
easier by offering comprehensive data obtained
with the same experimental methods, often even
from the same lab.Most promising for facilitating
this process are recent multilevel brain atlases,
which aggregate both macro- and microstructural
information into systematic anatomical reference
frameworks.

In this chapter, we provide an overview of
the types of anatomical information that can be
used to define biological neural network mod-
els, point to available resources and databases,
and describe methods for predicting connectivity
and validating the predictions. The text considers
physiological properties only where they relate
directly to anatomy. This overview is intended
as an aid for computational neuroscientists to
develop accurate models of biological neuronal
networks.

9.2 Brain Morphology and
Cytoarchitecture

In this section, we describe the main types of
information on the morphology and cytoar-
chitecture of brain regions, and corresponding

resources available to modelers. We start by
providing a brief introduction to brain atlases,
which systematize information on these anatom-
ical properties. Next, we treat the morphological
property of cortical and laminar thicknesses in
more detail. We then go into the determination
of neural population sizes and the location of
neurons within brain regions, and close with a
short discussion of the use of morphology and
cytoarchitecture in computational models. We do
not distinguish between cell types within regions,
as this would substantially extend the scope
of the chapter, and, especially in the context
of network models that do not resolve neural
compartments, more directly concerns chemical
and electrophysiological instead of anatomical
properties.

9.2.1 Brain Atlases

Brain atlases are a tool for defining brain areas
and aggregating regional descriptions of the brain
in a consistent anatomical framework. A brain
atlas typically consists of a template space, a set
of maps or a parcellation, and a taxonomy, which
provides the names and mutual relationships of
those regions.

The template space of a brain atlas is typically
represented by one or multiple scans of a brain,
which provide an anatomical description of
an underlying standardized coordinate space.
Depending on the task at hand, different template
spaces are used. A classical template space for
the human brain is Talairach space (Talairach
and Tournoux, 1988), which assumes that the
relative distances between brain regions are
preserved between individuals and defines a
rescalable grid accordingly. Talairach coordinates
are still in wide use in functional neuroimaging.
Today, it is more common to use one of the MNI
templates defined by the Montreal Neurological
Institute (Laird et al., 2010; Lancaster et al.,
2007), which include single- and multi-subject
averages of MRI scans as volumetric standard
spaces. While the MNI templates define standard
spaces at millimeter resolution, the BigBrain
offers a brain model of a single subject based
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on a three-dimensional reconstruction from 7400
histological sections, at an isotropic resolution
of 20 μm (Amunts et al., 2013). As the tissue
sections were stained for cell bodies, this model
provides the most detailed three-dimensional
reference of human cytoarchitecture available
today. Ongoing research addresses the three-
dimensional cellular-level reconstruction of
brains at 1 μm resolution, which poses consider-
able technical challenges for human brains due to
their size and topological complexity (Dickscheid
et al., 2019).

Brain maps and parcellations assign brain
regions to coordinates of a template space. In
case of a standard whole-brain parcellation, each
voxel has a unique region index, and the assigned
regions do not overlap. In case of probabilistic
maps, however, each coordinate is assigned a
probability to belong to any of the regions,
resulting in a set of overlapping maps to define
the atlas. Parcellations are based on different
modalities of brain organization, including
cytoarchitecture (e.g. Amunts et al. (2020)),
chemoarchitecture (spatial distribution patterns
of molecules like specific neurotransmitter
receptors, e.g. Zilles et al. (2004)), structural
connectivity (patterns of connectivity with other
brain regions as defined by axonal connections,
e.g. Eickhoff et al. (2015); Fan et al. (2016)),
functional connectivity (spatial co-activation
patterns under different cognitive conditions (e.g.
Gordon et al. (2016)), anatomical landmarks, or
a combination of such features in the case of
multimodal parcellations (Arslan et al., 2018;
Bohland et al., 2009; Van Essen and Glasser,
2018).

The gold standard of brain parcellations is
based on cytoarchitecture as measured in his-
tological sections. The early Brodmann atlas of
the cerebral cortex of humans and other primates
uses such a cytoarchitectonic parcellation (Brod-
mann, 1909). Some years later, von Economo
and Koskinas developed an atlas (von Economo
and Koskinas, 1925) with a more comprehensive
characterization of the cortical layers, and taking
into account cortical folding by describing cy-
toarchitecture orthogonal to the cortical surface.
However, the bases of these pioneering works re-

main collections of separate brain slices, thereby
lacking coverage of the full three-dimensional
anatomical space, as well as of the variability
across subjects. Recent work in probabilistic cy-
toarchitectonic mapping addresses the latter chal-
lenge by aggregating microscopic maps from ten
different subjects in MNI space (Amunts et al.,
2020). Furthermore, different groups are working
on full three-dimensional, microscopic resolution
maps of cytoarchitectonic areas (Schiffer et al.,
2021a,b) and cortical layers (Wagstyl et al., 2018)
in the BigBrain model, giving access to region-
and layer-specific measures of, e.g., cell densities
and laminar thickness.

In connectivity-based parcellation, voxels
with similar connection properties are grouped
together (Eickhoff et al., 2015). An example of
an atlas using connectivity-based parcellation is
the human Brainnetome Atlas (Fan et al., 2016),
which takes the Desikan–Killiany atlas based on
cortical folds (the sulci and gyri) (Desikan et al.,
2006) as its starting point. The Brainnetome
atlas has the advantage for modeling studies that
data on functional connectivity, a term used in
neuroscience for activity correlations, is freely
available in the same parcellation, allowing
straightforward testing of model predictions on
network dynamics.

The Allen Institute has published multiatlases
of the developing1 and adult human brain (Shen
et al., 2012; Sunkin et al., 2012), mapping
cytoarchitecture, gene expression, and for the
adult brain also connectivity as measured with
diffusion tensor imaging (DTI), a magnetic
resonance imaging method that detects axon
tracts. This multimodality, where different types
of data are represented in the same template space
and parcellation, is useful for modelers, not only
because of the richness of the data but also as
mapping data from different sources between
template spaces and parcellations introduces
inevitable errors.

1 BrainSpan Atlas of the Developing Human Brain
(2011) http://brainspan.org. Funded by ARRA
Awards 1RC2MH089921-01, 1RC2MH090047-01,
and 1RC2MH089929-01.

http://brainspan.org
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The macaque, as a close relative of humans, is
an important model organism, for which several
atlases have been created. These include the atlas
of Markov et al. (2014a) with the so-called M132
parcellation of 91 cortical areas, and a whole-
brain atlas by Calabrese et al. (2015a) based on
DTI. Another commonly studied species is the
mouse, for which state-of-the-art atlases of gene
expression data (Lein et al., 2007), cytoarchi-
tecture as measured with Nissl staining, which
stains nucleic acids and thereby cell bodies of
both neurons and glia, andmesoscopic connectiv-
ity obtained by anterograde viral tracing (Dong,
2008;Kuan et al., 2015) are provided by the Allen
Institute. Paxinos and Franklin provide the other
most commonly used mouse brain atlas (Paxinos
and Franklin, 2019), which recent work combines
with the Allen Institute coordinate framework
(Chon et al., 2019).

Several online resources exist for browsing
brain atlases. The Scalable Brain Atlas provides
web-based access to a collection of atlases for the
human brain and for a number of other mammals,
including macaque, mouse, and rat (Bakker et al.,
2015). The Human Brain Project offers online
services for interactive exploration of atlases for
the mouse, rat, and human brain through the
EBRAINS infrastructure.2 The human brain atlas
is a multilevel framework based on probabilistic
atlases of human cytoarchitecture and includes
links with maps of fiber bundles and functional
activity, as well as a representation of the micro-
scopic scale in the form of the BigBrain model
with maps of cortical layers and cytoarchitec-
tonic maps at full microscopic resolution (Schif-
fer et al., 2021a,b).

9.2.2 Cortical and Laminar
Thicknesses

The geometrical properties of the global and re-
gional morphology of the brain have obvious
relevance for brain models that explicitly repre-
sent space, but can also be important for estimat-
ing connectivity and numbers of neurons in non-

2 https://ebrains.eu/services/atlases/brain-atlases.

spatial models. These properties include coordi-
nates of region boundaries, spatial extents of brain
regions, and properties of regional substructures.
Coordinates and spatial extents of brain regions
are captured by atlases as described in the pre-
vious section. Another geometric property that is
often of interest is the thickness of cortex and its
layers.

Cortical and laminar thicknesses can be either
determined directly from histology of brain
slices, or using structural MRI. When the MRI
scans have sufficiently high resolution, these
methods yield comparable results (Cardinale
et al., 2014; Fischl and Dale, 2000; Lüsebrink
et al., 2013; Wagstyl and Lerch, 2018), but both
methods have their own drawbacks. Brain slices
generally represent sparse samples, are difficult
to obtain precisely perpendicularly to the cortical
sheet, and are subject to shrinkage, which has to
be controlled for. Furthermore, identification of
layers and the boundary between gray and white
matter is still often performedmanually, although
automatic procedures are under development (Li
et al., 2019; Wagstyl et al., 2018). Structural
MRI can cover the entire cortex and at least
the gray/white matter boundary tends to be
segmented using computer algorithms, but it
has a lower resolution in the section plane than
microscopy of brain slices, the exact resolution
depending on the strength of the scanner and
the scanning protocol. Von Economo provides
laminar and total cortical thicknesses for all areas
of human cortex based on 25 μm sections (?).
More recently, cortical and laminar thicknesses
(the thicknesses of the individual cortical layers)
have been identified in the BigBrain, forming a
state-of-the-art, comprehensive data set on human
cortex (Wagstyl et al., 2018, 2020). The gray
and white matter volumes and surfaces, along
with the layer surfaces, are freely available3 and
can be explored interactively in the EBRAINS
human brain atlas viewer. Alvarez et al. (2019)
determined the thicknesses of 25 human visual
areas from 700 μm resolution MRI data from
the Human Connectome Project, also making the
quantitative area-averaged data freely available.

3 https://bigbrain.loris.ca/.

https://ebrains.eu/services/atlases/brain-atlases
https://bigbrain.loris.ca/
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Calabrese et al. (2015a) derived macaque cortical
thicknesses from MRI scans at 75μm resolution,
available as an image file. Hilgetag et al.
(2016) provide total cortical thicknesses for
22 vision-related cortical areas of the macaque
monkey, determined from brain slices sampled
every 150 − 200 μm throughout the region of
interest. At least in the vision-related areas of
macaque cortex, total cortical thickness correlates
inversely with neuron density, so that a statistical
fit allows the thicknesses of the remaining vision-
related areas to be estimated (Schmidt et al.,
2018). Correspondingly, cortical thickness varies
systematically along the anterior–posterior axis in
primates (Cahalane et al., 2012). Rough estimates
of the laminar thicknesses of macaque vision-
related areas based on a survey of micrographs
(microscopic images) have been published
(Schmidt et al., 2018). Comprehensive data on
cortical thicknesses of other species are sparse,
especially in a form that is directly usable bymod-
elers. Methods for extracting cortical thicknesses
fromMRI in rodents are under development (Feo
and Giove, 2019; Pagani et al., 2016).

9.2.3 Numbers of Neurons

Another basic property of brain circuits is their
numbers of neurons, which can be determined
from the size of brain regions and their neu-
ron density. Over the years, different methods of
counting cells have been used (Miller et al., 2014;
West, 1993).When total cell counts are of interest
and their precise distribution across space is less
important, tissue can simply be homogenized and
the numbers of cell nuclei suspended in a fluid
can be counted in samples under a microscope.
The isotropic fractionator is a version of such
a homogenization and direct counting method
(Herculano-Houzel and Lent, 2005). The term
“fractionator” refers to a uniform random sam-
pling scheme which divides samples into “frac-
tions” or counting boxes, enabling a statistical
estimate of total cell counts to be obtained by con-
sidering only some fractions (West et al., 1991).

Stereological methods are a more in-
volved class of methods that determine three-
dimensional properties from two-dimensional

sections through the tissue. The advantage of
these methods is that the cells are counted in
their real three-dimensional environment and thus
spatial and area-specific values can be collected,
e.g. cell densities in a single cortical lamina.
Beside the fact that most stereological methods
are quite labor- and time-intensive, the problem
arises that the same cell may appear in two or
more sections but should only be counted once.
The disector addresses this issue by considering
pairs of adjacent sections and only counting the
cells that are present in the second but not the
first section, effectively counting only the “tops”
(Sterio, 1984). The success of this approach
depends on being able to recognize if features
in the adjacent sections belong to the same cell,
and on effectively correcting for large structures
that extend across more than two sections. The
optical fractionator combines the aforementioned
uniform sampling method (the “fractionator”)
with optical disection, in which objective lenses
with a high numerical aperture are used to focus
through the tissue to identify individual cells. A
guarding zone above and below the inspected
volume prevents multiple counting of truncated
structures.

For cell bodies to be identified under the mi-
croscope, they are first dyed. Two commonly used
methods are the aforementioned Nissl staining,
and antibody staining of the protein NeuN that is
present in the nuclei of most vertebrate neurons
but not in glia (Mullen et al., 1992). Another
technique dying both neurons and glia is silver
staining (Merker, 1983), used for instance in the
BigBrain model.

A number of comprehensive data sets on
cell and neuron counts are available, although
estimates can vary quite a bit across studies (Erö
et al., 2018). Overall numbers of neuronal and
non-neuronal cells have been estimated for the
brain as a whole, and for its major components
like the cerebral cortex and the cerebellum, for a
large number of species4 (Azevedo et al., 2009;
Herculano-Houzel, 2009, 2012; Herculano-
Houzel et al., 2006; Sarko et al., 2009). In

4 https://en.wikipedia.org/wiki/List_of_animals_by_
number_of_neurons.

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
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Fig. 9.1 Extraction of layer-specific cell density esti-
mates from microscopic scans of histological sections
stained for cell bodies (Dickscheid et al., 2021). (a) Cor-
tical patch of a scan. (b) Example result of automatic
instance segmentation of cell bodies using state-of-the-art
image analysis (Upschulte et al., 2022). (c) Centroids of

detected cell bodies, colored by cortical layer. (d) Zoom
into the local region of interest indicated by the white rect-
angle in Panels A and B. (e) Two-dimensional histogram
showing the number of cells in each layer, grouped by area
of the cell body as segmented in the image

most cases, these cell numbers were acquired
using the above-described techniques based on
homogenized tissue. The von Economo atlas
contains cell densities for human cortex with
areal and laminar resolution, as determined with
Nissl staining (von Economo, 2009). Because
the Nissl technique stains both neurons and
glia, which can, however, be distinguished
based on morphology, it is not entirely clear
whether glia are included in these cell densities.
Furthermore, the cell numbers were measured
without modern stereological approaches
and without characterizing inter-individual
variability. Modern high-performance computing
methods are being applied for image registration
of two-dimensional cortical and subcortical
images to determine three-dimensional cell
distributions (Dickscheid et al., 2019) (Fig. 9.1),
laying the foundation for future quantitative
data sets representing an update and refinement
with respect to the von Economo study. Collins
et al. (2010) provide cortical area-specific neuron
densities for the non-human primates galago, owl
monkey, macaque, and baboon as determined
with the isotropic fractionator. So-called cortical
types or architectural types characterize the

neuron density and laminar differentiation of
primate cortical areas in a discretized manner,
and thereby enable rough neuron density
estimates where these have not been directly
measured (Barbas and Rempel-Clower, 1997;
Dombrowski et al., 2001; García-Cabezas et al.,
2019; Hilgetag et al., 2019; Schmidt et al.,
2018). Herculano-Houzel et al. (2013) measured
neuron and cell counts and densities for the
areas of mouse isocortex. Keller et al. (2018)
systematically reviewed region-specific neuron
and glial densities throughout the mouse brain.
Structures that have been characterized in detail
also include the somatosensory areas of rat cortex
and thalamus (Markram et al., 2015;Meyer et al.,
2010). Despite many more data having been
published, a large number of species-specific
brain region compositions are still unknown,
especially for subcortical regions. Scaling laws
across species enable numbers of neurons to be
estimated based on structural properties like brain
and regional mass and volume (Azevedo et al.,
2009; Braitenberg, 2001; Herculano-Houzel,
2009, 2012;Herculano-Houzel et al., 2006; Sarko
et al., 2009).
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Neuron counts or densities may not always be
available in the particular parcellation chosen by
the modeler. A mapping between parcellations
may be performed by determining the overlaps
between areas in different parcellations, forwhich
the parcellations have to be in the same reference
space. A large number of methods for registering
images to the same reference space using non-
linear deformations have been developed (Dale
et al., 1999; Fischl et al., 1999; Thompson and
Toga, 2002). For macaque atlases registered to
the so-called F99 surface, a tool provided along-
side the CoCoMac database on macaque brain
connectivity5 (Stephan et al., 2001) calculates the
absolute and relative overlaps between cortical
areas. The data in the new parcellation can then
be computed as a weighted sum over the contri-
butions from the areas in the original parcellation.
However, this method entails the assumption that
the anatomical data for each given area are rep-
resentative of that area as a whole, and neglects
inhomogeneities within areas. It should further
be noted that criteria for area definitions, such as
their cytoarchitecture or connectivity, are likely
to provide information beyond this purely spa-
tial approach. Nonlinear image registration tech-
niques can take such factors into account, or alter-
natively, a coordinate-independent mapping can
be performed (Stephan et al., 2000). No perfect
solution for mapping anatomical data between
parcellations exists, but in general, the more cri-
teria are considered, the better the mapping.

9.2.4 Local Variations in
Cytoarchitecture

Even within brain regions, cell densities are not
constant but display local variations. An example
of known spatial organization of neuron posi-
tions are the so-called cortical minicolumns, also
known as microcolumns, arrangements on the
order of 100 neurons perpendicular to the cor-
tical surface, across the cortical layers. Cortical
macrocolumns or hypercolumns are millimeter-

5 http://cocomac.g-node.org/services/f99_region_overlap.
php.

scale structures containing thousands or tens of
thousands of neurons with similar response prop-
erties in one or a few coding dimensions, for
instance ocular dominance or position in the vi-
sual field. Cortical macrocolumns are particularly
pronounced in the barrel cortex of rodents, which
encodes whisker movements. In barrel cortex, the
“barrels” are cylindrical structures in layer IV
containing neurons that respond preferentially to
a particular whisker and have response properties
and connectivity distinct from the interbarrel re-
gions.

Various data on variations in neuron density
within brain regions are available. Probably
the most comprehensive data set of three-
dimensional cell distributions is the Allen Mouse
BrainAtlas, which contains both neurons and glia
(Erö et al., 2018). Spatial gradients in retinal cell
densities have been well characterized (Curcio
and Allen, 1990; Dräger and Olsen, 1981; Euler
and Wässle, 1995; Shand et al., 2000; Stone
et al., 1981; Wässle et al., 1994), and those in
thalamus to a lesser extent (e.g., Ahmad and
Spear (1993)). The vertical distribution of cells in
several cortical areas has also been characterized
at a spatial resolution beyond that of cortical
layers (Cozzi et al., 2017; Mitra, 1955; Sloper
et al., 1979).

Studies resolving small cortical patches pro-
vide a sense of the variability of neuron den-
sity across the cortical sheet within primate cor-
tical areas (Collins et al., 2010; Turner et al.,
2016). Furthermore, many studies have subdi-
vided brain regions into discrete componentswith
different cellular compositions, e.g., Duvernoy
(2005);McDonald (1982); Stepniewska and Kaas
(1997); Voogd and Glickstein (1998).

9.2.5 Use of Morphology and
Cytoarchitecture in Models

While most neural network models specify their
architecture using concepts such as areas and
layers, in some cases the neurons are simply as-
signed positions in continuous three-dimensional
space and the connectivity is specified without
reference to such concepts (e.g. Schumann et al.

http://cocomac.g-node.org/services/f99_region_overlap.php
http://cocomac.g-node.org/services/f99_region_overlap.php
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(2017)). In the conceptual approach, different
connectomes may be obtained depending on the
chosen parcellation. The particular choice of par-
cellation for instance affects topological proper-
ties of the corresponding connectomes (de Reus
and van den Heuvel, 2013; Romero-Garcia et al.,
2012). Apart from this “gerrymandering” issue,
when predictive connectomics is used to fill in
gaps in connectivity data with the conceptual
approach, the choice of parcellation may influ-
ence the results. The findings of de Reus and
van den Heuvel (2013) and Romero-Garcia et al.
(2012) for instance imply that incomplete con-
nectomes completed via topological rules could
differ depending on the parcellation. In view of
the variability induced by differences between
parcellations, there is something to be said for
the continuum approach when the data allow it.
Interpretation of the network dynamics in terms
of region-specific activity may then be done in
a post-hoc manner, flexibly with regard to the
region definitions.

In spatially extended models, the neurons may
be placed on a regular grid, with some jittering,
at random positions, or at precise coordinates
in space. Here, artificial symmetries in the
network dynamics due to grid-like placement of
neurons, which may arise for instance when the
connectivity and delays are directly determined
by the distances between neurons, should be
avoided. Besides informing connectivity, the
positions can be important for predicting signals
with spatial dependence, like the local field
potential (LFP), electroencephalogram (EEG),
or magnetoencephalogram (MEG).

Precise region shapes are so far hardly used
in computational modeling. Rather, the relatively
rare network models that take into account three-
dimensional structure tend to restrict themselves
to simple geometric shapes like cubes or cylin-
ders. An available but not yet widely used tool
enables three-dimensional region volumes to be
modeled through a combination of deformable
two-dimensional sheets, where atlas data or his-
tological images can support the modeling pro-
cess via integration with the software Blender
(Pyka et al., 2014). In an example application,
the three-dimensional shape of the hippocampus

was shown to substantially affect the connectivity
between neurons predicted based on their dis-
tance. Accurate representations of volume trans-
mission effects such as ephaptic coupling (non-
synaptic communication via electrical fields or
ions) (Anastassiou and Koch, 2015), as well as
the prediction of meso- and macroscopic signals
like the LFP, EEG, and MEG also rely on the
spatial distribution of neurons and thus benefit
frommeasured three-dimensional brain morphol-
ogy (Hagen et al., 2016, 2018; Jirsa et al., 2001).

On the scale of local microcircuits on the or-
der of a millimeter, spatial variations in cortical
and laminar thicknesses across the cortical sheet
within each area are limited and are generally
ignored in computational models. Cortical and
laminar thicknesses are then straightforwardly in-
corporated by scaling the numbers of neurons ac-
cordingly, and sometimes by distributing the neu-
rons across cortical depth. In future, as resources
become available for modeling extended cortical
regions in detail, continuous variations in cortical
and laminar thicknesses may be incorporated.

It is also not yet common for computational
models to take into account continuous variations
in neuron density within brain regions. However,
a number of models already divide regions into
discrete subdivisions with different cellular
compositions, e.g., Casali et al. (2019). The
organization of cortex into minicolumns and
macrocolumns has been incorporated for instance
in models of attractor memory (Johansson
and Lansner, 2007; Lundqvist et al., 2006)
motivated by a functional interpretation. In future,
increasingly realistic placement of neurons in
models may yield more sophisticated predictions
of spatially resolved brain signals and of network
dynamics, through associated properties like
distance-dependent connectivity.

9.3 Structural Connectivity

Neurons in the brain exchange chemical signals
via synapses, and in some cases are in more direct
contact via the so-called gap junctions. Although
gap junctions are probably important for some
phenomena (e.g. Traub et al. (2001)), we here
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focus on the former, much more numerous type
of connections, the synapses. The huge num-
ber of synapses in mammalian brains has so far
precluded mapping all of them individually, al-
though efforts are underway toward dense recon-
struction of the mouse brain (DeWeerdt, 2019).
However, various methods exist for measuring
neuronal connectivity, at scales ranging from in-
dividual synapses to entire axon bundles between
areas. While some models distinguish individual
synapses and thus need information at this level,
other models lump synapses together, so that ag-
gregated connectivity information suffices.

This section provides an overview over
available types of information on neuronal
network connectivity, along with resources and
databases that can be used for constructing
neuronal network models. We describe con-
nectivity information according to the major
experimental methods: microscopy, paired
recordings, glutamate uncaging, axonal tracing,
and diffusion magnetic resonance imaging
(diffusion MRI), of which the most commonly
used form is diffusion tensor imaging (DTI).

9.3.1 Microscopy

The oldest and lowest-resolution form of mi-
croscopy is light microscopy, providing a mag-
nification factor of up to about 1000. Neuron
reconstructions from lightmicroscopy of adjacent
tissue slices allow rough estimates of connec-
tivity based on the proximity of pre- and post-
synaptic neural processes (cf. Sect. 9.4.1). Fol-
lowing this approach, Binzegger et al. (2004)
derived a population-level local connectivity map
for cat primary visual cortex. However, as de-
tailed in Sect. 9.4.1, predicting connectivity based
on proximity has its drawbacks, which should
be kept in mind when interpreting the resulting
connectomes. Furthermore, tissue slicing cuts off
dendrites and axons, which may extend over mil-
limeters and more, so that assessing medium- to
long-range connectivity requires extensive three-
dimensional reconstructions. Amethod that facil-
itates such reconstructions is block-face tomogra-
phy, in which scanning of the surface of a tissue

block is alternated with the removal of thin slices
from the surface (Denk and Horstmann, 2004).

Two-photon microscopy is a sub-micron res-
olution imaging technique that uses laser irra-
diation of tissue to elicit fluorescence through
two-photon excitation of molecules (Denk et al.,
1990). A high-throughputblock-face tomography
pipeline has enabled the reconstruction of the full
morphologies of 1000 projection neurons in the
mouse brain at a resolution of 0.3× 0.3× 1μm3,
theMouseLight data set of Janelia ResearchCam-
pus (Economo et al., 2016;Winnubst et al., 2019).
A viewer for the MouseLight morphologies is
available.6 A finding that stands out from this data
set is the remarkable variability in projection pat-
terns, each neuron projecting to a different subset
of target regions for the given source region.

At nanometer spatial scales, electron mi-
croscopy enables the identification of individual
synapses and the precise shape and size of the
presynaptic and postsynaptic elements, even
down to individual synaptic vesicles. This method
is extremely labor-intensive, but heroic efforts
have nevertheless led for instance to estimates of
synapse density in different areas of human cortex
(Alonso-Nanclares et al., 2008, 2011), a volume
reconstruction of the entire Drosophila (fruit fly)
brain (Zheng et al., 2018), the morphological
reconstruction of 1009 neurons in a microcircuit
of rat somatosensory cortex (Markram et al.,
2015), and full reconstructions of 1500 μm3

(Kasthuri et al., 2015) and more recently
>5 × 105 μm3 (Motta et al., 2019) of mouse
cortical tissue. A noteworthy finding from these
studies is that the presence of synapses is not
perfectly determined by the close proximity of
axons and dendrites (appositions). For instance,
an apposition is far more likely to predict an
actual synaptic contact for pairs of neurons that
also form synapses elsewhere on the axon and
dendrite (Kasthuri et al., 2015). Such a rule
will tend to lead to a long-tailed distribution
of the multiplicity of synapses between pairs of
neurons.

Synapses may look asymmetric or symmetric
under the microscope, where asymmetric

6 https://neuroinformatics.nl/HBP/mouselight-viewer/.

https://neuroinformatics.nl/HBP/mouselight-viewer/
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synapses have a pronounced postsynaptic
density and are predominantly excitatory, while
symmetric synapses have roughly equally thick
pre- and postsynaptic densities and tend to be
inhibitory. Both the size of synapses and their
location on dendrites are informative about
their effective strength in terms of postsynaptic
potentials evoked at the soma (Harris et al., 2003;
Kwon et al., 2017; Murthy et al., 2001; Spruston
and Jaffe, 1994). Furthermore, synapse locations
on dendrites can tell us something about their
interaction with other synapses; however, these
complex interactions are not captured by point
neuron or population models. Axonal varicosities
or boutons are swellings along axons (boutons en
passant) or at axon terminals (terminal boutons)
that host synapses, and which are detectable
through all microscopic methods mentioned
here. Even when the synapses themselves are
not directly imaged, boutons may be taken as
evidence for synapses, with the caveats that
some synapses are not established on boutons,
and individual boutons may contain different
numbers of synapses (Rodriguez-Moreno et al.,
2020).

In summary, microscopy is useful for estimat-
ing connectivity based on appositions, reliable es-
timates of numbers of synapses in a given volume,
detailed connectivity features such as the multi-
plicity of synapses between pairs of neurons, and
correlative information on synaptic efficacy.

9.3.2 Paired Recordings

In paired recordings, electrodes are used to si-
multaneously stimulate one cell and measure the
response in another cell, either in vitro or in
vivo. Stimulation may be performed extracellu-
larly, intracellularly with sharp electrodes, or via
patch clamp; recordings normally use one of the
latter two techniques. This method sums up the
contributions from potentially multiple synapses
between the pair of neurons, which should be kept
in mind when incorporating the corresponding
synaptic strengths into models. Where anatomy-
basedmethods can have the drawback that they do
not provide conclusive evidence for physiologi-

cally active synapses, paired recordings identify
functional synapses. However, existing connec-
tions may be missed depending on the experi-
mental protocol, for instance due to axons and
dendrites being cut off during slice preparation.
Each pair of neurons should also be tested mul-
tiple times, because in individual trials, axonal
or synaptic transmission failures may occur, or
the postsynaptic potential may be too small to
be detectable among the noise (Debanne et al.,
2008). Paired recordings may be biased toward
neurons that are easier to patch or insert an elec-
trode into, for instance larger cells. Especially
in vivo, where the network exhibits background
activity, responses may in principle be caused by
activation of neurons other than the one that is
stimulated. Responses are judged to be monosy-
naptic based on a short, consistent response la-
tency, usually of a few tenths of milliseconds
(Berry and Pentreath, 1976; Sedigh-Sarvestani
et al., 2017).

Most paired recordings are highly local, with
a distance no greater than 100 μm between the
somas of the pre- and postsynaptic cells. They
provide themodeler with connection probabilities
in terms of the fraction of pairs of neurons that
have at least one synapse between them. For
interpreting these connection probabilities, it is
important to take into account the spatial range
of the recordings, as connection probability is
generally distance-dependent. The measurements
represent a spatial average over this distance-
dependent connectivity, which is in mathematical
terms a double sum (which may in continuum
approximation be represented by an integral) over
the positions of the source and target neurons.

Paired recordings show that, on the scale
of local microcircuits up to 200 μm from the
presynaptic soma, bidirectional connections
between pyramidal neurons in cortical layer V
occur significantly more often than would be ex-
pected by chance (Markram et al., 1997). In some
studies, researchers have recorded from multiple
neurons simultaneously (Kodandaramaiah et al.,
2018; Perin et al., 2011; Song et al., 2005;
Thomson et al., 2002). Simultaneous recordings
from respectively four (Song et al., 2005) and
twelve (Perin et al., 2011) rat cortical neurons
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confirm the overrepresentation of bidirectional
connections regardless of the distance from the
soma. This type of analysis has also revealed that
motifs with clustered connections among three or
more neurons are more common in the cerebral
cortex than would be predicted based on pairwise
connection probabilities alone (Perin et al., 2011;
Song et al., 2005) (cf. Sect. 9.4.4).

9.3.3 Glutamate Uncaging

Similarly to paired recordings, glutamate
uncaging generates action potentials in presy-
naptic neurons and records the response in
postsynaptic neurons connected to them. Usually,
the method is applied to slice preparations
and neurons are recorded intracellularly, but
in vivo application and extracellular recordings
are also possible. First, a compound consisting
of glutamate bound to another molecule is
introduced, for instance by bathing a brain
slice in a solution with the caged glutamate.
Then glutamate is released by photolysis of
the compound through focal light stimulation,
causing action potentials in neurons with their
soma close to the stimulation site. Brain slices
are generally scanned systematically, generating
for each given target neuron a grid-like map of
response amplitudes for each stimulated location.

Originally, glutamate was uncaged using ultra-
violet light (Callaway and Katz, 1993), but due
to light scattering and a large uncaging area, this
stimulated multiple neurons, making the results
harder to interpret. Two-photon stimulation, in
which photolysis is triggered by the absorption
of two photons, enables individual neurons and
even individual dendritic spines to be stimulated
(Nikolenko et al., 2007; Noguchi et al., 2011). As
with paired recordings, an issue is that it cannot be
known with certainty whether the responses are
monosynaptic or emerge due to sequential acti-
vation of two or more neurons, but short-latency
responses time-locked to presynaptic action po-
tentials in the absence of background activity reli-
ably indicate monosynaptic connections. Another
issue is that the uncaged glutamate may directly
influence the recorded neuron, so that stimula-
tions that lead to short-latency responses with

excessive amplitudes have to be excluded from
analysis. Furthermore, the same caveats as for
paired recordings apply with regard to distance
dependence of connectivity, and potential cutting
of dendrites and axons during slice preparation.

Purely based on glutamate uncaging response
maps, it is not possible to directly derive a neuron-
level connectivity map, because it is unknown
how many different presynaptic neurons are
activated across stimulation sites. However, by
combining glutamate uncaging with imaging of
the neurons, the connectivity between neurons
can be determined (Nikolenko et al., 2007). In
the absence of such direct imaging, the number
of source neurons eliciting a given glutamate
uncaging response can be estimated by dividing
by the unitary synaptic strength (the PSP or PSC
size due to a single presynaptic neuron), if an
independent estimate for the latter is available.
If one in addition makes an assumption about
the average number of sites from which a
given presynaptic neuron is activated, which
depends on the resolution of the stimulation
grid, this yields an estimate of the number of
neurons impinging on a given postsynaptic cell.
Typically, action potentials can be elicited in a
given neuron from a handful of sites (Dantzker
and Callaway, 2000; Schubert et al., 2003).
Finally, one can derive a connection probability
by dividing by the approximate number of
neurons in the stimulated volume. Clearly, many
assumptions and approximations are involved
in such derivations, so that it is currently still
difficult to reliably determine the connectivity of
neural network models from glutamate uncaging
data. However, in some cases, data obtained by
this method are the best available for a given
brain region, in which case one may proceed via
such assumptions (Hooks et al., 2011).

9.3.4 Axonal Tracing

The technique of axonal or neuroanatomical trac-
ing entails injecting a tracer, which can be a
molecule or virus, which is taken up by neu-
rons and transported toward cell bodies or axon
terminals. In anterograde tracing, the tracer is
transported in the forward direction toward the
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synapses, while in retrograde tracing, it is trans-
ported in the backward direction from axons to-
ward the cell bodies of the sending neurons. In
practice, most tracers are to some extent both an-
terograde and retrograde, but one transport direc-
tion dominates (Lanciego andWouterlood, 2011).
Detection of the tracer happens in one of multiple
ways: The tracer may itself be fluorescent, it
may be radioactively tagged or conjugated with
a dye or enzymatically active probe, or it may
be detected via antibody binding (Saleeba et al.,
2019). Axonal tracing is generally performed in
the living brain, after which the animal is sac-
rificed to detect where the tracer has ended up,
but some substances also enable tracing in post-
mortem tissue and therefore even in the human
brain, albeit over limited distances (Galuske et al.,
1946; Seehaus et al., 2013; Tardif and Clarke,
2001). The method is well suited to character-
izing medium-to-long-range connections such as
those between cortical areas. A number of trac-
ers, especially certain viral tracers, are transneu-
ronal, crossing synapses and tracking polysynap-
tic pathways (Kuypers, 1990). Furthermore, it is
possible to perform double or even triple labeling
to visualize the participation of neurons in two
or more connection pathways (Köbbert et al.,
2000). Double labeling with retrograde tracers
for instance suggests that the vast majority of
cortico-cortical projection neurons in macaque
visual cortex send connections either in the feed-
forward direction or in the feedback direction, not
both, with respect to the hierarchy of visual areas
(Markov et al., 2014a).

Tracer injections typically cover a millimeter-
scale area, so that multiple axons are traced at the
same time, not individual ones. Because of the
local spreading of the tracer, axonal tracing does
not provide reliable information about the region
immediately surrounding the injection site. An
important drawback of the method is that only
up to a few injections can be performed in each
animal, so that data have to be combined across
many animals to obtain a complete connectiv-
ity graph. This introduces inevitable inaccuracies
due to inter-individual differences. Because trac-
ers are taken up by neurons indiscriminately, con-
ventional tracing does not allow the specific con-

nections of separate subpopulations of neurons
to be identified, let alone of individual neurons.
However, over the past decades a number of viral
tracing methods have been developed that trace
specific molecularly marked neuronal subpopula-
tions (Saleeba et al., 2019). A modern technique
uniquely labeling neurons with random RNA se-
quences enables high-throughputmapping of pro-
jections at the level of individual source neurons
(Chen et al., 2019).

While axonal tracing traditionally only gave
qualitative information about connectivity, for in-
stance describing staining as sparse, moderate, or
dense, more recently a number of groups have
gone through the painstaking effort of counting
the numbers of labeled cells in retrograde tracing
experiments. A notable quantitative tracing data
set characterizes the connectivity between a large
number of areas in macaque cortex in terms of
overall fractions of labeled neurons (FLN) and
fractions of supragranular labeled neurons (SLN)
in all source areas projecting to each injected
target area (Markov et al., 2014a,b). SLN relates
to the hierarchy of vision-related cortical areas,
as feedforward projections tend to emanate from
layer II/III and thus have a high SLN, while
feedback projections emanate preferentially from
infragranular layers and have a low SLN. A sim-
ilarly comprehensive resource of quantitative ret-
rograde tracing data is available for the marmoset
neocortex (Majka et al., 2016, 2020).

The CoCoMac database, which stands for Col-
lation of Connectivity data on the Macaque brain
(Bakker et al., 2012; Stephan et al., 2001), con-
tains both anterograde and retrograde tracing data
from a large number of published studies, espe-
cially for the cerebral cortex, in part with laminar
resolution. Figure 9.2 illustrates the prerequisites
for creating such a database. Another collation
effort (Scannell et al., 1995) has reconstructed
the area-level structural connectome of the cat
from qualitative axonal tracing data. The Allen
Institute provides an anterograde tracing data set
encompassing hundreds of injections throughout
the mouse brain (Oh et al., 2014). A comprehen-
sive characterization of laminar target patterns of
connections between cortical areas in primate is
missing to date.
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CoCoMac Database
www.cocomac.org
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Connectivity statements
"Brain region A is strongly 
connected to area B ..."
"Anterogradely labeled cells are
found mainly in layers 2/3 ..."

Relations between brain maps
"In comparison to an earlier 
definition of area A, we think that
it extends more towards ..."

+

Tracing study publication

Fig. 9.2 Workflow from tracing experiment to entry in
the CoCoMac database. (a) A tracing is performed to
investigate a particular part of the brain, by injecting a
tracer substance into a target area. Shown is Case 16L from
Galletti et al. (2001), here registered to the macaque atlas
of Calabrese et al. (2015a) via the Scalable Brain Atlas
(Bakker et al., 2015). (b) The tracer is picked up by axons,
and depending on the substance it is transported either an-

terogradely toward the axon terminals, retrogradely to the
cell bodies, or both. After sacrificing the animal, a careful
investigation of labeled cell bodies and/or axon terminals
across the brain is carried out, sometimes including layer-
specific quantitative data. (c) After the results have been
written up and subject to peer review, collators from the
CoCoMac database take out statements on connectivity
and the definitions of brain areas

Axonal tracing is a reliable method for
identifying actual connection pathways, and
often serves as the ground truth for evaluating
diffusion tensor imaging results (cf. Sect. 9.3.5).
However, the fact that connectomes based on
tracing data are a composite of connectivity in
many individuals warrants special caution in
their interpretation. The average or union of the
connections in many brains in all likelihood does
not accurately represent the connectivity of any
individual brain.

9.3.5 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) is a form of diffu-
sion MRI or diffusion-weighted imaging (DWI),
which measures the local rate of water diffusion
at a resolution of typically a few millimeters. DTI
detects anisotropies in the diffusion of water by

using several different orientations of the mag-
netic field gradients to obtain information about
the directionality of the diffusion in each voxel
(Basser et al., 1994). Since the diffusion is greater
along than perpendicular to myelinated axons,
the method enables the main local orientation of
axonal fiber tracts to be identified. The paths of
the fiber tracts maximally consistent with the lo-
cal orientations are reconstructed using so-called
tractography. The density of these “streamlines”
is a measure of connectivity between distant brain
regions, and can for instance be summed within
cortical areas to obtain an area-level cortical con-
nectivity map. DTI is non-invasive and can re-
veal the connectivity of the whole brain at once.
However, apart from possible directional speci-
ficity introduced by the choice of seed points for
tractography, the connectivity provided by DTI
is symmetric, as it can resolve the orientation
but not the direction of fiber tracts. While most
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cortical inter-area projections are reciprocal with
positively correlated connection density in the
two directions (Beul et al., 2015; Majka et al.,
2020; Markov et al., 2014b), a proportion of con-
nections is asymmetric, and these asymmetries
are hereby missed. Such asymmetries are likely
to be important for the dynamics predicted from
neuronal network models (Knock et al., 2009).
Further drawbacks of DTI are its lack of laminar
resolution and its inability to distinguish fibers
with different orientations in the same voxel, such
as crossing or touching (“kissing”) fibers. Local
tractographic errors due to kissing or crossing
fibers add up over distance, limiting the reliabil-
ity of the resulting connectivity maps, especially
givingmany false positives for long-distance con-
nections (Maier-Hein et al., 2017).

The Human Connectome Project provides
high-resolution preprocessed human diffusion
MRI data for >1100 subjects. Tractography
was performed on an earlier, smaller data set
from the Human Connectome Project, and
the resulting connectome was made available
via the Brainnetome Atlas (Fan et al., 2016).
Prominent DTI connectomes for themacaque and
mouse brains were published by Duke University
(Calabrese et al., 2015a,b).

As yet, there is no straightforward way to
derive fully reliable and accurate connectomes
from DTI. The same holds more generally for all
the types of connectivity informationwe have dis-
cussed. All experimental connectivity data have
“gaps”: They only cover a certain spatial scale,
they represent a subsample or lack precision at the
given scale, or additional information is required
to turn the experimental values into numbers of
synapses. For this reason, methods are needed for
filling in the gaps in the data in order to fully
specify network models. This is the topic of the
next section.

9.4 Predictive Connectomics

Where the experimental connectivity data have
gaps, we can try to fill these in using statistical
estimates based on relationships of the known
connectivity with properties such as cytoarchitec-

ture or distance between brain regions. We refer
to this approach as “predictive connectomics.”
Such statistical estimates still tend to have a high
degree of uncertainty associated with them, but if
we want to fully define a network model, there
is no way around making certain assumptions
and approximations. From another perspective,
the statements of predictive connectomics repre-
sent formalized hypotheses for further anatomical
studies. The spatial and temporal organization of
neurodevelopment simultaneously explains many
empirical relationships between connectivity and
other structural properties of the brain. In the
present section, we discuss the major heuristics
for predicting connectivity, including Peters’ rule,
architectural principles, and methods based on
distance and network topology, and describe how
developmental origins form a common denom-
inator for many of these heuristics. Finally, we
touch upon the inference of structural connectiv-
ity from activity data.

9.4.1 Peters’Rule

Peters’ rule postulates that proximity between
neurites (i.e. presynaptic axons and postsynaptic
dendrites) can predict neuronal connectivity. It
was originally proposed by Peters and Feldman
(1976) for the projections from the lateral genic-
ulate nucleus to the visual cortex of the rat. The
term “Peters’ rule” was later coined by Braiten-
berg and Schüz (1991), who also generalized this
idea beyond the particular case studied by Peters
and Feldman. The rule has since been widely
used by researchers. Over time its application has
varied. Rees et al. (2017) reviewed the relevant
literature and distinguished between three con-
ceptually different usages of the rule, which cor-
respond to increasing level of detail (illustrated
in Fig. 9.3):

1. Population level. In the original formulation,
the rule was applied as a predictor of con-
nectivity between populations of neurons of
the same type. Consider a group of neurons A
(for example in the thalamus) projecting to a
region containing another group B (for exam-
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Fig. 9.3 Illustration of the
different levels of detail in
the usage of Peters’ rule, as
described in Rees et al.
(2017). (a) Population
level, (b) Single-neuron
level, and (c) Subcellular
level

ple pyramidal cells in visual cortex), where all
neuronswithin the groups are of the same type.
According to the original rule, the number
of synapses between A and B is correlated
with the spatial overlap of presynaptic axons
of population A and postsynaptic dendrites of
population B.

2. Single-neuron level. Extending the example
from the previous point, take two neurons ai

and bj from populationsA andB, respectively.
In this formulation, the probability pij for a
connection between ai and bj to exist is pro-
portional to the spatial proximity between their
respective pre- and postsynaptic arbors.

3. Subcellular level. At the subcellular level, Pe-
ters’ rule has been used to link the number of
axonal-dendritic appositions to the number of
synapses, regardless of cell types.

Peters’ rule is not universal and has been
shown to hold for certain cases and fail in others,
for all levels of detail. Section 9.3.1 describes an
exception to Peters’ rule at the subcellular level,
which probably carries over to the single-neuron
level as well: An apposition is more likely to
predict a synapse if other synapses are present on
the same neurites (Kasthuri et al., 2015). Other
studies have provided evidence both in favor
of and against the heuristic at the subcellular
level (Lee et al., 2016; Merchán-Pérez et al.,
2014; Motta et al., 2019; Packer et al., 2013).
Neurite proximity is undeniably a necessary
condition for the formation of synapses, but in
general not sufficient to explain it, for instance
as activity-dependent plasticity may support
preferential connectivity between neurons with
similar response properties. Nevertheless, Peters’
rule is a decent heuristic at the population level,
with the main caveat that some cell types do
not connect to each other even if they come into

close proximity (Binzegger et al., 2004; Rees
et al., 2017). Thus, the rule may be fruitfully
applied at the population level as long as such
cell-type-specific absence of connections is taken
into account.

9.4.2 Architectural Principles

The cytoarchitecture and laminar composition of
cortical areas are predictive of their connectivity,
as first noted for frontal areas of macaque cor-
tex (Barbas, 1986; Barbas and Rempel-Clower,
1997). In particular, architecturally more similar
areas are more likely to be connected, and if
they are connected, the connection density tends
to be higher (Beul et al., 2015, 2017; Hilgetag
and Grant, 2010; Hilgetag et al., 2016). However,
while architectural similarity reliably predicts the
existence and absence of connections, connec-
tion densities are better explained by inter-area
distances (cf. Sect. 9.4.3) (Hilgetag and Grant,
2010). The characterization of areal architecture
in terms of laminar differentiation was system-
atized using the notion of architectural types,
which also consider the thickness of layer IV
(Dombrowski et al., 2001). Areas with low archi-
tectural type have low neuron density, a thin or
absent layer IV, and indistinct lamination. Areas
with high architectural type have high neuron
density, a thick layer IV, and distinct lamination.
The progression from low to high architectural
types roughly corresponds to the inverse of corti-
cal hierarchies, down from limbic to early sensory
areas. Instead of using architectural types, which
discretize what is in fact a continuum of structural
features across areas (von Economo and Van Bo-
gaert, 1927), onemay use neuron density as a con-
tinuous explanatory variable. However, compared
to neural density differences, architectural type
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differences are a better predictor of the existence
and absence of connections between macaque
visual areas (Hilgetag et al., 2016).

Besides correlating with the existence or ab-
sence of connections andwith connection density,
architectural differences are informative of lami-
nar projection patterns. Cytoarchitectonic differ-
ence is the only consistent predictor that explains
the majority of the variance in laminar source
patterns when compared with other candidate ex-
planatory variables such as rostrocaudal distance
(Goulas et al., 2019b). Areas with more distinc-
tive layers and higher neuron density tend to
send projections from their upper (supragranular)
layers to areas with less distinctive layers and
lower neuron density. Reversely, projections from
the latter to the former type of areas tend to em-
anate from the lower (infragranular) layers. These
patterns seem to generalize across species, having
already been demonstrated for cat and macaque
(Goulas et al., 2018). Since laminar origin pat-
terns are correlated with laminar termination pat-
terns, for instance supragranular projections tend
to target the granular layer IV (Felleman and
Van Essen, 1991), also termination patterns can
be in part inferred from architectural similarity
(Beul et al., 2015; Schmidt et al., 2018). However,
as the majority of layer-resolved axonal tracing
data is retrograde, origin patterns have been more
extensively studied than termination patterns. For
human cortex, laminar origin and termination pat-
terns of inter-area projections are still mostly
unknown. For modeling purposes, the relation-
ships between laminar patterns and cytoarchitec-
tural differences between areas that have been
observed in different mammalian species may be
used to assign laminar patterns to human connec-
tomes (Fig. 9.4).

Cortical thickness similarity has also been
investigated as an explanatory variable for inter-
area connectivity. Areas with more similar thick-
ness are more likely to be connected, although
this relationship does not hold consistently
(Hilgetag et al., 2016). Thickness differences
also relate to laminar patterns: Projections from
thinner to thicker areas tend to have a more
supralaminar origin (Beul et al., 2017). The fact
that cortical thickness is somewhat predictive of

connectivity fits with the observation that cortical
thickness correlates negatively with neuron
density (Beul et al., 2017; Schmidt et al., 2018).
However, compared to cortical thicknesses,
architectural types and neuron densities are
more systematically related to connectional
features, indicating that cytoarchitecture is at the
heart of the relation between cortical thickness
and connectivity. More commonly, thickness
similarity has been characterized in the sense of
co-variation across subjects, areas with positively
co-varying thicknesses across subjects being
more likely to be connected (Alexander-Bloch
et al., 2013; Gong et al., 2012; Lerch et al., 2006).
However, also this correlation is far from perfect,
and a large percentage of regions have co-varying
thickness without being connected (Gong et al.,
2012).

9.4.3 Distance Dependence

Both for connectivity between neurons within a
given brain region and for that between brain
regions, shorter connections are more likely or
more numerous than longer ones. This rule makes
sense considering the material and energetic cost
of wiring and the space taken up by axons and
axon bundles. Nevertheless, non-random long-
range connections between specific regions exist,
which are in part explained by spatiotemporal pat-
terns of brain development (cf. Sect. 9.4.5). Lo-
cally within cortical areas, the connection prob-
ability of both excitatory and inhibitory neurons
falls off approximately exponentially with inter-
somatic distance with a space constant around
150–300μm (Levy and Reyes, 2012; Packer and
Yuste, 2011; Perin et al., 2011; Song et al., 2005).
Besides these local connections, pyramidal cells
establish patchy connectivity at distances on the
scale of millimeters (Voges et al., 2008).

Similarly to local connectivity, projections be-
tween cortical areas follow an “exponential dis-
tance rule” in which the lengths of axons are
exponentially distributed and the probability for
a neuron to send a projection between cortical
areas thus falls off exponentially with distance
(Ercsey-Ravasz et al., 2013). This exponential
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Fig. 9.4 Laminar origin of connections, cytoarchitecture,
and predictive connectomics. (a) Laminar origin of con-
nections shifts from lower to upper layers across the
cortical sheet of the macaque monkey. (b) Schematic
illustration of the quantitative relation between the cy-
toarchitecture of cortical areas and the laminar origin of
their connections to other areas. The transition from less
to more laminar differentiation (horizontal axis), associ-
ated also with increased neural density, is accompanied
by a transition of predominantly lower to upper laminar
origin of connections (vertical axis). (c) Cell densities of

human cortical areas based on von Economo and Koskinas
(1925). Top, lateral view and bottom, medial view of the
right hemisphere. (d) A monkey-to-human prediction of
laminar origin of connections (NSG%, relative number
of supragranular neurons) between all pairs of cortical
areas based on human cell densities (Panel C) and the
relationship between cytoarchitecture and the laminar ori-
gin of connections (Panel B). Panel A modified from
Sanides (1970) and Goulas et al. (2018). Panels C and D
reproduced from Goulas et al. (2019b)
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distance rule at the level of individual neurons
translates into an exponential decay in connection
density at the level of areas as well (Schmidt
et al., 2018). Given the connectivity between cor-
tical areas, the spatial arrangement of areas in
the brain to a good approximation minimizes the
total wiring length (Ercsey-Ravasz et al., 2013;
Klyachko and Stevens, 2003; Young, 1992). In a
study of the connectivity between macaque corti-
cal areas (Markov et al., 2014b), the combination
of the log ratio of neuron densities and Euclidean
distance between areas provided the best statis-
tical predictions of the existence of connections
(Beul et al., 2017). All in all, physical distance
constitutes a useful explanatory variable for the
existence and density of both local and long-range
connectivity.

9.4.4 Connectome Topology

So far we have considered connectivity predic-
tions based on the properties of pairs of network
nodes (neurons or areas). It is possible to go
beyond pairwise properties and look at patterns of
three or more nodes to infer connectivity. Accord-
ing to the homophily principle—described in so-
cial network theory as “the tendency to choose as
friends those similar to oneself” (Zorzi, 2019)—
nodes with common neighbors are more likely to
be themselves connected (Goulas et al., 2019a,b).
This property is for instance displayed by so-
called small-world networks, in which a combi-
nation of many short-range and a few long-range
connections enables any node to be reached via
a small number of hops through the network.
The homophily principle holds sway both at the
single-neuron level and at the level of brain re-
gions, in both vertebrate and invertebrate brains
(Goulas et al., 2019a).

In local cortical circuits, certain connection
motifs—patterns of connectivity in small groups
of nodes—between three or more neurons are
overrepresented with respect to random graphs
defined by pairwise connection probabilities
alone (Perin et al., 2011; Song et al., 2005).
In a study of groups of up to twelve neurons,
the probability of a connection between a pair

of neurons was found to increase linearly with
the number of common neighbors. Through
this expression of the homophily principle,
cortical neurons cluster into small-world
networks (Perin et al., 2011). Furthermore,
like-to-like connectivity between neurons with
similar functional specificity, e.g., neurons in
primary visual cortex having similar orientation
preference or responding to the same type of
visual stimuli (Ko et al., 2011), is an important
ingredient of the local network topology (Billeh
et al., 2020).

At the level of brain regions, Jouve et al.
(1998) noticed that directly connected areas in
macaque vision-related cortex have far more
indirect connections between them than do
unconnected areas. The author defined an index
of connectivity that captures the fraction of
shared first-order intermediate nodes between
any two areas (Fig. 9.5a). They found that this
metric is related to the existence or absence of
connections in macaque visual cortex, and used
this to infer the connectivity of area pairs for
which no tracing data were available. As pointed
out in the study, the given indirect connectivity
index cannot predict all connections accurately,
but nevertheless exposes an underlying principle
in the structure of the primate connectome.

We computed the index of indirect connec-
tivity and the triadic motif counts on the tract-
tracing data frommacaque (Markov et al., 2014b;
Mejias et al., 2016) and marmoset (Majka et al.,
2020) monkeys, using the subgraphs without un-
known connections. This analysis reveals that the
motif counts, relative to random graphs defined
by pairwise connection probabilities alone, have
a similar structure in both primates, as shown
previously (Theodoni et al., 2022) (Fig. 9.5b).We
also see that the index of connectivity has a large
overlap for areas with and without a direct con-
nection in both primates (Fig. 9.5d). However, ex-
treme values (>0.8 and<0.3) reliably distinguish
existing connections from non-existing ones.

A combination of spatial proximity and ho-
mophily accounts formany topological character-
istics of human cortical networks such as degree,
clustering, and betweenness centrality distribu-
tions (Betzel et al., 2016; Vértes et al., 2012).
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Fig. 9.5 Illustration of topological connectivity features
of macaque and marmoset cortical graphs. (a) Schematic
depiction of motifs in the area-level macaque cortico-
cortical connectivity. (b) Z-score of the motif counts for
all connected triads in the macaque and marmoset. Motif
counts are normalized by the mean and standard deviation
of the motif counts from 1000 random graphs with the
same connection probability as the experimental data in

each case; * p < 0.05, ** p < 0.01, *** p < 0.001. (c)
Schematic depiction of the area-level index of connectivity
as described by Jouve et al. (1998). Shared neighbors
(green nodes) contribute to the prediction of a direct con-
nection (orange), while non-shared neighbors (gray nodes)
make a direct connection less likely. (d), (e) Distribution
of the index of connectivity for existing and absent cortico-
cortical connections in macaque (d) and marmoset (e)

Chen et al. (2020) found that adding cytoarchi-
tectonic similarity to distance dependence and
topological constraints resulted in even better pre-
dictions when applied to the macaque cortical
connectome. These findings place local topology,
and especially homophilic attachment, in the list
of overarching properties governing neural net-
work structure.

9.4.5 Neurodevelopmental
Underpinnings of
Connectivity Heuristics

Many of the aforementioned connectivity
heuristics can be brought together in a common
developmental framework. The spatiotemporal
ontogeny of the brain provides simultaneous
explanations for distance-dependent connectivity,
the preferential connectivity between cytoarchi-
tectonically similar areas, and aspects of the
network topology of the brain (Goulas et al.,
2019a). It also accounts for deviations from
a simple decay in connection probability with

distance. For instance, changes in the parameters
of the distance-dependent connectivity during
development can yield a small-world network
structure with multiple clusters (Nisbach and
Kaiser, 2007). Limbic cortical areas, of low
architectural type, develop earlier and over
a shorter period than areas of high laminar
differentiation such as primary visual cortex.
This rapid development not only underlies the
less distinct lamination and low neuron density of
limbic areas, but also gives these areas a longer
time window for connecting to other regions,
thus supporting their coordinating role (Barbas
and García-Cabezas, 2016). The importance of
spatial embedding and heterochronicity—the
existence of a sequence of developmental time
windows—for brain wiring was demonstrated for
species ranging from the fruit fly to the mouse,
rat, macaque monkey, and human (Bayer and
Altman, 1987; Goulas et al., 2019a). Thus, taking
into account spatiotemporal gradients of brain
development can help predict more realistic
connectomes regardless of the species under
investigation.



222 S. J. van Albada et al.

9.4.6 Reconstructing Connectivity
from Activity

So far we have focused on predictive relations de-
rived from the anatomical features of the nervous
tissue. However, anatomical information is often
costly to obtain or requires invasive methods and
is therefore often not available for all the different
brain regions. An alternative approach is to derive
neural network structure from activity data.While
promising results in this direction have been ob-
tained, this approach suffers from the drawbacks
that widely different network parameters can lead
to closely similar activity (Prinz et al., 2004) and
that the external input to the network modulates
the link between structure and activity (Aertsen
et al., 1989).

When relating activity to connectivity, we
need to distinguish a few different terms. Besides
structural connectivity, the topic of this chapter,
there are two types of activity-dependent “con-
nectivity”: so-called functional connectivity and
effective connectivity. Functional connectivity
is symmetric between source and target nodes,
and describes correlations between their activity.
It is often used in the context of functional
imaging studies to characterize the interactions
between brain regions. Effective connectivity
is a directed measure, describing the minimal
graph that would be needed to account for the
observed interactions between nodes (Aertsen
et al., 1989). In a stricter mathematical sense, one
can define effective connectivity as the product of
the structural connectivity and effective synaptic
weights that depend on the activity level of the
target nodes and quantify their susceptibility to
increased input (van Albada et al., 2015). The
same structural substrate can support different
functional and effective connectivities depending
on the external drive and the network state. When
inferring structural connectivity from activity
data, the lines between the different types of
connectivity can be somewhat blurred, but it is
useful to keep in mind the distinctions.

We have already discussed two physio-
logical methods that help estimate structural
connectivity at the microscopic scale: paired
recordings (Sect. 9.3.2) and glutamate uncaging

(Sect. 9.3.3). These methods provide reliable
connectivity data, but are constrained to small
numbers of neurons. Parallel electrophysiological
recordings of up to hundreds of individual neu-
rons are now possible for instance with Utah ar-
rays or Neuropixels probes (Jun et al., 2017;May-
nard et al., 1997), and functional magnetic reso-
nance imaging enables recording whole-brain ac-
tivity, resolved into ever smaller voxels (De Mar-
tino et al., 2013; Zimmermann et al., 2011).

A number of methods have been proposed
for inferring the underlying connectivity from
these large-scale activity data. Time-lagged cor-
relations between the spike trains of pairs of
neurons are informative about the direction of
the information flow and have been shown to
be linked to the structural connectivity (Ostojic
et al., 2009). A few studies have used this fact
to reconstruct network connectivity from parallel
spike train cross-correlation histograms (English
et al., 2017; Kobayashi et al., 2019; Pastore et al.,
2018). Pairwise correlations are shaped not only
by direct connections between neurons, but also
by indirect connections, the electrophysiological
properties of the individual neurons, transmission
delays, and the external drive to the network (Co-
hen and Kohn, 2011; Helias et al., 2013, 2014).
Given certain conditions such as stationarity and
knowledge of the single-neuron electrophysiol-
ogy, the structural connectivity can in principle
be uniquely reconstructed from the pairwise cor-
relation functions; that is, one can compute and
thereby take into account the influence of the
indirect connections and shared input (Grytskyy
et al., 2013; Helias et al., 2014; van Albada et al.,
2015). In practice, biological neural networks do
not fulfill ideal conditions, experiments do not
fully provide the required information, andmodel
abstractions deviate from the complex physiol-
ogy, setting a ceiling on the accuracy of structural
connectivity inferred from correlations (Das and
Fiete, 2020).

Going beyond pairwise correlations,
Casadiego et al. (2018) propose a method
for inferring synaptic connections from the
dependence of inter-spike intervals on cross-spike
intervals, i.e. intervals between the spike times of
different neurons. The method can successfully
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distinguish excitatory and inhibitory synapses, as
validated with point neuron network simulations.
Networks exhibiting phase-locked activity may
not sufficiently explore the dynamical landscape
to enable all synapses to be reconstructed. In
such cases it can help to expose the network to
different external driving conditions (van Bussel
et al., 2011). Similarly using only knowledge of
the spiking activity and not requiring membrane
potential traces, Zaytsev et al. (2015) infer the
connectivity of simulated networks of a thousand
neurons using maximum likelihood estimation of
a generalized linear model of the spiking activity.
Suchmethods based on generalized linear models
can work well when the activity of all neurons is
recorded (Gerhard et al., 2013), but, like for any
connectivity reconstruction method, undersam-
pling is expected to diminish their performance.

Fitting the observed activity to a dynamical
network model can be a complex and com-
putationally intensive procedure. Structural
connectivity parameters are sought that optimize
a score or cost function based on some features
of interest. In simulation-based methods, optimal
parameter combinations can be searched via
brute force (Prinz et al., 2004; Stringer et al.,
2016), stochastic optimization techniques such
as evolutionary methods (Carlson et al., 2014;
Druckmann et al., 2007; Rossant et al., 2010),
or plasticity rules (Diaz-Pier et al., 2016).
Likelihood-based methods do not require costly
simulations (Ladenbauer et al., 2019; Paninski,
2004; Pillow et al., 2005; René et al., 2020) and
under some conditions allow straightforward
optimization via gradient ascent or simplex
methods. However, estimating the analytical like-
lihood function is a challenging task for complex
models. Machine learning methods are starting
to be developed that can overcome this issue and
estimate parameter distributions given emergent
dynamical properties of modeled networks
(Bittner et al., 2021; Gonçalves et al., 2020).

All in all, establishing unequivocal links be-
tween structural connectivity and neural activity
remains a major challenge in neuroscience, and
structural connectivity estimates from population
recordings should generally be interpreted with
caution.

9.5 Validation of Predicted
Connectivity

The most direct way of validating connectivity
predictions is of course experimental confirma-
tion. Barring the ideal situation where this is
possible, we have a few options at our disposal
for putting predictions to the test. In this context,
different types of predictions exist: Sometimes,
a full connectome is generated, while sometimes
merely statistical regularities in connectivity data
are obtained. For the case of full connectomes,
we can further distinguish generative models that
do not directly rely on connectivity data, for in-
stance based on distance, cytoarchitectonics, and
topological constraints; and cases where gaps in
connectivity data are filled in.

Where the result of the prediction is a full con-
nectome, one can compare with experimentally
obtained connectomes either edge-wise or based
on graph properties such as degree distributions,
clustering, modularity, characteristic path length,
small worldness, or betweenness centrality (Bet-
zel et al., 2016; Vértes et al., 2012). The choice
of properties to compare is nontrivial and de-
pends on their presumed importance with regard
to the scientific question. Ideally, the fitness of the
generative model is quantified using a likelihood
function, but where this is difficult, other objec-
tive functionsmay be defined (Betzel and Bassett,
2017).

In case of statistical fits to connectivity data,
we can check the robustness of the predictions
by determining confidence intervals for the fit
parameters.When no straightforward expressions
for these are available, bootstrapping provides a
solution in which random data samples are drawn
with replacement and the statistic of interest is
computed for each sample (Mooney and Duval,
1993). A similar strategy can be applied when
filling gaps in connectomes: leaving out part of
the known data and either determining how well
the predictions fit to the left-out data, or again
computing graph properties and assessing their
variability. Alternatively, we can add noise to the
underlying data on the order of the uncertainty in
the data. Depending on the case, “uncertainty” in
this context can for instance include experimen-
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tal noise, inter-individual and inter-species vari-
ability, or uncertainty due to mapping between
parcellations. Since it is in practice difficult to
determine the size of the uncertainty, one can add
different levels of noise to the estimated model
parameters and check whether the predictions
hold true even for relatively high noise levels.

Another route for testing the plausibility of
connectivity predictions is to build correspond-
ing network models, perform dynamical simu-
lations, and compare the resulting activity with
experimental activity data. Software tools sup-
porting the systematic comparison between simu-
lated and experimental activity data are available
for both single neurons and networks of neurons
(Gutzen et al., 2018). This method is compli-
cated by the fact that not only the connectivity
but also the dynamical properties of the nodes
(neurons or populations of neurons), the trans-
mission delays, and the external drive contribute
to the network dynamics. However, depending on
the dynamical regime, network dynamics can be
fairly robust to electrophysiological properties of
the individual nodes (Sahasranamam et al., 2016).
The parameter space can be explored systemati-
cally via parameter scans, or in a more targeted
manner via stochastic optimization. If at least
some parameter settings for the nodes, delays, and
external drive, consistent with biological data, can
be found for which the predicted connectivity
yields realistic activity, this provides some degree
of validation. Stronger support is provided if the
experimental activity data are no longer success-
fully reproduced upon changing the connectivity.
Ultimately, neural networkmodels should be con-
sistent with both anatomical and electrophysio-
logical properties of the brain.

9.6 Concluding Remarks

Data on brain anatomy are increasingly made
available as systematic, quantitative data sets,
facilitating their use in neuronal network mod-
els. Inspired by seminal works like those of von
Economo and Koskinas (1925) and Braitenberg
and Schüz (1991), modern anatomists recognize
the importance of systematization and quantifica-

tion for informing analyses and models. Histori-
cally, much anatomical data was made available
only in the natural language text of publications.
On the example of tracing studies, the creators
of the CoCoMac database (Stephan et al., 2001)
recognized the need to bring these data into a
machine readable format and to create a frame-
work for systematically mapping the parcella-
tions mentioned in the text to different parcel-
lations of choice when constructing connectivity
maps. The modern, systematic way of publishing
data is most prominently represented by large-
scale initiatives like the Allen Institute for Brain
Science, Janelia Research Campus, the Human
Connectome Project, the Japanese Brain/MINDS
project, and the European Human Brain Project.
Nevertheless, there is sometimes still a discon-
nect between experimentalists and computational
neuroscientists in terms of the formats in which
the data are published. Anatomical data are still
often made available as image files which re-
quire additional processing before they can flow
into models, in formats specific to the discipline.
An illustrative anecdote is that in 2018 Schmidt
et al. (2018) still obtained cortical thickness from
micrographs by measuring the distance between
layer markers with a ruler. One reason why mod-
elers generally cannot use image data directly is
that they tend to work with concepts like definite
cortical areas and layers, rather than in a spatial
continuum. These categorical concepts constitute
strong hypotheses that help to reduce and inter-
pret the data. Tables of area or laminar averages
are then more useful than images. If the data are
offered as images, at least scripts and documen-
tation should be published alongside the data to
enable the relevant quantities to be more easily
extracted. The latter approach retains flexibility
with respect to particular parcellations and is
future-proof as algorithms of feature extraction
improve and concepts of brain organization may
change over time.

We have described methods ranging from mi-
croscopy to diffusion magnetic resonance imag-
ing for measuring connectivity. However, this list
is not exhaustive and novel techniques are con-
tinuously developed. A modern technique is po-
larized light imaging (PLI), which measures fiber



Bringing Anatomical Information into Neuronal Network Models 225

orientations in brain slices using the birefringence
properties of myelin (Axer et al., 2011; Larsen
et al., 2007). Three-dimensional reconstructions
enable fiber tracts to be followed through the
brain at a resolution of some tens of microm-
eters. Axons entering the white matter can be
visualized with an in-plane pixel size down to the
micrometer scale. An add-on to PLI, also based
on transmitting polarized light through histolog-
ical sections, is Diattenuation Imaging, which
provides complementary information on tissue
composition (Menzel et al., 2019). These meth-
ods promise new ways of determining the con-
nectivity of neural network models.

Also in the field of predictive connectomics,
our treatment ofmethods has not been exhaustive.
Besides predictions based on the proximity of
neural processes or cell bodies, cytoarchitecture,
topological constraints, and neural network activ-
ity, it is for instance possible to generate connec-
tomes based on gene expression data (Barabási
and Barabási, 2020; Fornito et al., 2019; Timo-
nidis et al., 2020). Another possibility we have
only briefly alluded to is a normative approach,
in which the connectome is in some sense as-
sumed to be optimal, and the implications of
this assumption for connectivity are investigated
(Chklovskii, 2004; Samu et al., 2014). As in so
many fields of science, machine learningmethods
and artificial neural network models provide a
promising new avenue for identifying regularities
in data that help to predict connectivity.

As we have seen, connectomes for neural net-
work models are subject to a variety of uncer-
tainties. Each experimental method carries with
it measurement errors, data from multiple in-
dividuals tend to be needed to fully specify a
connectome, and in many cases the best available
estimates even come from different species. We
have largely skipped over the vast and difficult
topic of mapping data between species. In many
cases, the sobering truth is that this cannot be
done in a fully principled manner. All types of
uncertainties, whether due to experimental meth-
ods, individual differences, or interspecies differ-
ences, lead to uncertainties in predicted model
dynamics. We have described some ways of ver-

ifying the robustness of network models to these
uncertainties.

Brain models based on these statistical rules
are necessarily models of an average brain. This
limits their explanatory power. Not only in hu-
mans but also in other species, macroscopic fea-
tures of brain dynamics, like dominant frequen-
cies and functional connectivity, vary from indi-
vidual to individual (Gordon et al., 2017; van Al-
bada et al., 2007; Xu et al., 2019).When the devi-
ation of simulated brain activity from experimen-
tal data is of the same order as the inter-individual
variability, there is nothing left to explain for this
type of model. Schmidt et al. (2018) illustrate
this situation for the prediction of functional con-
nectivity between areas on the basis of a spiking
network model. Such observations challenge the
research strategy of aggregating data from differ-
ent species and individuals to arrive at a statistical
model of brain structure. Progressmay eventually
only be possible by further constraining generic
connectivity rules by anatomical data obtained
from the individual delivering the brain activity
data to be predicted (Proix et al., 2017).

Ultimately, the statistical descriptions we ap-
ply to summarize brain organization are not the
rules by which brains are built in nature. The
rules mathematically formalize the limits of our
knowledge on the structure of individual brains.
And using these rules is to date just the most
efficient way of instantiating large-scale neuronal
networks in a computer by a fully parallel pro-
cess (Morrison et al., 2005). In nature brains are
pre-shaped by evolution and further formed by
growth rules in continuous interaction with the
environment. Eventually we need to understand
and formalize these more fundamental rules to
grow artificial individual brains in a computer.
This implies the existence of a sufficiently ac-
curate model of the environment. Averages over
such model instances then in turn need to be
consistent with our former statistical descriptions
of brain structure.

Nevertheless, the major short-term challenge
consists in the construction of brain models en-
compassing different brain components. With a
few notable exceptions, until today models of
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neuronal networks are usually constructed by a
single researcher, often a PhD student, or small
research groups. It seems likely that we have
hit a complexity barrier and for this reason the
complexity of the majority of models has not
increased much over the past decade. Integrating
the heterogeneity of different brain areas and their
multilevel hierarchical organization into a brain
model will require that we learn to use models of
brain components created by other researchers as
building blocks.

International large-scale projects like
EBRAINS have started to create the ICT
infrastructure enabling the sharing and reuse
of data and model components, as well as
the simulation of multi-scale models and
their environments. The hope is that these
infrastructures foster the required culture of
sharing and collaboration in neuroscience.
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10Computational Concepts for
Reconstructing and Simulating Brain
Tissue
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Abstract

It has previously been shown that it is possible
to derive a new class of biophysically detailed
brain tissue models when one computationally
analyzes and exploits the interdependencies or
the multi-modal and multi-scale organization
of the brain. These reconstructions, sometimes
referred to as digital twins, enable a spectrum
of scientific investigations. Building such
models has become possible because of
increase in quantitative data but also advances
in computational capabilities, algorithmic
and methodological innovations. This chapter
presents the computational science concepts
that provide the foundation to the data-driven
approach to reconstructing and simulating
brain tissue as developed by the EPFL Blue
Brain Project, which was originally applied
to neocortical microcircuitry and extended to
other brain regions. Accordingly, the chapter
covers aspects such as a knowledge graph-
based data organization and the importance of

F. Schürmann (�) · J.-D. Courcol · S. Ramaswamy
Blue Brain Project, École polytechnique fédérale de
Lausanne (EPFL), Geneva, Switzerland
e-mail: felix.schuermann@epfl.ch;
jean-denis.courcol@epfl.ch;
srikanth.ramaswamy@epfl.ch

the concept of a dataset release. We illustrate
algorithmic advances in finding suitable
parameters for electrical models of neurons
or how spatial constraints can be exploited for
predicting synaptic connections. Furthermore,
we explain how in silico experimentation
with such models necessitates specific
addressing schemes or requires strategies for
an efficient simulation. The entire data-driven
approach relies on the systematic validation
of the model. We conclude by discussing
complementary strategies that not only enable
judging the fidelity of the model but also form
the basis for its systematic refinements.

Keywords

Computational brain science · Brain tissue
modeling · Multi-modal data integration ·
Biophysically realistic neural networks ·
Data-driven simulation · Digital Twin

10.1 Introduction

Recent advances in high-performance computing
and an ever-increasing amount of experimental
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data have enabled a new class of data driven,
biophysically detailed mammalian brain tissue
models. Specifically, we refer to the reconstruc-
tion and simulation of neocortical microcircuitry
developed previously by the Blue Brain Project
(Markram et al. 2015), which has since been
extended to build models of brain regions such as
the Hippocampal CA1 model described in Chap.
11.

Data-driven brain tissue models complement
existing experimental and theoretical approaches.
They provide a unique framework for the inte-
gration of multi-modal and multi-scale data in a
systematic way. Relating different datasets makes
it possible to identify missing data while simulta-
neously providing quantitative predictions about
knowledge gaps by leveraging constraints from
the known data. For example, Markram et al.
(2015) showed that in the absence of a complete,
measured connectome it is possible to predict a
large portion of the microconnectome from the
morphological shapes of neurons and their place-
ment in space. These biological models built from
first principles serve as a virtual replica of brain
tissue, where scientific questions can be explored
in silico; in other scientific and technical contexts
such models are also referred to as ‘digital twins’.

As much as this is enabled by data and compu-
tational capabilities, it is also methodological and
algorithmic innovations that make the construc-
tion, validation, refinement, and use of thesemod-
els possible. When models reach the complexity
where individual neurons are described by tens of
thousands of differential equations and the brain
tissue models can comprise multiple millions of
neurons, it becomes necessary to remove hand
tuning and replace ad hoc decisions with repeat-
able workflows. Such an approach makes it pos-
sible to continuously refine models by integrating
new data as it becomes available.

This chapter builds upon previous work to
reconstruct and simulate prototypical neocorti-
cal microcircuitry constrained by biological first
principles (Markram et al. 2015). This chapter
does not intend to describe the individual steps
or software tools to reconstruct and simulate such
a model, which is information that is found in the
original study and in the respective open-source

software tools. Rather, this chapter intends to ex-
plain the relevant computational science concepts
that make reconstruction and simulation possible
in the first place.

In order to do this, the chapter follows the es-
sential steps of the data-driven approach to recon-
structing and simulating brain tissue as developed
by the EPFL Blue Brain Project and as illustrated
in Fig. 10.1.

10.2 Data Organization

Numerous studies have characterized the struc-
tural and functional properties of the mammalian
brain. This has resulted in a treasure-trove of
knowledge on types of neuronal (DeFelipe
and Fariñas 1992; Freund and Buzsáki 1996;
Klausberger and Somogyi 2008; Markram et
al. 2004; Peters and Kaiserman-Abramof 1970),
axonal and dendritic morphologies (Helmstaedter
and Feldmeyer 2010; Larkman 1991; Lübke
and Feldmeyer 2010; Spruston 2008; Thomson
et al. 1996), laminar organization (DeFelipe
et al. 2002; Kätzel et al. 2011; Mountcastle
1997; Rockland 2019; Rockland and Lund 1982;
Woolsey and Van der Loos 1970), their gene
expression profiles (Kawaguchi and Kubota
1997; Rudy et al. 2011; Toledo-Rodriguez et
al. 2005; Yuste et al. 2020) and ion channel
kinetics (Bekkers 2000; Hille 2001; Kole et al.
2006; Korngreen and Sakmann 2000; Lai and Jan
2006; Markram and Sakmann 1994; Ranjan et al.
2011), morphological and electrophysiological
properties (Connors et al. 1982; Hestrin and
Armstrong 1996; Kasper et al. 1994; Larkman
1991; Markram et al. 1997; Ramaswamy and
Markram 2015; Steriade 2004; Zhu 2000),
synaptic connections (Feldmeyer et al. 1999;
Gupta et al. 2000; Jiang et al. 2015; Markram
et al. 1997; Mason et al. 1991; Szabadics et al.
2006; Thomson and Lamy 2007), microcircuit
anatomy (Avermann et al. 2012; DeFelipe et al.
2002; Lefort et al. 2009; Martin 2002; Rockland
2010), and physiology and function (Haider et
al. 2006; McCormick et al. 2003; Petersen 2007;
Traub 2005).

http://dx.doi.org/10.1007/978-3-030-89439-9_11
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Fig. 10.1 Schematic illustration of the core steps to reconstruct and simulate brain tissue as previously described in
Markram et al. (2015) and for which this chapter elaborates the underlying computational concepts

The approach described in Markram et al.
(2015) aims to make sense of these multi-modal
and multi-scale datasets by using a data-driven
model as an integration framework. For example,
Markram et al. (2015) use information on the
location and morphology of cells from biocytin
stains, and electrophysiology from patch-clamp
recordings to derive a neuron-type nomenclature.
As another example, it uses NeuN-stained tissue
blocks to derive dimensions, layer delineations,
absolute cell counts and a combination of DAPI,
NeuN, and GABA stainings to establish the
fraction of excitatory and inhibitory cells in
the brain tissue. The specific computational
workflows to derive the nomenclature or tissue

properties have been described previously
(Markram et al. 2015).

In this chapter, we elaborate on the common
computational concepts in these examples: for
each of them it is necessary to leverage data from
different modalities and possibly different labo-
ratories to derive an integrated synopsis. Further-
more, a certain discipline is needed to correctly
interpret these diverse data, e.g., a nomenclature
based on the set of input data is needed and it may
have to be refined if new data become available.
Lastly, in order to store the results of the synopsis,
in some cases it may be useful to use a data
structure that allows representation of its spatial
heterogeneity.
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To this end, we highlight three computational
concepts that complement traditional neuroinfor-
matics approaches to organize data for brain tis-
sue models: (1) a Knowledge Graph-based Data
Repository, (2) Dataset Releases, and (3) a Gen-
eralized voxel-based data structure.

10.2.1 Knowledge Graph-Based Data
Repository

By now, a number of neuroinformatics initia-
tives have succeeded in the integration of se-
lect types of experimental data into dedicated
databases (Ascoli et al. 2007; Gouwens et al.
2019; Ramaswamy et al. 2015; Tripathy et al.
2014; Wheeler et al. 2015) and have proposed
standards for ontologies and file formats (Gar-
cia et al. 2014; Gillespie et al. 2020; Teeters
et al. 2015). As already alluded to, the specific
challenge for reconstructing brain tissue lies in
finding and integrating available data at different
levels of biological organization, in our case data
sets of genetic, electrophysiological,morphologi-
cal, synaptic, ormicrocircuit nature. In part, this is
a conceptual challenge in the sense that it requires
overarching and at the same time fact-based on-
tologies that can help bridge multiple commu-
nity definitions (Bug et al. 2008; Hamilton et al.
2012; Larson and Martone 2009). But surpris-
ingly, it is also a technical challenge as none of
the readily available databasing approaches such
as transaction-based databases, key-value stores
or no-SQL approaches combine the usefulness of
schematized data with the flexibility to be able
to evolve those schemas as the knowledge of the
data increases. What is needed is a data repository
combined with a knowledge graph, which makes
it possible to efficiently and effectively relate the
metadata and track its evolution; see Fig. 10.2. In
practice, the integration of data into a knowledge
graph as provided by Blue Brain Nexus1 involves
the curation of data to standardize the file format

1 Blue Brain Nexus. Designed to enable the FAIR (Find-
able, Accessible, Interoperable, and Reusable) data man-
agement principles for the Neuroscience community:
https://bluebrainnexus.io/

and attach contextual metadata to the dataset.2

The integrated data is furthermore linked to other
data using common provenance standards. For
instance, an electrophysiology recording will be
linked to a particular protocol and to a particular
experimentalist. It is furthermore linked upstream
to a particular brain slice with its metadata and it
may be linked downstream to a particular staining
protocol and a resulting stained cell.

10.2.2 Dataset Releases

Managing data for their use in a model requires
additional practices as compared to managing
data for archival and general dissemination pur-
poses (Bouwer et al. 2011). This stems from the
fact that possibly only a subset of the data in a
general data repository is being used for a model,
either because the scope of the model is narrower
than the data available in the repository (e.g.,
requiring morphologies of neurons from a certain
brain region and species, while the repository has
data for multiple species), or that not all selected
data passes other thresholds for quality control or
other reasons (e.g., incomplete reconstructions).3

Once it has been identified which data qualifies
for inclusion, it needs to be named for further
downstream use and provenance purposes (see
Fig. 10.2c). Selecting, verifying, and ultimately
approving data for modeling are steps that ac-
tually are best understood as a staged process
leading to a release for a specific purpose or use,
quite similar to what is done for releasing a piece
of software. This analogy does not stop at giving
a certain selection of data a name or version
number, but also extends to explicitly encoding
thematurity of that entity. In the context of dataset
releases, the maturity defines whether the data is
suitable for downstream usage in a model and
ultimately publication (see Fig. 10.2d).

2 Nexus Forge. A domain-agnostic, generic and extensible
Python framework enabling non-expert users to create and
manage knowledge graphs: https://github.com/BlueBrain/
nexus-forge
3 Blue Brain Morphology Workflow. An extensible work-
flow to curate, annotate and repair neuron morphologies:
https://github.com/BlueBrain/morphology-workflows

https://bluebrainnexus.io/
https://github.com/BlueBrain/nexus-forge/
https://github.com/BlueBrain/morphology-workflows
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Fig. 10.2 Schematic illustrating exemplar multi-modal
data and their provenance. The provenance tree of mor-
phologies reconstructions (a) is stored in the knowledge
graph and connected to the multi-modal data (b), a consis-

tent dataset is built from multiple reconstructions (c), and
marked as suitable (d) once validations have been success-
ful. The ontology follows the W3C Prov-O standard

10.2.3 Generalized Voxel-Based Data
Structure

Brain atlases have become a central resource for
brain research (Hawrylycz et al. 2014; Papp et
al. 2014; Paxinos and Watson 1998). On the one
hand, they give a spatial map of the brain allowing
the navigation and selection of areas of interest.
On the other hand, they further allow the registra-
tion of other data within the atlas, giving spatial
context to the data and making localized compar-
isons of data possible. The automatic creation of
atlases from imaging datasets furthermore lends
itself to define atlases in a voxel representation,
assigning to each region a set of specific voxels.
While this could be seen as a technicality, a
voxel-based representation becomes particularly
useful if an atlas is not only used as a look-up
resource but also as a generalized data structure
to store additional data and information.4 Such a
data structure in principle is simply a voxel-based
atlas, with the same parcellation, but provides
machine interfaces to retrieve and populate addi-
tional data. This data can be other experimental
modalities or data derived during the modeling

4 VoxCell. A library tomanipulate volumetric atlas dataset:
https://github.com/BlueBrain/voxcell

process. With respect to modeling processes de-
scribed below, such a generalized voxel-based
data structure makes it easy to store the hetero-
geneity of the input parameters in the respec-
tive voxels, and to provide configuration data for
model building in the form of this data structure.

10.3 Model Building

Biophysically detailed models of brain tissue
have proven useful to link anatomy and
physiology across multiple levels of detail
to emergent behavior (Arkhipov et al. 2018;
Billeh et al. 2020; Einevoll et al. 2013; Hay
et al. 2011; Newton et al. 2019; Nolte et al.
2019; Ramaswamy et al. 2012; Reimann et al.
2013). Ideally, the values that are needed to
parameterize such models are obtained directly
from experimental measurements. However,
even in well-characterized neurons such as
layer 5 pyramidal cells (Markram et al. 1997;
Ramaswamy and Markram 2015; Ramaswamy
et al. 2012), parameters such as quantal
synaptic conductances are difficult to measure
experimentally (Ramaswamy and Markram
2015; Ramaswamy et al. 2012). It becomes
obvious that such data are rather sparse when one

https://github.com/BlueBrain/voxcell
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attempts to find similar parameters for diverse
cell types and their connectivity in specific brain
regions, species, and developmental ages (Qi et
al. 2020).

There are several approaches that attempt to
overcome this challenge, ranging from more ex-
periments (Gouwens et al. 2019; Oh et al. 2014;
Ranjan et al. 2019) to rule-based regularization of
parameters (Billeh et al. 2020; Ecker et al. 2020;
Reimann et al. 2015). We previously described a
complementary approach to reconstructing neo-
cortical microcircuitry by leveraging sparse bio-
logical data and identifying interdependencies to
predict missing data (Markram et al. 2015). It can
be broken down into two main workflows, the
building of biophysically detailed neuron models
and the building of detailed brain tissue models
comprising those neurons.

10.3.1 Biophysical Neuron Models

Themulti-compartmentHodgkin-Huxley formal-
ism (Hodgkin and Huxley 1952a, b; Koch and
Segev 1998, 2000; Rall 1962) faithfully captures
the diverse electrical behavior in neurons from
somatic firing (Druckmann et al. 2007) to den-
dritic integration (Hay et al. 2011) and provides
a platform to integrate experimental data at the
level of single neurons (Gupta et al. 2000; Toledo-
Rodriguez et al. 2004; Wang et al. 2002). More
recent experimental data is more standardized,
more specific, and recorded previously unattain-
able properties of the neurons—providing a more
quantitative description of neuronal parameters
and behavior (DeFelipe et al. 2013; Petilla In-
terneuron Nomenclature Group 2008; Yuste et al.
2020). Despite these advances, experimental data
is not always sufficient to completely parameter-
ize the neuron models, especially since with the
current state of the experimental art certain pa-
rameters are difficult to obtain such as the actual
ion channel composition of a neuron and their
placement and absolute numbers.

Here, we highlight the computational strate-
gies underlying an automated workflow for large-
scale reconstruction of single neurons described
previously (Druckmann et al. 2007, 2008, 2011;

Hay et al. 2011). In contrast to other computer-
aided approaches to constrain neuronal model
parameters (Van Geit et al. 2007, 2008) and sin-
gle neuron models (Huys et al. 2006; Keren et
al. 2005), our approach aims at minimizing the
overall number of parameters to be searched and
at giving clear indications to the algorithm as to
what makes a good model. This overall strategy
reduces the risk that in the process of optimiza-
tion biophysically non-plausible parameters get
chosen (Podlaski et al. 2017). The four elements
that in our hands lead to successful automation of
parameter constraining for neurons are: (1) effec-
tive distance functions, (2) a multi-dimensional
error term, (3) a powerful search strategy, and (4)
leveraging other constraints.

10.3.1.1 Effective Distance Functions
A distance function allows to quantify how far
apart a model is from the desired target behavior.
A common choice is an L2 norm on the point-
wise output of the model with the target, equally
weighing each point of the output trace (Van Geit
et al. 2007). In some cases, this can be overly
restrictive and does not give any indication to the
algorithm whether matching some parts of the
trace may be more important than others (e.g.,
spiking behavior) (Druckmann et al. 2008). The
conceptual advancement we introduced is the use
of feature-based5 distancemetrics (Druckmann et
al. 2007). A feature can be anything from the time
to first spike, a firing frequency, or an adaptation
index, and basically describes a property of inter-
est of an output trace; see Fig. 10.3-1. By using a
feature-based distance function, we achieve two
things: First, we indicate to the search algorithm
the importance of particular aspects of the output
trace that otherwise would be competing with all
the other data points, leading more consistently to
models that express this behavior. Secondly, we
can express the difference of a model to the target
behavior in multiples of the variation measured
in the target system, which gives a very clear
quantification of the quality of the model in this
aspect.

5 Blue Brain eFEL. electrophysiology Features Extraction
Library: https://github.com/BlueBrain/eFEL

https://github.com/BlueBrain/eFEL
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Fig. 10.3 Illustration of central concepts for reconstruct-
ing biophysical neuron models. (1) Features are extracted
from electrophysiological recordings. (2) Pareto set of
solutions plotted for two dimensions (two objectives) of a

multi-dimensional optimization. (3) Indicator-based evo-
lutionary algorithms help to establish dominance between
solutions while maintaining diversity; in this example, the
solution with the smallest (red) square will be sorted out

10.3.1.2 Multi-dimensional Error Term
The distance function is used by the search algo-
rithm to determine whether one set of parameters
preferable over another. A large class of search
algorithms uses a single scalar per solution to
do this ranking, necessitating the combination of
the distance functions arithmetically into a single
value, in casemultiple distance functions are used
(Deb and Deb 2014). In practice, choosing the
weighting can be complicated and ill defined.
In order to overcome this, we decided to use
a multi-dimensional error term, i.e., maintaining
the different distance terms individually in a set or
vector and using a multi-dimensional comparison
predicate instead of a “smaller equal” scalar pred-
icate (Deb et al. 2002a; Konak et al. 2006). Such
a multi-dimensional comparison can lead to cases
where two solutions are equal in all individual
distance functions, but each respectively worse
in one (but different ones), which are typically
referred to as a “pareto set”; see Fig. 10.3-2. This
property proves extremely useful in practice as
it reveals to the modeler which properties in a
model are non-attainable at the same time, pos-
sibly requiring different model ingredients rather
than more search rounds.

10.3.1.3 Search Strategy
In the case of optimizing the parameters of neu-
rons, metaheuristics that do not make any as-
sumption on the function they are optimizing and
that can find sufficiently good solutions (while
not necessarily the best) are particularly useful.

Genetic or evolutionary algorithms fall into this
class (Deb and Deb 2014), but there are many oth-
ers (e.g., swarm optimization (Kennedy and Eber-
hart 1995)). In our case, we wanted the search
strategy to be able to be combined with the multi-
objective error function. Our first results were
obtained with an elitist non-dominated sorting
genetic algorithm NSGA-II (Deb et al. 2002b).
However, with increasing numbers of dimensions
in the error term, the switch to the family of
indicator-based evolutionary algorithms (IBEA)
proved useful (Zitzler and Künzli 2004). IBEA
algorithms manage to select better solutions in
multiple objective searches while at the same
time maintaining more diversity amongst the so-
lutions; see Fig. 10.3-3. These strategies have
been made readily available for neuronal opti-
mization in the open-source software BluePy-
Opt.6

10.3.1.4 Leveraging Other Constraints
In addition to the effectiveness of the distance
function, the ability to combine multiple distance
terms into one error term, and a powerful search
strategy, an additional key element is the min-
imization of the overall search space. This can
be achieved in various ways. Parameters that can
be measured should be set directly, e.g. by de-
termining passive parameters from experiments.
Parameters can be regularized by fixing ion chan-

6 Blue Brain BluePyOpt. Python Optimization library:
https://github.com/BlueBrain/BluePyOpt

https://github.com/BlueBrain/BluePyOpt
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nel kinetics (Ranjan et al. 2019) or e.g., the use
of functions for controlling how ion channels get
distributed along the dendrites. Furthermore, the
search space can be bounded by setting upper
and lower limits for e.g., ion channel densities.
All these measures help to focus the power of
the search strategy on those parameters that are
difficult to measure or which in biology may
have a non-uniqueness/degeneracy to begin with
(Prinz et al. 2004).

This approach to reconstructing neuron mod-
els has proven to be applicable to neurons from
diverse brain regions in rodents, including hip-
pocampus (see Chap. 11), thalamus (O’Reilly et
al. 2020), striatum (Hjorth et al. 2020), cerebel-
lum (Casali et al. 2019), and even other species
(Deitcher et al. 2017).

10.3.2 Brain Tissue Models

A brain tissue model is a specific type of neural
network that not only in its neuronal components
and its topology resembles brain circuitry (Brunel
2000), but actually aims to capture other biophys-
ical properties such as the physical extent of the
very tissue or the spatial placement of the com-
ponents. These brain tissue models thus are no
longer only models of networks and their signal
processing but actually are biophysical models
of the tissue itself; see (Markram et al. 2015),
on which this chapter is based, Chap. 11 for an
application of this approach to the hippocampus,
or other models such as (Billeh et al. 2020; Casali
et al. 2019; Egger et al. 2020; Hjorth et al. 2020).

From a model use perspective, this offers the
opportunity to link the network activity to spa-
tial biophysical observables and biochemical pro-
cesses that extend beyond the confines of neurons
andmakes it possible to interact with themodel as
if it was a virtual tissue rather than an abstraction
thereof. From a model building perspective, this
allows the use of experimental recordings that are
measured spatially and not only recordings from
single neurons.

Specifically, we have introduced com-
putational workflows to reconstruct neuron
densities, ratios, and composition using multi-
modal datasets and methods to overcome the
sparseness of themicroconnectome by leveraging
interdependencies among data that could be
measured (Markram et al. 2015). For example,
by explicitly considering space and the spatial
3D shape of neurons, it becomes possible to
use neuronal processes to predict potential
connections in the absence of a full connectome.
Conversely, one can use volume counts of
boutons, for example, as a valid target for the
connections predicted by the model. Similarly,
Markram et al. (2015) describe an approach to
reconstruct the diversity of synaptic physiology
within a microcircuit.

Here, we focus on four important concepts
underlying this computational approach to pre-
dict a dense model from sparse data: (1) space
as a modality, (2) apposition-based constraints,
(3) density-based constraints, and (4) functional
parameterization through regularization and sam-
pling.

10.3.2.1 Space as a Modality
Explicitly modeling space in neural networks of-
fers the ability to treat them as models of physical
objects where model components and proper-
ties have a spatial consequence and in turn can
be constrained (e.g., the number of spatially ex-
tended neurons that fit into a volume is limited). It
turns out that 3D reconstructions of neurons done
without space as a modality in mind often times
show artifacts (e.g., wiggly branches that stem
from tissue shrinkage before reconstruction, or
incomplete reconstruction of axons) that may not
affect the electrical models of the neurons but that
lead to a mismatch when placing them in absolute
space. Similarly, since neuron morphologies are
not necessarily obtained from the same animal or
even the same region, they may come in different
absolute sizes and their height and arborizations
within a certain layer of cortex may not fit if
they were to be used together. Consequently, we
developed computational methods that remove

http://dx.doi.org/10.1007/978-3-030-89439-9_11
http://dx.doi.org/10.1007/978-3-030-89439-9_11
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artifacts in neuronal morphologies,7,8 that can
complete missing arborization of neurons so that
they become statistically indistinguishable from
complete reconstructions of neurons in the same
class, and otherwise select, scale, and rotate mor-
phologies so that they fulfil 3D constraints in the
model (Anwar et al. 2009). To correctly guide
this, it is important to not only consider the in-
tended model’s shape and extent, but to allow
for a flexible description of spatial heterogeneity
throughout the volume. In practice, this means
that we use the previously described generalized
voxel-based data structure derived from the spe-
cific species, which allows diverse experimen-
tal data to be registered spatially in an absolute
reference frame. The model parameters can then
be sourced on a per position basis and it is not
necessary to define average “recipes” of cell com-
position, for example, for an entire region.

10.3.2.2 Apposition-Based Constraints
An easily underestimated set of parameters
for building network models is the detailed
information about the structural connectivity.
Not only does the number of these parameters
scale quadratically with the number of neuron
classes defined, but experimental data also shows
that there is important distance-dependence
and higher-order motifs. One proposed answer
to this question is EM-based connectome
reconstructions of entire microcircuits and brain
regions (Kasthuri et al. 2015; Motta et al. 2019;
Zeng 2018). Recent advances hold promise
that initial instances of these datasets may
become available in the not-too-distant future,
however, the statistical power of these hard-
earned instances remains challenging. Here, we
describe a complementary computational view to
the problem: the fact that neuron morphologies
cluster into classes [across animals and despite
anatomical specificity and plasticity (Reimann
et al. 2017; Stepanyants and Chklovskii 2005;

7 Blue Brain NeuroM. A toolkit for the analysis and
processing of neuron morphologies: https://github.com/
BlueBrain/NeuroM
8 Blue Brain NeuroR. A collection of tools to repair mor-
phologies: https://github.com/BlueBrain/NeuroR

Stepanyants et al. 2002)] indicates that there
is structure that possibly can be exploited for
predicting the connectome or at least parts of it
from these underlying elements. For the example
of the microconnectome, i.e., the structural
connectivity between neurons within the same
volume such as a microcircuit, we have shown
that a large percentage of known neuron- to
neuron-class innervations patterns (i.e., where
do synapses form within the dendritic and
axonal trees) can be predicted by computing
spatial proximities (putative synapse locations)
of dendrites and axons from 3D morphologies
placed in space and this despite the fact that
they came from different animals across the
same species, age, and region (Reimann et
al. 2015). Not only are the putative locations
mostly indistinguishable from experiments (Hill
et al. 2012; Ramaswamy et al. 2012), but it is
also possible due to the explicit consideration
of space to exploit deeper interdependencies
of parameters such as cell density, axonal
length, connection probability, mean number
of synapses/connection, and bouton density. By
exploiting these interdependencies, we showed
that it is possible to derive a prediction about
which and how neurons are connected, including
higher-order motifs, based on only partially
known connectome properties (Reimann et
al. 2015). These predictions are not limited
to the structural connectome but extend to an
actual functional instance thereof. Figure 10.4-1
illustrates the main steps of this process when
dendritic and axonal 3D reconstructions of
neurons are available. While further validation
of these predictions with further experiments
remains desirable, those results show that the
microconnectome in cortical tissue to a large
degree is an emergent property that can be
computationally predicted. Such predictions
will go hand in hand with EM connectome
reconstructions in the future to confirm patterns
for emergence or cases where more specific
construction rules are in play.

10.3.2.3 Density-Based Constraints
If axon reconstructions are not available, the
apposition-based constraints cannot be readily

https://github.com/BlueBrain/NeuroM
https://github.com/BlueBrain/NeuroM
https://github.com/BlueBrain/NeuroR
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Fig. 10.4 Illustration of the different concepts to com-
putationally reconstruct a connectome depending on the
available source data (in all cases it is assumed that den-
dritic reconstructions are available): (1) if reconstructed
axons are available, (2) if reconstructed axons are not

available but they can be modeled by a simplified geom-
etry, and (3) if only a regional targeting is available. Step
2 illustrates how putative contact locations can be derived
and step 3 illustrates the pruning to functional synapses

exploited as described above. This is particularly
a problem for long-range connections, such
as inputs from the thalamus or intra-cortical
connections or Schaffer collaterals as described
in Chap. 11 on the hippocampus. In these cases,
however, one can still exploit density-based
constraints: if one has synapse density profiles
available (Kawaguchi et al. 2006), one can
sample the detailed dendrites in the target region
according to the density profiles. In some cases,
it may suffice to model the incoming fibers as
straight lines in space and estimate their density
from literature and assign synapses from the
previous step to these fibers based on distance
probability (see Fig. 10.4-2). In other cases,
where the origins of innervation are less obvious,
we have developed a computational approach
(Reimann et al. 2019) that exploits a small set
of complete axon reconstructions (Winnubst
et al. 2019) in combination with region-to-
region projection datasets (for example, the Allen
Institute’sAAV tracer injections (Oh et al. 2014));
see Fig 10.4-3 for an illustration. In a first step,

the algorithm derives a first-order probability
for a neuron to innervate a region and a second-
order probability for multiple region innervation.
In a second step, the algorithm combines the
strength of the connection with the layer density
profiles to derive a density of synapses in 3D,
while constraining the synapses to be on the
target neuron’s dendritic tree. In a last step, it
uses a topological 2D flatmap between a source
and a target region to assign source neurons to
the synapses.

10.3.2.4 Functional Parameterization
Through Regularization
and Sampling

The final step in functionalizing connectomes
of brain tissue models involves prescribing
parameters to individual synaptic contacts based
on sparse experimental data on the synaptic types
as well as the individual synaptic connections
(Markram et al. 2015; Ramaswamy et al. 2015;
Thomson and Lamy 2007). In the cortex,
synapses have been found to display certain

http://dx.doi.org/10.1007/978-3-030-89439-9_11
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forms of short-term synaptic dynamics, namely
facilitating, depressing, or pseudo-linear. These
synapse types (s-types) are determined from
the combination of their pre- and postsynaptic
neurons. In the absence of the specific knowledge
about how each of the possible pre/post-
connections map to these types, a viable path
is to use regularization, i.e., use rules that map
connections to these classes such as pyramidal-
to-pyramidal connections are always depressing
or synaptic dynamics are preserved across layers
for all connections of specific types. After
assignments of a type, parameters for the synaptic
dynamics of individual synapses are drawn
from experimental distributions. Specifically,
the absolute value of the unitary synaptic
conductance is adjusted by comparing paired-
recording experiments that also measure somatic
postsynaptic potentials (PSP) between specific
pairs of m-types, and compare the resulting in
silico PSPs with the corresponding in vitro PSPs
(Markram et al. 2015; Ramaswamy et al. 2015).

10.4 Simulation Experiment

In the previous sections, we described the recon-
struction of a neuron or a piece of brain tissue in
a model and the required various computational
processes to parameterize them. A reconstructed
model lends itself to exploring scientific ques-
tions in their own right, for example, on the
model’s make-up, intrinsic structure, and predic-
tion of missing data. In this section, we describe
the simulation of a model—understood as the
process of solving the mathematical equations
(typically differential equations) governing the
dynamics of the model’s components and their
interactions in time.

As elaborated recently (Einevoll et al. 2019),
the numerical integration methods, simulation
schemes, and software engineering aspects
required to faithfully and efficiently perform
these calculations require mature simulator
software. In addition to being able to instantiate
various computational models for processing
with the necessary simulation algorithms, these
simulators provide means to set up simulated

experiments, i.e., the equivalent of experimental
manipulation devices such as a patch electrode
and experimental recording/imaging devices,
e.g., multielectrode array. In essence, the
simulators provide the machinery for setting up
and executing simulation experiments.

Markram et al. (2015) describe a barrage of
simulation experiments on the neocortical micro-
circuit model. They range from simulating spon-
taneous activity and thalamic activation of the
microcircuit to reproducing in vivo findings such
as neuronal responses to single-whisker deflec-
tion or the identification of soloist and chorister
neurons. These simulation experiments rely on
the NEURON simulator (Hines and Carnevale
1997),which is themost widely used open-source
simulator for biophysically detailed models of
neurons and networks.

Here, we describe computational concepts that
proved particularly useful to adopt when sim-
ulating brain tissue models, namely (1) global
unique identifiers for neurons, (2) explicit model
definition, (3) cell targets, and (4) strategies for
efficient simulation. Some of these concepts such
as the global unique identifier for neurons come
out of the box with the simulator software, but
they deserve to be highlighted. Other concepts
such as the explicit model definition and cell
targets have been necessary to adopt to effectively
connect simulations into a wider set of model
building and analysis workflows as described by
Markram et al. (2015). The question of efficiency
of the simulations, finally, is determining how
many simulation experiments can be performed
in practice.

10.4.1 Global Unique Identifier

A minimal concept that proved essential in being
able to reconstruct and simulate brain tissue mod-
els had already been introduced to neurosimula-
tors when they started to embrace parallel com-
puting systems (Morrison et al. 2005; Migliore
et al. 2006). At that point, it became necessary
to assign each neuron an explicit globally unique
identifier (GID). What we realized for the study
in (Markram et al. 2015) is that the identification
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nodes cell targetsa

b

1 2

S Rb

GID m-type morphology x y ...

gid1 L5_TTPC1 C060114A2 123.3 456.3 ...

gid1 L4_MC C090997A-12 345.6 532.3 ...
gid1 L4_PC C300797C-P4 532.4 536.1 ...

... ... ... ... ... ...

edges
PRE post SYNAPSE-TYPE GSYN ...

gid1 grid2 ... ... ...

gid2 grid3 ... ... ...
gid3 grid2 ... ... ...

... ... ... ... ...

TARGET NAME PREDICATE
group1 gid in (gid2,gid3)

group2 gid in (gid1, gid2)

a

Fig. 10.5 Schematic of computational concepts for simu-
lation experiments. (1) Global Unique Identifier: Cells are
uniquely identified by GIDs (a), the cells’ properties and
connectome are explicitly defined (a,b). (2) Cell targets:

are defined based on gids or other properties (a). Cell tar-
gets are used to easily define stimulation on a population
(S) or recording the activity of another population (R) in
2b

of neurons needs to be an explicit property of the
model, i.e., the GIDs need to be stored with the
model (and not only in the simulator) and thus
can be used in any software that interacts with the
model whether it is for the model building, sim-
ulation or visualization and analysis. This allows
the linking of additional information to any given
neuron as required by the context. See Fig. 10.5-1
for an illustration.

10.4.2 Explicit Model Definition

The need for uniquely identifying neurons goes
beyond any single step in the workflow. In order
to ensure that different tools resolve the various
GIDs in the same way, it is important to exter-
nalize the model definition in a format9 that can
be read by a variety of tools. In other contexts,
such as networks of point neuronmodels (Potjans
and Diesmann 2014), a rule-based definition of
the network is commonly used, see for instance
PyNN (Davison et al. 2009) or CSA (Djurfeldt
2012), which is compact and allows a fast instan-
tiation in the respective software tool. However,
it also leaves the interpretation of the rules to

9 Blue Brain libsonata. C++/Python reader for SONATA
files: https://github.com/BlueBrain/libsonata

the respective tools and thus potentially makes it
more difficult to clearly refer to a specific model
component among various software interacting
with the model. Thus, by storing the model ex-
plicitly in a container such as SONATA (Dai et
al. 2020), a model exists independently of the
software and rules used to produce it. This makes
it possible to unambigously identify the same
model components across tools.

10.4.3 Cell Targets

Especially for brain tissue models, which today
contain hundreds of thousands or even multiple
millions of neurons, it becomes important to ef-
ficiently be able to address specific portions of
the model. In one way, this is analogous to a
query operation in a database. For example, if
the brain tissue model stores additional properties
with the GIDs, for instance, cell type, spatial
location, etc., it becomes straightforward to find
cells of a certain type (e.g., layer 5 pyramidal
cells) or even cell groups such as disynaptic loops
between layer 5 pyramidal and Martinotti cells
(Silberberg andMarkram 2007) and refer to them
with a simple set of GIDs, which we refer to as
a cell target. Analogous to views in databases,

https://github.com/BlueBrain/libsonata
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cell targets can also be thought of as a named
subset of the model (see Fig. 10.5-2a), in cases
where only a mini-column should be used for
simulation or for singling out specific cells during
analysis or visualization. Lastly, cell targets can
also be thought of as an addressing scheme that
allows to uniquely identify and address any set of
cells. Such an addressing scheme is most relevant
to set a model up for in silico experimentation.
For example, a specific instance of the aforemen-
tioned pyramidal-Martinotti loop cell target can
be selected and a stimulation device attached to
the first pyramidal cell as well as intracellular
recording devices attached to the Martinotti cell
and the two pyramidal cells, effectively recreating
the experimental protocol in a simulation experi-
ment (see Fig. 10.5-2b).

10.4.4 Strategies for Efficient
Simulation

The time it takes to numerically solve a brain tis-
sue model for 1 s of biological time directly gov-
erns the scientific questions that can be askedwith
the model. Rarely does one accept simulations to
run for longer than a few weeks. In practice, a
few days is the limit by which simulations have
to come back with results. The primary reason
is that simulations are typically part of a larger
scientific workflow either requiring iteration or
parameter variation and ultimately human feed-
back. The efficiency of simulations is thus an
important prerequisite for the study of brain tissue
models, where a single neuron may be governed
by tens of thousands of differential equations and
the network model may contain multiple millions
of neurons. An in depth treatment of the re-
quired computational realization of this is beyond
the scope of this chapter, however, it should be
noted that several engineering and computational
science techniques have to play together. It is
necessary for efficient simulations to embrace
modern computers and clusters of computers, and
in particular their parallel nature (Cremonesi and
Schürmann 2020). Simulators such as NEURON
have thus been parallelized to execute millions of
computations in parallel (Migliore et al. 2006),
in turn necessitating to solve problems arising

from this parallelization such as consistent paral-
lel random numbers, load-balancing and efficient
loading of the model and recording of output. At
very large scales, it furthermore proved necessary
to strip unnecessary data structures away to re-
duce the overall memory footprint and reduce the
amount of memory that needs to be transferred
to the CPU for every computation; these strate-
gies have been incorporated in CoreNEURON10

that transparently integrates with NEURON11 for
large scale simulations (Kumbhar et al. 2019).

10.5 Validation

A key concept of Markram et al. (2015) is to
validate the artefacts of the reconstruction process
not only at the very end but rather to apply vali-
dation tests along the process. Cell models, for
example, are validated against independent data
not used in the reconstruction process, serving to
validate the generalization of the cell models and
to be able to compose them into a network model
where they lead to emergent behavior without
any further tuning. At the same time, the brain
tissue reconstruction is evaluated by a variety of
anatomical and physiological validation tests that
assess emergent properties of the model against
known experimental data that was not used during
reconstruction.

While validation is a standard activity in com-
putational science, the complexity of brain tissue
models necessitates a specific approach to vali-
dation that draws inspiration from the validation
of complex software systems with unit testing,
integration testing, and regression testing (Orso et
al. 2004). Here, we describe 4 types of validation
that were used by Markram et al. (2015) and
which build on top of each other: (1) individ-
ual components (e.g., neuron models) are vali-
dated in a high-throughput way. Once they pass
this component-level validation, (2) components
are integrated into a composite system (e.g., a

10 Blue Brain CoreNeuron. Optimized simulator engine
for NEURON: https://github.com/BlueBrain/CoreNeuron
11 NEURON Simulator. Simulator for models of
neurons and networks of neurons: https://github.com/
neuronsimulator/nrn

https://github.com/BlueBrain/CoreNeuron
https://github.com/neuronsimulator/nrn
https://github.com/neuronsimulator/nrn
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network model) where they are validated in the
context of that system. Once the components are
validated, (3) the system itself is validated first
against the data/rules being used to build it and
then (4) against external datasets that have not
been used to build it.

10.5.1 High-Throughput Model
Component Validation

In Biophysical Neuron Models (Sect. 3.1), an
approach was described that can create a variety
of neuron models, namely how multi-objective
optimization strategies result in a pool of models
with different trade-offs. The number of mod-
els resulting from this can potentially be large,
reaching thousands of models. Yet, depending
on the scientific starting point, it can be desir-
able for even more neurons in a brain tissue
model to be unique. In such cases, it is quite
common to transplant electrical parameters from
one neuron model into a different morphological
shape, which is computationally much cheaper
than constraining the electrical parameters from
scratch. At this point, only a high-throughput
approach can perform the validation of the mod-
els against experimental data. In case of neuron
models, these validations check for soma voltage
responses from step current, for example, or ramp
current injections. In order to automate the vali-
dation, the same approaches used in the building
of the neuron models can be used, namely to
define Effective Distance Functions as previously
defined. The quality of the generalization of the
combinations is then quantified by comparing
model and biological neurons in terms of their
median z-scores for all electrical features. In dif-
ference to the model building process, in the
validation step only one pass is made per neu-
ron; this computation is embarrassingly parallel
and lends itself to efficient execution on parallel
systems;12 Fig. 10.6 shows an example of such
high-throughput validations for electrical neuron
models.

12 Blue Brain BluePyMM. Cell Model Management:
https://github.com/BlueBrain/BluePyMM

10.5.2 Sample-Based In Situ Model
Component Validation

Once a model component is validated, it can
be integrated into a composite model. However,
here the challenge is twofold. First, one has to
validate that the component is also generalizing
when it is embedded into the composite system.
In the case of a neuron that is embedded into
a tissue model, for example, those integration
effects come from the synapses the neuron will
then receive and which could drive the neuron
out of its dynamic range. However, validating
the component inside the composite system raises
a scalability issue: the composite system some-
times needs to be taken into account in the vali-
dation itself increasing the computing cost of the
simulation. Since the contexts of embedding can
be unique, this cost may scale with the number of
instances of the component rather than just with
the number of component types. This scalability
issue prevents an exhaustive high-throughput val-
idation as described above, but rather necessitates
a sample-based approach. As an example, we use
a validation called “Morphology Collage” that
samples a certain number of neurons, displays
them in a slice along with meshes visualizing
the layer boundaries; see Fig. 10.7. This makes
it easy for a human to inspect the placement of
these neurons, for instance, to identify if certain
neurites target the appropriate location or if the
neurites are located in the expected layer.

10.5.3 Intrinsic Validation: Validation
Against Input Parameters

Data-driven model building pipelines as
described in this chapter take datasets of multiple
modalities and rules as input, and integrate
those by trying to fulfil various and possibly
conflicting constraints originating from them. In
such a constraint resolution process, it cannot a
priori be taken for granted that the final model—
after the constraints are resolved to the extent
possible—still complies with the desired initial
specification. Deviations can come from the
metrics steering the constraint resolution process

https://github.com/BlueBrain/BluePyMM
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Fig. 10.7 3D Morphology
collage for the
hippocampus CA1 region
model as an example of
Sample-based in situ
Model Component
Validation. These collages
enable the scientist quickly
to validate the dendritic
targeting and that the axon
trees are located in the
appropriate layer; see also
Chap. 11 for more details

and from random seeds used in the process to
instantiate certain parts of themodel. Formethods
as those described in Brain Tissue Models (Sect.
3.2), where we use apposition and density-based
constraints to predict the microconnectome, it is
thus necessary to validate the model against its
initial specification after it has been built. To that
end, we have developed a validation framework13

that defines the testbed and performs appropriate
statistical tests built on top of an interface14

to query and analyze our model and in silico
experiments.

10.5.4 Extrinsic Validations:
Validation of Emergent
Properties

The previous validation steps provide the first
sanity check that the resulting model has been
built according to the initial specification and that
the process of model building was completed as
intended. They thus represent a form of verifica-
tion and they are also somewhat similar to testing
the performance of a machine learning model on
training data. Obviously, this is only necessary,
but not sufficient for a good model, which needs

13 Blue Brain DMT. Data, model and test validation frame-
work: https://github.com/BlueBrain/DMT
14 Blue Brain SNAP. The Simulation and Network Analy-
sis Productivity layer: https://github.com/BlueBrain/snap

to be tested for its emergent properties in novel
regimes and against previously unused datasets.
The extrinsic validation step is thus about val-
idating properties of the model that were not
explicitly controlled for in the construction pro-
cess against independent data. The properties in
question range from structural properties of the
model to its behavior in an in silico experiment.
For example, brain tissue models that have been
built using the previouslymentionedmethods can
be validated against in vitro staining profiles of
molecular markers in brain slices. These molecu-
lar markers are not a property of the model per se,
but these 2D maps of molecular markers can be
calculated from parameters present in the model
such as the spatial composition, the neuronal type,
or their association with the molecular markers.
Similarly, data from paired recordings of synapti-
cally connected pairs of neurons can be used to
validate the model’s functional emergent prop-
erties that were only explicitly constrained on
single neuron electrophysiology and the connec-
tivity resulting from their morphologies. Lastly,
the ultimate test is to see whether the resulting
model shows an emergent behavior that is in line
with experiments that were not used to constrain
the model. A simple example of this is the vali-
dation of the behavior of the model in response to
tonic depolarization and comparing this to slice
experiments. A more complex example is the
changing of a bath parameter to explore differ-
ent computational regimes of the model and the

http://dx.doi.org/10.1007/978-3-030-89439-9_11
https://github.com/BlueBrain/DMT
https://github.com/BlueBrain/snap
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comparison to respective multi-electrode array
measurements of brain slices. In practice, the
analysis of these types of in silico experiments is
a combination of predefined tests and interactive
analyses with dedicated software frameworks as
described above combined with scientific visu-
alization15,16,17 that allows the inspection of the
model and its simulations in ways similar to what
microscopes and imaging methods provide in a
wet lab.

10.6 Model and Experiment
Refinement

Data-driven reconstructions of brain tissue mod-
els as described in Markram et al. (2015) provide
a scaffold that enables the integration of available
experimental data, identifies missing experimen-
tal data, and facilitates the iterative refinement of
constituent models. Validations are a crucial part
of the data-driven modeling process that reduces
the risk that errors could lead to major inac-
curacies in the reconstruction or in simulations
of its emergent behavior. Successful validations
not only enable the systematic exploration of the
emergent properties of the model but also estab-
lish predictions for future in vitro experiments
or question existing experimental data. Failure in
validation could also indicate errors in experi-
mental data and identify future refinements. Rig-
orous validation of a metric at one level of detail,
therefore, also prevents error amplification to the
next level and triggers specific experimental or
model refinements.

An example of refinement at the interface be-
tween experiment and model proved necessary at
the single neuron level, more specifically, the liq-
uid junction potential artifact. This artifact arises
due to the interaction of electrolytes of differ-

15 RTNeuron. Real-time rendering of detailed neuronal
simulations: https://github.com/BlueBrain/RTNeuron
16 Blue Brain Brayns. High-fidelity, large-scale render-
ing of brain tissue models: https://github.com/BlueBrain/
Brayns
17 NeuroMorphoVis. Neuronal Morphology Analysis
and Visualization: https://github.com/BlueBrain/
NeuroMorphoVis

ent concentrations—i.e., intracellular recording
and extracellular bath solutions used in whole-
cell patch clamp experiments. When single-cell
electrophysiology recordings are reported in liter-
ature, the values are usually not corrected for the
voltage difference in the liquid junction potential,
which is estimated to be around−10 to −14 mV.
As a result, the true measurement of membrane
potentials is often distorted and requires a system-
atic correction to further constrain single neurons
models, especially when combined with other
absolute quantities such as the reversal potentials
that can be calculated directly from ion concentra-
tions. The validation process identified this incon-
sistency, which led to a careful re-evaluation of
the experimental data and the precise conditions
to adjust for the liquid junction potential offset in
the experimental data used for the final model.

An example for experimental refinement oc-
curred at the level of microcircuit structure while
integrating previously published data on neuron
densities into data-driven models of neocortical
tissue. The experimentally reported values vary
by a factor of two (40,000–80,000 neurons/mm3)
and yet failed to result in the overall number
and density of synapses reported in other studies.
Consequently, we performed new experiments,
counting cells in stained tissue blocks, which
yielded a mean cell density of 108,662 ± 2754
neurons/mm3, comparable to other independent
observations in the rat barrel cortex (Meyer et al.
2010). This is a clear-cut use case of how the
data-driven brain tissue reconstruction approach
enables the refinement of specific data through
triggering new experiments.

As a third example, we encountered the need
to refine the data-driven model of neocortical
tissue at the level of microcircuit function when
it was simulated to study the emergent dynamics
of spontaneous activity. Asmentioned previously,
model parameters to recreate experimentally
observed properties of synaptic physiology were
obtained from in vitro experiments, which are
typically performed at high levels of Ca2+ in the
recording bath (2 mM). Simulating microcircuit
function with synaptic parameters at high Ca2+
levels resulted in highly synchronous, low-
frequency oscillatory behavior of spontaneous

https://github.com/BlueBrain/RTNeuron
https://github.com/BlueBrain/Brayns
https://github.com/BlueBrain/Brayns
https://github.com/BlueBrain/NeuroMorphoVis
https://github.com/BlueBrain/NeuroMorphoVis
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network activity. However, in order to explore
network behavior under in vivo-like conditions,
we refined model parameters for synaptic
physiology by using experimental data acquired
at low levels of Ca2+ in the recording bath (0.9–
1.1 mM), which approximates in vivo conditions.
As a result, network activity transitioned from
synchronous activity to highly asynchronous
spontaneous network activity, consistent with
experimental observations (Markram et al. 2015).

We have discussed three specific examples to
outline the symbiosis of the model-experiment
refinement cycle. Indeed, we will continue to
integrate and acquire more experimental data
to validate brain tissue models as we scale up
spatially from microcircuits to brain regions.
Additional datasets will help to fill in biological
details that are not included in the current first
draft reconstruction (e.g., data on gap junctions,
cholinergic modulatory mechanisms, rules
for activity-dependent plasticity, extrasynaptic
glutamate, and GABA receptors, kinetics of
metabotropic glutamate receptors, non-synaptic
transmission, and autaptic connections).

10.7 Conclusions

Understanding the brain is probably one of the fi-
nal frontiers of modern science. Since the brain is
a complex biological system that has evolved over
billions of years, it is difficult to know a priori
the details that matter in the healthy or diseased
brain, in turn posing challenges for computational
models. We previously introduced a data-driven
reconstruction and simulation approach to build
biophysically detailed models of the neocortical
microcircuitry (Markram et al. 2015), sometimes
also referred to as a digital twin. Our approach
builds models from first principles in the sense
that it avoids a priori simplifications or abstrac-
tions beyond the biophysical starting point, which
lends itself to capturing the brain’s cellular struc-
ture and function. By treating the modeling of
the microcircuitry as building a model of a piece
of tissue, it is possible to leverage constraints
arising from different modalities, allowing the
prediction of parameters that are experimentally

not available. Our approach describes a way to
progressively and incrementally improve models
by systematically validating their emergent prop-
erties against data not used in the reconstruction
process, and a refinement process that is executed
when the model displays aberrant properties or
behaviors that are inconsistent with experimental
data.

Over the years, the approach has been
successfully applied to larger portions of the
neocortex and other brain regions. For example,
Chap. 11 describes how this approachwas applied
to reconstruct the hippocampal CA1 region
through necessary adaptations. Therefore, this
chapter deconstructs the approach described
previously (Markram et al. 2015) into its
underlying computational concepts. This makes
it possible to not only better identify the
necessary computational methods to reconstruct
and simulate brain tissue in computer models
but also recognize the knowledge gaps in
data and modeling challenges that could be
surmounted.

In addition, even if the goal is not to recon-
struct an entire brain region but rather only a sin-
gle neuron, aspects of the section on Data Orga-
nization and Biophysical Neuron Models (Sects.
2 and 3.1) still remain relevant. Similarly, se-
lected concepts underlying simulation and valida-
tion could be applicable to network models using
simpler neuron models.

The presentation of the computational con-
cepts in this chapter is complemented with links
to available open-source software that implement
the reconstruction, modeling, and validation pro-
cedures and make them easily accessible to the
interested reader.18
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Tiňo P, Kabán A, Schwefel H-P (eds) Parallel Problem
Solving from Nature – PPSN VIII. Springer, Berlin, pp
832–842

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/


11Reconstruction of the Hippocampus

Armando Romani, Felix Schürmann, Henry Markram,
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Abstract

The hippocampus is a widely studied brain
region thought to play an important role in
higher cognitive functions such as learning,
memory, and navigation. The amount of data
on this region increases every day and de-
lineates a complex and fragmented picture,
but an integrated understanding of hippocam-
pal function remains elusive. Computational
methods can help to move the research for-
ward, and reconstructing a full-scale model of
the hippocampus is a challenging yet feasible
task that the research community should un-
dertake.

In this chapter, we present strategies for
reconstructing a large-scale model of the hip-
pocampus. Based on a previously published
approach to reconstruct and simulate brain
tissue, which is also explained in Chap. 10,
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we discuss the characteristics of the hippocam-
pus in the light of its special anatomical and
physiological features, data availability, and
existing large-scale hippocampus models. A
large-scale model of the hippocampus is a
compound model of several building blocks:
ion channels, morphologies, single cell mod-
els, connections, synapses. We discuss each of
those building blocks separately and discuss
how to merge them back and simulate the
resulting network model.

Keywords

Hippocampus · CA1 · Large-scale ·
Compartmental · Data-drive

11.1 Introduction

11.1.1 The Hippocampus Formation

The hippocampus is a brain region that belongs to
the archicortex, a cortical tissue with four or five
layers, instead of themore typical six layers of the
neocortex. Mammals have two hippocampi, one
on each side of the brain, and each hippocampus
appears as a curved structure inside the temporal
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lobe. In this chapter, we will discuss methods
to reconstruct the rodent hippocampus in a com-
puter model. Since the hippocampus architecture
is mostly preserved across mammals, however,
some of the insights may generalize beyond the
rodent.

In rodents, the hippocampus appears as a
prominent structure just below the neocortex.
When we say hippocampus, we refer to four
subregions: dentate gyrus (DG), cornu ammonis
1, 2, and 3 (CA1, CA2, and CA3). Some authors
use the term hippocampus proper to refer to
CA1, CA2, and CA3 only. Finally, with the
term hippocampus formation, we include also
subiculum, presubiculum, parasubiculum, and
entorhinal cortex.

The hippocampus plays an important role in
several cognitive functions, such as learning and
memory (Jarrard 1993), and spatial navigation
(O’Keefe and Nadel 1978). The hippocampus is
also implied in some pathologies. For example,
in Alzheimer’s disease, the hippocampus seems
to be affected in early stages before the disease
spreads to the entire brain. In epilepsy, the tem-
poral lobe is often the focus of seizures since the
hippocampal formation needs considerably less
current to elicit epileptiform activity compared to
other cortical areas. Additionally, the hippocam-
pus, in particular CA1, is highly vulnerable to
ischemic or hypoxic insults making this region
critical in cerebrovascular diseases.

The hippocampus has facilitated many discov-
eries due to its particular structure and properties.
First of all, it has a relatively simple and ordered
structure, with four layers, where excitatory cells
populate only one layer. The different hippocam-
pal fields are connected almost unidirectionally
and long-range fibers travel orthogonally to the
main dendritic axes of pyramidal cells. Further-
more, the synapses are highly plastic, so that they
can change their strength in response to the pre-
and postsynaptic cell behavior. Finally, neurons
can be grown in culture, and acute or cultured
slices survive in vitro for a sufficient long time
to be used in experiments. All those properties
make the hippocampus a convenient benchmark
to understand general principles of the brain. Key
discoveries that benefited from experiments on

the hippocampus are, for example, the charac-
terization of excitatory and inhibitory synapses
(Kandel et al. 1961; Hamlyn 1963; Blackstad and
Flood 1963; Andersen et al. 1964a, b, 1966a, b;
Curtis et al. 1970), the discovery of long-term
plasticity (Bliss and Lømo 1970, 1973), and the
study of oscillations and their behavioral corre-
lates (Buzsáki 2005).

This interest in the hippocampus has generated
much data that grow daily. While this is undoubt-
edly positive, it is clear that more data do not nec-
essarily bring more knowledge. Data are always
sparse, heterogeneous, conflicting, and strategies
are necessary to convert all of this into a bet-
ter understanding of the hippocampus. Computer
models can help to accelerate this process. Recent
seminal works (Ecker et al. 2020; Markram et
al. 2015; Bezaire et al. 2016; to cite the most
pertinent references) showed how it is possible to
reconstruct a brain region despite available data
being incomplete and heterogenous. This sup-
ports the idea that a faithful reconstruction of the
hippocampus in a computer model, while albeit
challenging, is nonetheless ultimately feasible.

11.1.2 Principles for Building
a Computer Model
of the Hippocampus

We can build a model for different purposes and
our choice will affect the modeling approach.
Here, we present a model that targets two main
goals. First, the model should integrate available
data on the hippocampus to provide a meaningful
snapshot of what we know. Second, the model
should allow us to study a variety of phenomena
and not be restricted to any particular hypothesis.
In reconstructing the neocortical microcircuitry,
Markram et al. (2015) developed a computational
reconstruction process that produced such neu-
roanatomically detailed and data-ready models
from biological first principles which can be gen-
eralized to other brain regions. In the previous
chapter of this book, “Computational Concepts
for Reconstruction and Simulation of Brain Tis-
sue,” the underlying approach is presented and
serves as a prerequisite for a better understanding
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of the present chapter, which applies this process
to the hippocampus.

The reconstruction of the neocortical micro-
circuitry in Markram et al. (2015) is the result
of a model building process that integrates data
at different scales and of different modalities.
This process is a data-driven process without any
preconception on any particular hypotheses one
may want to test. The model includes elements
for which one can find sufficient experimental
constraints (e.g., single cell reconstructions and
electrophysiological recordings, analysis of the
connectivity, pair recordings) representing a start-
ing point for further refinements and integration
of new data.

It is useful to consider a brain tissue model as
a compound model of different building blocks:
morphologies, ion channels, single cell electrical
models, connections, synapses, and volume (Fig.
11.1). For a full reference of those components,
see Markram et al. (2015) and Chap. 10. In the
present chapter we follow this structure and take
into account the particularities of the hippocam-
pus in terms of data availability, functions, and
specific challenges. As described in Sect. 10.5:
Validation, once we have built a model of a com-
ponent, we validate it before integrating it into the
compound model. This process offers an alterna-
tive to the conventional method of “hand-tuning”
the parameters of the model or a building block
to match the emergent properties at higher scales.
Instead, using this method, the failure to capture
an emergent behavior triggers the modeler to re-
examine the input data and model assumptions.
While such a systematic approach can be more

time-consuming than hand-tuning, it proves to be
more reproducible and extensible and provides
more insight on the causal relationship between
the building blocks and the brain tissue model’s
emergent behavior.

The chapter describes methods that can be
applied to any of the hippocampal subregions
of different species. Additionally, we will also
examine some concrete examples, in particular,
the adult rat CA1 (Romani et al., in preparation;
hippocampushub.eu), for which there is ample
available data.

11.2 Morphologies

In this section, we discuss the different cell types
to include in a computational model of the hip-
pocampus, beginning with the different morpho-
logical types (m-types). There are several classes
of morphologies in CA1, but there is no sin-
gle, universally accepted classification (for a sys-
tematic census of morphologies, visit hippocam-
pome.org). First of all, there are several methods
to classify cells that do not always arrive at the
same conclusions. Each cell is potentially differ-
ent than all the others and different classifications
recognize different patterns thereby defining dif-
ferent classes. Furthermore, the techniques used
to classify cells have evolved over time and new
techniques appear regularly in the toolbox of the
anatomists. Together with an increasingly better
understanding of the brain, this leads to a contin-
uous revision of the classifications. So, the same
morphology can be identified in many different
ways, or even the same name can identify differ-

Volume (7)

Morphologies (2) Single cell models (4) Cell placement (8)

Ion channels (3)

Connectome (5) Synapses (6) Network (8)

Fig. 11.1 Circuit building workflow. The number in parentheses shows the section number in this chapter where the
topic is discussed

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec22
hippocampushub.eu
http://www.hippocampome.org/
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Table 11.1 Core set of cell types. The number of cells
that have been reconstructed and identified as found in
neuromorpho.org with three different filter options: hip-

pocampus (+), rat hippocampus CA1 (++), rat hippocam-
pus CA1 and complete 3D neurites (+++)

No. of cells in Neuromorpho.org

Name of cell type Acronym + ++ +++
Pyramidal cell PC 14, 519 1134 234

Ivy cell/Neurogliaform cell Ivy/NG 2a 0 0

Oriens-lacunosum moleculare cell OLM 29 7 7

Parvalbumin positive (PV+) basket cell PVBC 52 7 3

Bistratified cell BS 15 5 5

Axo-axonic cell AA 25 1 1

Cholecystokinin positive (CCK+) basket cell CCKBC 12 3 3

Schaffer collateral associated cell SCA 19 8 8

Perforant pathway associated cell PPA 5 5 5

Trilaminar cell Tri 8 3 3

Interneuron-specific I IS I 1 0 0

Interneuron-specific II IS II 0 0 0

Interneuron-specific III IS III 8 0 0

Total 14, 695 1173 269
aThere are not sufficient metadata to distinguish between those two cell types

ent cell types (Petilla Interneuron Nomenclature
Group et al. 2008).

A good starting point is cell types that are quite
well established and characterizedwith strong ex-
perimental data. At least for CA1, several reviews
(Bezaire and Soltesz 2013; Klausberger and So-
mogyi 2008) and public resources (neuromor-
pho.org, hippocampome.org) help us to identify
this core set of morphologies (Table 11.1).

The core set of cell types found in the hip-
pocampus is presented in Table 11.1. What is not
shown in the table is that the somata of these cell
types can be found in different layers. Neurons
of the same type show visible differences in their
morphology if their somata are in different layers,
even if axon and dendrites preserve similar distri-
bution across layers. For this reason, we consider
cells that belong to the same class but have differ-
ent soma locations as being classified as different
morphological types. A useful convention is to
put the acronym of the layer that hosts the soma
in front of the cell type acronym, as was used in
Markram et al. (2015). The hippocampus strata
are structured depth-wise in clearly defined layers

including the stratum pyramidale (SP), stratum
oriens (SO), stratum radiatum (SR), and stratum
lacunosum moleculare (SLM). For example, we
can identify the cell types also by their locations
as abbreviated by: SP_AA, SO_Tri, SR_SCA,
SLM_PPA, respectively.

So far, we have treated the CA1 as a uniform
region. In reality, many model parameters change
along the three axes of the hippocampus—
longitudinal, transverse, and radial axis. If we
restrict the discussion to morphological features,
we already mentioned how the morphology
varies when the soma is located in different
layers (i.e., along the radial axis). Cells can
show morphological differences depending on
their exact location even within the same layer.
For example, we can distinguish a deep or
superficial pyramidal cell that has the soma
located, respectively, on the bottom or the top
of stratum pyramidale. Deep pyramidal cells
(bursting or early bursting) have more extensive
tuft dendrites, while superficial ones (non-
bursting or late bursting) have more extensive
basal dendrites (Graves et al. 2012). Also, along

http://neuromorpho.org
http://neuromorpho.org
http://neuromorpho.org/
http://hippocampome.org/
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the longitudinal axis of the hippocampus, we
can observe differences in the morphology of
pyramidal cells (Mizuseki et al. 2011; Lee et al.
2014; Masurkar et al. 2017). At first glance, PCs
in the transverse axis seem quite homogeneous,
but it masks a diversity in the PCs in terms of
connectivity, properties, and functions. Already
Lorente De Nó (1934) divided in the CA1 into
“a, b, and c” on the base of different connectivity
of pyramidal cells. New studies have revealed
additional differences both in the anatomy and
physiology of pyramidal cells along this axis
(Igarashi et al. 2014).

Differences within the hippocampus emerge
not only at the level of morphology, but also
at the level of physiological properties of the
cells, connectivity, cell density, and so on. This
high heterogeneity supports the idea that the hip-
pocampus processes different types of inputs and
this could happen in parallel (Andersen et al.
1969, 2000; Danielson et al. 2016; Deguchi et
al. 2011; Geiller et al. 2017; Sloviter and Lømo
2012).While we will not take this inhomogeneity
into account for the sake of simplicity, the reader
should not forget about that because it may have
profound implications on how the hippocampus
works in the real brain.

After identifying the cell types for consid-
eration, we have to collect their morphological
reconstructions. Public resources contain a large
number of morphological reconstructions we can
potentially use. However, not all the available re-
constructions share the same quality. The optimal
dataset should include: target species (rat), age
(adult), target region (CA1), classification, 3D
morphology, full dendritic arbor, and full axon
arbor when possible. Unfortunately, the number
of reconstructions that are publicly available and
meet the above criteria are lamentably few. In
Table 11.1, we show the result of a search in
neuromorpho.org and the number of available
morphologies when they match partially (1173
cells) or completely (269 cells) our quality crite-
ria.

Before it can be used for modeling, any neuron
reconstruction needs first to be checked carefully
to identify and fix reconstruction errors (Donohue

and Ascoli 2011; Winnubst et al. 2019) that can
affect the building of models.

A set of curated high-quality reconstructions
in Neurolucida ASCII format is available in the
“Live Papers” section under Resources/Mor-
phologies/View of the Brain Simulation Platform
(https://humanbrainproject.github.io/hbp-bsp-
live-papers/2018/migliore_et_al_2018/migliore_
et_al_2018.html).

11.3 Ion Channels

Hippocampal neurons are characterized by a va-
riety of different ion channels which exhibit a
certain distribution and density that define their
particular electrical behavior. Since the precise
information about the types of ion channels ex-
pressed by a particular cell type is not known,
even for the well-characterized ones, we have
to assume which channels to include. While it
would be desirable to model neurons with ge-
netically identified ion channels (Ranjan et al.
2019) (channelpedia.epfl.ch), and this approach
may become possible in the near future, at the
time of this writing, it is currently not feasible.
A more pragmatic approach is to define a set of
currents that can reproduce the diversity of the
firing patterns of our chosen hippocampus cell
types. The Hodgkin–Huxley formalism (Hodgkin
and Huxley 1952) has been widely used to build
phenomenological models of currents. This for-
malism offers flexibility and efficiency making
it a suitable approach for large-scale networks of
multi-compartmental neuron models.

Considering the firing patterns of rat CA1 cells
(see Sect. 11.4.1 and Fig. 11.2), we can restrict the
ion currents to the following ones:

• Sodium (Na) current and potassium delayed-
rectifier (KDR) current which are ubiquitous
in neurons and are needed to support action
potential generation;

• Type A potassium current (KA) and hyper-
polarization-activated current (Ih) which are
major players in dendritic integration;

• Type M potassium current (KM) which is re-
sponsible for spike adaptation;

http://neuromorpho.org
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
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Fig. 11.2 Morpho-electrical composition. Firing pat-
terns (electrical type or e-type) shown by the different
morphologies (morphological type or m-type). Pyrami-
dal cells: cACpyr classical accommodating. Interneurons:
cAC classical accommodating, bAC bursting accommo-
dating, cNAC classical non-accommodating

• Type d potassium current (Kd) which is re-
sponsible for delayed firing and inverse adap-
tation (seen in a few types of interneurons);

• Three calcium currents that cover the range of
kinetics observed for voltage-dependent cal-
cium channel (one fast and transient, one long-
lasting, and one non-inactivating) (CaT, CaL,
CaN);

• A calcium pump that ensures that calcium
entering through channels is extruded;

• Two calcium-dependent potassium currents
(one of them also voltage-dependent) (KCa

and Cagk) that concur in generating a strong
adaptation.

We can refit models or ion channels or
take advantage of the large number of models
publicly available (see, for example, the public
ModelDB model repository https://senselab.med.
yale.edu/modeldb/). Nonetheless, the richness

of the data available is not always positive.
Researchers have built several versions of the
same currents or modified existing models. They
constrain their models against different set of
experiments, making different assumptions that
are not always explicit and documented. The
forest ofmodels can be appreciated if we compare
their provenances (see Ion Channel Genealogy
website at icg.neurotheory.ox.ac.uk) (Podlaski et
al. 2017). In order to take full advantage of the
many models already available, we have to spend
time checking the models to verify if the models
are in agreement with the original experimental
data and if they match the experimental or
modeling conditions we are going to implement.

When we pull together data to model ion
currents or when we pull together different ion
current models, we are most likely merging two
or more datasets. Datasets are often obtained
in different experimental conditions and we
have to normalize them before implementing
this merge. Two common problems are the
liquid junction potential and the differences in
temperature (Markram et al. 2015). The liquid
junction potential (LJP) (Neher 1992) arises
when two different solutions are in contact
and have ions at different concentrations with
different mobilities. Due to the presence of
LJP, the recorded voltage does not correspond
to the membrane potential. If the experimental
data or the models are not corrected for LJP,
or the authors do not provide an estimation
for that, we have to make this correction. We
can estimate the LJP knowing the solutions
used in the experiments. This calculation
is facilitated by available tools like JPCalc
(Barry 1994). The other factor to consider
is the temperature that affects the kinetic
parameters, i.e. the time constants. We have to
bring the time constants to the same reference
temperature (generally the temperature of
our simulations) using the Q10 temperature
coefficient, which describes the change as a
consequence of increasing the temperature by
10 ◦C.

A curated set of ion channel models is avail-
able together with the single cell models (see
Sect. 11.4).

https://senselab.med.yale.edu/modeldb/
https://senselab.med.yale.edu/modeldb/
https://icg.neurotheory.ox.ac.uk
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11.4 Single Cell Models

In this section, we discuss how to constrain hip-
pocampal single cell models, which means defin-
ing the set of ion channels and how they are
distributed across the differentmorphologies. Un-
fortunately, this information is not completely
accessible—even for cell types that are intensely
studied like CA1 pyramidal cells. Despite that,
as described in Chap. 10, computational methods
exist to overcome this problem.

11.4.1 Electrophysiological Features

The simplest set of electrophysiological traces
that can be used to constrain a model consists
of single cell recordings in current clamp mode
where the soma is stimulated with a series of
step currents. Ideally, the currents should cover a
range of intensities and the step should be long
enough to resolve the particular features of the
firing patterns. For example, hyperpolarizing
currents in CA1 pyramidal cells reveal a “sag” in
the voltage response that is important to constrain
the hyperpolarization-activated nonspecific-
cation current (Ih). Depolarizing currents should
also have sufficient intensity to characterize the
high firing rates of some cell types (e.g., the
fast spiking PV+ basket cells) or even reveal
the depolarization block, a temporary arrest
of the firing due to an intense depolarizing
input (Bianchi et al. 2012). Finally, steps of
sufficient length are necessary, for example,
to better characterize the adaptation of certain
neurons or reveal the first spike of late-spiking
neurons that may appear after several hundreds
of milliseconds under near-threshold stimulation
(Tricoire et al. 2010).

After we collect the electrophysiological
recordings, we have to classify them on the basis
of the firing patterns shown. Despite the huge
variability in cell firing, the different patterns can
be sorted in a limited number of classes which
have been largely agreed upon in the neuroscience
community (Petilla Interneuron Nomenclature
Group et al. 2008). Data on the hippocampus
show that each morphological type (m-type) can

express one or more electrical types (e-type) to
give different morpho-electrical combinations
(me-type) (Komendantov et al. 2019). If our
dataset is big enough, we can also estimate the
abundance of each me-type, information that
will be important when we have to define the
cell density in the network (see Sect. 11.5.2).
Based on the data we have collected, we derived
the morpho-electrical composition shown in
Fig. 11.2.

Markram et al. (2015) showed that an efficient
way to constrain single cell models is to opti-
mize them against features rather than the entire
trace. Features are the salient elements of a trace
that characterize the firing pattern (e.g., spike
width, time to the first spike, adaptation index).
We can use the open-source Electrophysiological
Feature Extraction Library (eFEL, https://github.
com/BlueBrain/eFEL) or the Blue Brain Python
E-feature extraction (BluePyEfe, https://github.
com/BlueBrain/BluePyEfe) to extract features to
be used in a subsequent model optimization. Fea-
tures extraction can be performed in a web ap-
plication of the HBP platform EBRAINS (https://
ebrains.eu/service/feature-extraction/).

The resulting features may come from differ-
ent experiments that use different experimental
conditions or may be used together with other
experimental data. In any case, we have to nor-
malize them by correcting for LJP and using the
threshold-base currents. We already discussed the
LJP in Sect. 11.3. Regarding the second issue,
we observe that the same cell type can respond
differently to the same amount of current in dif-
ferent experiments. A way to normalize the result
is to calculate the rheobase, the current necessary
to bring the cell to the action potential threshold,
and inject step currents defined as a percentage
of this rheobase (Markram et al. 2015). If the
experiments are not done in this way, we can still
estimate the threshold current by interpolating the
available data.

11.4.2 Model Optimization

Once the target traces, or more specifically the
target electrophysiological features, have been

http://dx.doi.org/10.1007/978-3-030-89439-9_10
https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/eFEL
https://github.com/BlueBrain/BluePyEfe
https://github.com/BlueBrain/BluePyEfe
https://ebrains.eu/service/feature-extraction/
https://ebrains.eu/service/feature-extraction/
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defined, we have to define the set of currents,
the compartments in which they are located,
and how they change within each compartment.
As discussed in an earlier section, the set of
active membrane properties include a sodium
current (Na), four types of potassium (KDR, KA,
KM, and KD), three types of calcium (CaN,
CaL, CaT), the hyperpolarization-activated
nonspecific-cation current Ih, two types of
calcium-dependent potassium currents, KCa and
Cagk, and a calcium extrusion mechanism in all
the compartments containing calcium channels.
In general, channels are uniformly distributed
in all dendritic compartments except KA and Ih,
which in pyramidal cells are known to increase
with distance from the soma (Hoffman and
Johnston 1999; Magee 1999).

Figure 11.3 shows our first iteration on single
cell models (Migliore et al. 2018). Note the fol-
lowing about pyramidal cells:

• KM is only present in the soma and axon (Shah
et al. 2008);

• KD is not present since it is implied in delayed
spiking and this is not a feature observed in
PCs;

• KA has a different kinetics in dendrites, soma,
and axon (Hoffman et al. 1997; Migliore et al.
1999);

• KM has a different kinetics in the soma versus
the axon; and

• Na and KDR are treated separately in the soma
and the rest of the neuron.

Interneurons:

• Given the limited knowledge on the currents
in interneurons, we apply the same currents of
pyramidal cells with few exceptions;

• KD is present since some interneurons show
delayed firing; and

• KA has the same kinetics in somas and den-
drites because there is no experimental evi-
dence of a different KA kinetics in the den-
drites of interneurons.

We need to define the passive properties (ca-
pacitances and resistances) of the neurons and

maximal conductances of the ion channels. Pas-
sive properties are more easily accessible exper-
imentally and we can directly constrain them in
the models. On the contrary, peak conductances
are normally unknowns and we have to optimize
them. In summary, we can combine the set of ion
channels and the information about their distribu-
tion, the morphological reconstructions, and the
passive properties (if known), and then optimize
the remaining unknowns (mainly the peak con-
ductances) in order to match the electrophysio-
logical features.

For this purpose, we perform a multi-objective
genetic optimization using the open-source Blue
Brain Python Optimization Library BluePyOpt
(Van Geit et al. 2016). BluePyOpt is part of a set
of tools integrated into many online use cases of
the Brain Simulation Platform (BSP) of the Euro-
pean Union’s Human Brain Project (https://www.
humanbrainproject.eu/en/brain-simulation/). The
entire workflow to build single cell models is
also accessible in EBRAINS (https://ebrains.eu/
service/hodgkin-huxley-neuron-builder/).

A typical optimization run for a pyramidal
cell, configured to generate 128 individuals per
generation, requires approximately 1 h/genera-
tion using 128 cores. Typical production runs
for each optimization require approximately 60
generations to reach an equilibrated state.

This procedure produced a set of models
that are publicly available in ModelDB (https://
senselab.med.yale.edu/ModelDB/showmodel?
model=244688#tabs-1) and in the “Live Papers”
section of the BSP (https://humanbrainproject.
github.io/hbp-bsp-live-papers/2018/migliore_
et_al_2018/migliore_et_al_2018.html).

We constrained single cell models using
mainly somatic features. For this reason, after
the publication of Migliore et al. (2018), we
further validated the neuron models for dendritic
properties. In particular, we tested the excitability
of the dendrites following synaptic inputs.
This validation led to an improvement of the
models and we added the following additional
constraints:

• a strong reduction of the amplitude of a back
propagating action potential as a function of

https://www.humanbrainproject.eu/en/brain-simulation/
https://www.humanbrainproject.eu/en/brain-simulation/
https://ebrains.eu/service/hodgkin-huxley-neuron-builder/
https://ebrains.eu/service/hodgkin-huxley-neuron-builder/
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://senselab.med.yale.edu/ModelDB/showmodel?model=244688#tabs-1
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html
https://humanbrainproject.github.io/hbp-bsp-live-papers/2018/migliore_et_al_2018/migliore_et_al_2018.html


11 Reconstruction of the Hippocampus 269

dendrites:
KDR d
Na d
KA d
h
CaN
CaL
CaT
KCa
Cagksoma:

as dendrites but
- KA d
+ KM s + KA s

axon:
KDR ax
Na ax
KM ax
KA ax

dendrites:
KDR d
Na d
KA d
h
CaN
CaL
CaT
KCa
Cagksoma:

as dendrites but
+ KM s + KA s

axon:
KDR ax
Na ax
KM ax
KA ax

a b

Fig. 11.3 Ion current distributions. Distribution of ion
currents in pyramidal cells (a) and interneurons (b). Cur-
rents present in different compartments are distinguished

using an additional letter: d dendrites, s soma, ax axon
(adapted from Migliore et al. 2018)

the distance from the soma, following exper-
imental evidence. This feature was not origi-
nally explicitly included in the previous ver-
sion, but the models predicted it anyway (see
Fig. 4B in Migliore et al. 2018). However,
it turned out that it was not enough to limit
the excitability under synaptic inputs in most
neurons, because they were firing even for a
single synaptic activation;

• an exponential reduction of the sodium chan-
nels in the dendrites of interneurons; and

• an independent optimization of channels peak
conductance in the different regions of a neu-
ron (soma, axon, and dendrites).

The new models are available in the “Live
Papers” section of the BSP (https://appukuttan-
shailesh.github.io/hbp-bsp-live-papers-dev/
2020/ecker_et_al_2020/ecker_et_al_2020.html).

This refinement shows once again the
importance of validation. Even for the most
studied cell types, we cannot constrain precisely
most of model parameters. Furthermore, we often
have to use experimental data that tests the cells
under unphysiological conditions. For example,
we already discussed how the most popular
protocol to characterize the firing patterns—

somatic injections of step currents—may lead to
under-constrained dendritic electrical properties.
For this reason, single cell models should undergo
extensive testing and validation. Sáray et al.
(2020) developed a validation suite dedicated to
single cells called HippoUnit (https://github.com/
KaliLab/hippounit). Among other things, we can
use HippoUnit to compare different models or
different versions of the same model.

11.4.3 Library of Cell Models

Although we can identify a limited number of
cell types, the reality is that each cell is unique
in terms of anatomy and physiology. This high
variability in the brain may play an important
role that we should not ignore. On the contrary,
our morphological reconstructions and electro-
physiological recordings most probably capture
too little of this variability and this may insert a
significant bias in our model.

Following Markram et al. (2015), we first pro-
duced a potentially indefinite number of unique
cells by inserting noise in specific morphologi-
cal features, branch lengths and rotations, while
preserving the branching structure. This method

https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://appukuttan-shailesh.github.io/hbp-bsp-live-papers-dev/2020/ecker_et_al_2020/ecker_et_al_2020.html
https://github.com/KaliLab/hippounit
https://github.com/KaliLab/hippounit
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normally produces cells with the same laminar
distribution of axons and dendrites, and so it
maintains the same cell types. In a few cases, the
resulting cells did not retain their cell classes and
we decided to exclude them.

Once we created thousands of unique mor-
phologies, we would have had to create electrical
models for all of them, a task that would have
required too much computer time. We overcame
this problem by combining the set of morpholo-
gies with an initial set of electrical models, and
assessing if the new combinations retained the
correct firing pattern. This procedure increased
the variability of the cells sufficiently.

11.5 Volume

We have defined a library of single cell models,
and now we have to assemble them in a network
model. In order to do that, we need to define the
volume of the network and populate it with the
single cell models.

11.5.1 Define the Volume

Previous modeling efforts for the hippocampus
have pursued different strategies to model the
network. An example of a CA1 model that does
not take into account a realistic space is the one
from Cutsuridis et al. (2010).

Bezaire et al. (2016), on the other hand, defines
the volume by using a regular geometrical shape
that can be more or less constrained experimen-
tally. While a regular volume simplifies the build
and the analysis of the network, it has several
disadvantages.With a subregion like the CA1 that
is curved and quite irregular, constraining it with
a regular geometry that has the same geometrical
properties of the original volume is not straight-
forward.

Schneider et al. (2014) used an interesting
hybrid approach. To constrain the volume of the
rat dentate gyrus (DG), the authors started from
a regular shape and applied a limited number of
transformations to approximate the real volume.
The result is a volume that can be described

parametrically, but still captures part of the irreg-
ularities of the real tissue. Another disadvantage
of using a simplified volume is that the resulting
circuit is less reusable. For example, it will be
more complicated to connect different networks,
each defined in different simplified volumes.

Brain tissue models as described in Chap. 10,
on the other hand, explicitly treat space as a
modality which should be parameterized from an
atlas. There are several public rat brain atlases,
but not all of them contain sufficient details to
be used for a large-scale model of the hippocam-
pus. An example of an atlas with a satisfactory
level of details is described in Ropireddy et al.
(2012) and available at http://krasnow1.gmu.edu/
cn3/hippocampus3d/.

An atlas-based volume is the most accurate
approach and this is what we will consider in the
rest of the chapter. However, it should be noted
that the process of deriving an atlas is very labori-
ous and error-prone; as a result, atlases are often
quite noisy. For example, there could be sudden
enlargement or shrinkage of the layer thickness,
peninsulas or islands of one layer in another layer,
holes, cavities, and detached regions. All those
artifacts complicate the reconstruction and the
analysis of the network.

11.5.2 Cell Placement

Oncewe have defined the set ofmorphologies and
single cell models, we have to specify how many
cells will populate the volume. In the case of the
rat CA1, Bezaire and Soltesz (2013) provided a
useful estimation for the total number of different
morphological types. We should combine this in-
formation with the proportions of different firing
patterns shown by several morphological types
(see Sect. 11.4.1). Furthermore, it is important
to remind the reader that Bezaire and Soltesz as-
sumed the CA1 to be uniform in their calculation.
We already discussed that CA1 is far from being
homogeneous and the cell density also varies
greatly within the CA1. Despite these caveats,
for the sake of simplicity, we can use the same
working assumption of uniformity.

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://krasnow1.gmu.edu/cn3/hippocampus3d/
http://krasnow1.gmu.edu/cn3/hippocampus3d/
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Once we have defined the number of cells, we
have to position their cell bodies in the volume,
rotate their morphologies correctly to follow the
curvature of the hippocampus, and make sure that
their dendrites and axons show up in the appropri-
ate layers (Markram et al. 2015; Ropireddy et al.
2012).

11.6 Connections

In this section, we discuss strategies to derive the
connectome, the set of connections among cells.
Different strategies are used in different published
models (Bezaire et al. 2016; Cutsuridis et al.
2010) or in different parts of a model (internal
versus afferent connections). Moving from sin-
gle cells toward networks, available experimental
data become more and more sparse and heteroge-
nous. Among all the possible connections only
a minority of them has been described at all,
some of them more precisely than others. Fur-
thermore, when available, datasets usually have
a small sample size along with high variability,
and often the quality is poor. For example, most of
the connectivity data come from light microscopy
where connections are not always very visible, or
from slices where the cut can remove part of the
connections. On the other hand,while the datasets
from electron microscopy are certainly more pre-
cise, the number of datasets is very limited as is
the volume of the sampled tissue.

The main challenge addressed in this section
is how to predict the set of connections given
the limited available datapoints. More precisely,
our goal is to specify which pairs of cells are
connected, how many synapses are present in
each connection, and where the synapses are lo-
cated in the morphology. To start, we can initially
assume that the connectivity pattern is dictated
by the morphologies in the space and the asso-
ciated distribution of dendrites and axons. For
simplicity, since there is not extensive evidence
to the contrary, we can neglect the fact that cells
with the same morphology but with differences in
other properties (i.e., firing pattern, biochemical
markers, transcriptome) may form different con-
nections. The most prominent examples of this

behavior are PV+ and CCK+ basket cells that
show a different connectivity pattern (Bezaire and
Soltesz 2013).

If cells with similar morphologies have similar
connections, we can simplify our task. With each
M morphological type, there are M2 potential
pathways. Even if not all the M2 pathways are
viable, it is convenient to assume that most of
them are. When there is strong evidence on non-
viable pathways, we can exclude them. The most
well-known examples of nonviable pathways are
the axo-axonic cells that seem to form connec-
tions only on pyramidal cells, and interneuron-
specific cells that form connections only on other
interneurons but not pyramidal cells. Another fea-
ture we should take into account is the location
of synapses. For example, excitatory synapses
tend not to have synapses on other excitatory cell
somas (Markram et al. 2015). Finally, we should
consider a certain degree of variability in our con-
nections to better capture real connectomes, sowe
should sample connectivity parameters from the
appropriate probabilistic distributions.

Chapter 10 discusses different approaches
to computationally predict the connectome
depending on what type of source data is
available, apposition-based constraints and
density-based constraints, and we used both
approaches to model, respectively, internal and
afferent connections of the CA1.

11.6.1 Apposition-Based Constraints

This approach requires that axons are sufficiently
reconstructed at least within each region of inter-
est. While this prerequisite is difficult to meet, it
reduces drastically the number of assumptions we
have to make and the resulting connectome will
be much more predictive.

In this case, we can place potential synapses
based on the proximity of axons and dendrites.
The key parameter is the threshold distance be-
tween axon and dendrite to decide if we can place
a potential synapse or not. Reimann et al. (2015)
showed that we cannot obtain a realistic connec-
tome even if we optimize this parameter. Instead,
the authors suggested using a multi-step pruning

http://dx.doi.org/10.1007/978-3-030-89439-9_10
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algorithm that matches the sparse data in terms
of bouton density and number of synapses per
connection thereby predicting more accurately
the rest of the connectome. This algorithm was
initially designed for the somatosensory cortex
(SSCx) microcircuit, but we can apply the same
strategy to the CA1. Even though it starts from
sparse data, this approach appears to be quite pre-
dictive and the resulting connectome also repro-
duced high-order connectivity patterns (motifs) in
the SSCx (Gal et al. 2020; Nolte et al. 2020).

In Fig. 11.4, we show parameters of the pre-
dicted connectome in the rat hippocampus CA1.
Note that these results come from an instantiation
of the circuit (i.e., with a particular set of mor-
phologies, volume, positioning) and should not be
used as expected values.

11.6.2 Density-Based Constraints

We use this approach when we do not have axon
reconstructions but do still have volumetric in-
formation. Accordingly, we can think in terms of
synapse distribution in space and therefore con-
nection probability. At least for some pathways,
we can find information on synapse distributions.
Alternatively, we can examine how the axons are
distributed in space, assuming that the probability
of finding a synapse is proportional to the axon
mass, which allows us to derive a synapse distri-
bution. In any case, once we have a synapse dis-
tribution, we can also define a connection prob-
ability. There are many ways to accomplish this
task and each way may use a different order
of constraints. This type of approach normally
reduces the number of assumptions. For example,
we do not have to specify all the viable pathways,
but we can let the algorithmdetermine thembased
on the connection probability.

We can find an application of this approach in
the model of Bezaire et al. (2016). The authors
defined their model in a simplified volume of
CA1 (see Sect. 11.5.1) and used the volumet-
ric information together with hypothetical axonal
distributions to constrain the connectivity.

This approach is also useful to constrain long-
range connections, for which we normally do not

have sufficient axon reconstructions. In fact, we
applied this method to reconstruct the Schaffer
collaterals of the CA3 pyramidal cells, the most
prominent innervation that drives the CA1 net-
work. Those fibers target both pyramidal cells and
interneurons in the CA1 mainly at the level of
stratum oriens (SO) and stratum radiatum (SR).
We can estimate that a pyramidal cell receives
on average 20,879 synapses from Schaffer col-
laterals, while an interneuron receives on average
12,714 synapses (Bezaire and Soltesz 2013).

11.7 Synapses

Once the anatomical connections are defined, we
have to assign physiological properties to the
synapses. We restrict our discussion to chemical
synapses and in particular to ionotropic recep-
tors at the level of glutamatergic (AMPA and
NMDA receptors) and GABAergic (GABAA re-
ceptor) transmission. This section addresses the
parametrization of the synapses in the rat CA1
model. This work is fully described in Ecker et
al. (2020), but we will summarize the main points
for the benefit of the reader.

11.7.1 Postsynaptic Conductance

To model ionotropic receptors, we can use a
conductance-based model (similarly to the way
ion channels were handled in Sect. 11.3) with a
double-exponential variable conductance that is
able to capture well the dynamics of hippocampal
synapses. In the case of the NMDAR component,
we should also include the dependency of con-
ductance on the Mg2+ concentration for which
Jahr and Stevens’s (1990) phenomenological
model of this dependency is a widely used
approach.

Since most of the data on synapses come from
somatic recording, we have to take into account
the space-clamp error (Bar-Yehuda and Korn-
green 2008) in addition to the postsynaptic poten-
tial attenuation that occurs between the synapse
location and the soma. To correct for both fac-
tors, we identify the synapse location and set
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a test value for the maximum or peak synaptic
conductance, we simulate a synaptic activation
and adjust the synaptic conductance to obtain the
expected postsynaptic potential (PSP) (Ecker et
al. 2020). Following this procedure, we estimate
the peak conductance of AMPAR and GABAAR,
since NMDAR is normally blocked around the
resting membrane potential. In the case of NM-
DAR, we cannot set its peak conductance because
it is always contaminated by the AMPAR compo-
nent. To overcome this problem, we can estimate
it by combining the AMPAR peak conductance
and the ratio between NMDA and AMPA con-
ductance (NMDA/AMPA ratio) that is accessible
experimentally at the level of the soma and that
we can assume to be preserved at the level of
synapses.

11.7.2 Short-Term Plasticity

If our synapse models have only stereotypical
responses, the resulting network model will have
very limited validity in the time domain. Hip-
pocampal synapses are highly plastic and show
different dynamics at different time scales. Treat-
ing all the different forms of plasticity requires
a book on its own and is beyond the scope of
this chapter. Here, we can only feasibly introduce
short-term plasticity, which is relevant in the time
span between milliseconds and seconds.

There are many possible models of short-
term plasticity (Hennig 2013). Here, we use
the Tsodyks–Markram model (Markram et al.
1998; Tsodyks and Markram 1997), a widely
used model that is relatively efficient and
able to capture the dynamics of hippocampal
synapses. From the original papers (Markram
et al. 1998; Tsodyks and Markram 1997), the
model underwent several changes (a review of the
different models can be found in Hennig 2013).
Since hippocampal synapses show facilitation
and depression, we select a model version that is
able to capture both (see Ecker et al. (2020) for
the version applied to the CA1 model).

The model has several free parameters that
have to be optimized to match pair recordings. To
fully constrain the Tsodyks–Markram model, the

pair recording should contain a series of stimuli,
possibly at different frequencies. Protocols with
fewer stimuli, like pair pulse, or with a limited
number of frequencies generally under-constrain
the model. Similarly, to the case of single cell
optimization, we can optimize the parameters
against the salient features of the pair record-
ings, in this case the peaks of the synaptic re-
sponses. We can use the python libraries eFEL
or BluePyEfe and BluePyOpt, respectively, to
extract the features and optimize the models.

11.7.3 Multivesicular Release

We can expand the Tsodyks–Markram model
to include a stochastic multivesicular release,
a transmission modality that occurs also in the
hippocampus (Rudolph et al. 2015).

Following the classical model by Castillo and
Katz (1954), we can assume our synapse contains
a number of vesicle release sites per synapse, also
known as the size of the readily releasable pool
(NRRP), at which a vesicle can be released with
the same release probability U (corresponding to
the release probability of the Tsodyks–Markram
model). We can incorporate the multivesicular
release into the Tsodyks–Markram model to
better capture the nature of certain pathways (a
mathematical description can be found in Ecker
et al. 2020). An implementation of the model
above is accessible from the BBP neocortical
microcircuit portal (https://bbp.epfl.ch/nmc-
portal/welcome) (Ramaswamy et al. 2015).

After we introduce the model formalism, we
have to constrain its parameters.We alreadymen-
tioned that we can optimize Tsodyks–Markram
model parameters using pair recording. If we
include themultivesicular release, we have to also
constrain NRRP, which is unknown for most of the
pathways. Lacking experimental estimations for
NRRP, we can predict it using our model. Barros-
Zulaica et al. (2019) showed that it is possible
to predict NRRP by choosing the value that best
matches the coefficient of variations of the first
postsynaptic current in a pair recording. In the rat
hippocampus, using this approach and available
pair recordings (Kohus et al. 2016), Ecker et al.

https://bbp.epfl.ch/nmc-portal/welcome
https://bbp.epfl.ch/nmc-portal/welcome
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(2020) predicted that certain pathways could have
multivesicular release (see Table 3 from Ecker et
al. 2020).

Furthermore, in general, when we approach
the problem of constraining synaptic parameters
in large-scale networks, we have to face two
problems: data heterogeneity and sparseness.

11.7.4 Data Heterogeneity

Data are produced using different experimental
conditions and we should pay attention when
merging different datasets. The general strategy
is to normalize the data and adjust all the data to
reflect the same conditions. We have to consider
at least three important sources for data hetero-
geneity in the case of synaptic parameters: liquid
junction potential, temperature, and calcium con-
centration. We already mentioned liquid junction
potential and differences in temperature (see Sect.
11.3 on ion channels).

The extracellular concentration of calcium,
[Ca2+]o, impacts the synaptic release probability
and consequently, the dynamics of the synapses.
This relationship can be described by a Hill
isotherm with n = 4 (Hill et al. 1910; Markram
et al. 2015). Since there are not many specific
datasets for the hippocampus, we can assume
that the hippocampus is similar to the cortex and
adopt the same parametrizations previously used
for the SSCx microcircuit (Ecker et al. 2020;
Markram et al. 2015).

11.7.5 Data Sparseness

As we mentioned in the section on connections,
data on synapses are very sparse compared to
the multitude of different pathways in a brain re-
gion. Based on available data and similarities with
other brain regions, Ecker et al. (2020) divided
the connections into nine categories depending on
the type of connections (excitatory or inhibitory)
and the biochemical markers of pre- and post-
synaptic cells: pyramidal cell (PC) to PC, PC
to somatostatin positive (SOM+) interneurons,
PC to somatostatin negative (SOM−) interneu-
rons, parvalbumin positive (PV+) interneurons to

PC, cholecystokinin positive (CCK+) interneu-
rons to PC, SOM+ interneurons to PC, nitric ox-
ide synthase positive (NOS+) interneurons to PC,
cholecystokinin negative (CCK−) interneurons
to CCK− interneurons, and CCK+ interneurons
to CCK+ interneurons.

Using our network model built up to this point
and the available data, we predicted a series of
synaptic parameters (see Table 11.2). As in the
case of connections, those parameters should be
used with caution. In fact, they reflect a particular
set of assumptions and data. Still, we believe it
provides a very useful reference for our modeling
efforts.

11.8 Simulation Experiment

We constrained single cell models, we placed
them in a volume, and we predicted their con-
nectivity and synaptic parameters (Fig. 11.5). We
can now use the model not only to simulate single
or pair neurons, but also to simulate slices or the
entire network.

A model contains variables that depend on
time, and parameters that do not. Simulating the
network means evaluating the variables in the
time dimension and subsequently showing how
network dynamics evolve. In computer simula-
tions, the time is discretized and the simulation
evaluates all the variables at each time step. We
can store the values of the variables during the
simulation for subsequent analyses. In this sec-
tion, we introduce four types of simulation con-
ditions: spontaneous or evoked activity, in vitro
or in vivo.

Without any external inputs, some networks
can generate intrinsic activity. Two driving forces
that trigger this spontaneous activity are pace-
maker neurons (Le Bon-Jego and Yuste 2007)
and spontaneous synaptic release (or “minis”).
To the best of our knowledge, there is not much
evidence for intrinsically active neurons in the
hippocampus, while spontaneous vesicle release
is quite well documented in the hippocampus
(Kavalali 2015).Minis occur at very low frequen-
cies (i.e., on the order of 0.01 Hz, Kavalali 2015),
but given the multitude of synapses, the impact
of minis is significant. There are several reasons
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Table 11.2 Predicted synaptic parameters. Synaptic pa-
rameters from presynaptic (Pre) to postsynaptic (Post) cell
types in the nine categories of connections. In parenthesis
the synaptic type: excitatory (E), inhibitory (I), facili-
tating (1), depressing (2), pseudo-linear (3). Parameter

abbreviations: ĝ peak conductance; τdecay decay time con-
stant; USE use of synaptic efficacy; D(ms) depression time
constant; F facilitation time constant; NRRP size of the
readily releasable pool of vesicles. Values are presented
as mean ± SD (adapted from Table 3 in Ecker et al. 2020)

Pre Post ĝ (nS) τdecay (ms) USE D (ms) F (ms) NRRP

PC to PC (E2)

PC PC 0.6±0.1 3±0.2 0.5±0.02 671±17 17±5 2

PC to SOM+ (E1)

PC OLM 0.8±0.05 1.7±0.14 0.09±0.12 138±211 670±830 1

PC SOM+ 0.8±0.05 1.7±0.14 0.09±0.12 138±211 670±830 1

PC to SOM− (E2)

PC PVBC 2±0.05 4.12±0.5 0.23±0.09 410±190 10±11 1

PC CCKBC 3.5±0.4 4.12±0.5 0.23±0.09 410±190 10±11 1

PC BS 1.65±0.1 4.12±0.5 0.23±0.09 410±190 10±11 1

PC Ivy 2.3±0.4 4.12±0.5 0.5±0.022 671±17 17±5 1

PC SOM− 2.35±0.7 4.12±0.5 0.23±0.09 410±90 10±11 1

PV+ to PC (I2)

PVBC PC 2.15±0.2 5.94±0.5 0.16±0.02 965±185 8.6±4.3 6

AA PC 2.4±0.1 11.2±0.9 0.1±0.01 1278±760 10±6.7 1

BS PC 1.6±0.1 16.1±1.1 0.13±0.03 1122±156 9.3±0.7 1

PV+ PC 2±0.35 11.1±4.1 0.13±0.03 1122±156 9.3±0.7 1

CCK+ to PC (I3)

CCKBC PC 1.8±0.3 9.35±1 0.16±0.04 153±120 12±3.5 1

SCA PC 2.15±0.3 8.3±0.44 0.15±0.03 185±32 14±5.8 1

CCK+ PC 2±0.15 8.8±0.25 0.16±0.01 168±15 13±0.5 1

SOM+ to PC (I2)

Tri PC 1.4±0.3 7.75±0.9 0.3±0.08 1250±520 2±4 1

SOM+ PC 1.4±0.3 8.3±2.2 0.3±0.08 1250±520 2±4 1

NOS+ to PC (I3)

Ivy PC 0.48±0.05 16±2.5 0.32±0.14 144±80 62±31 1

CCK− to CCK−
(I2)

PVBC PVBC 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 6

PVBC AA 4.5±0.3 2.67±0.13 0.24±0.15 1730±530 3.5±1.5 1

CCK− CCK− 4.5±0.3 2.67±0.13 0.26±0.05 930±360 1.6±0.6 1

CCK+ to CCK+
(I1)

CCKBC CCKBC 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1

CCK+ CCK+ 4.5±0.3 4.5±0.55 0.11±0.03 115±110 1542±700 1

why we want to study the network dynamics
under spontaneous activity. In this condition, we
can consider the network to be in its resting state
and this already tells us much about the network
properties. In the case of the rat CA1, the network
shows very sparse (mean frequency <1 Hz) and
random activity (Romani et al., in preparation).
Moreover, as we will discuss, simulating the net-

work without inputs is important to test and vali-
date the model.

While it is useful to study spontaneous activity,
this condition does not often occur in reality.
Brain regions are heavily interconnected and they
are always exposed to a series of stimuli. We can
mimic an external input by injecting currents
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Fig. 11.5 Rat CA1 model. Full-scale model of the rat
CA1. Only 1% of the cells and dendrites are shown for
clarity (a). Slice of 100 μm thick. Pyramidal cell (PC) and
parvalbumin positive basket cell (PVBC) are, respectively,
in blue and red (b). The same two cells, PC and PVBC,
extracted from the circuit (c). Firing patterns of PC (blue)

and PVBC (red) shown following a step current of 200% of
the rheobase. Scale bar 10 mV, 100 ms (d). Pair recording
from PC to PVBC (blue) and from PVBC to PC (red)
during a train of ten stimuli at 50 Hz. Scale bar 0.1 mV,
50 ms (e)

in the somas or we can model action potentials
through afferent fibers to our region of interest.
This second approach requires an expansion of
our model but it is the most accurate and flexible.
In the case of CA1, we implemented a model of
Schaffer collaterals that gives rise to most of the
synapses in CA1. Including a model of Schaffer
collaterals enables us to explore a variety of addi-
tional phenomena. It is clear that adding other in-
nervations (e.g., perforant pathways, projections
from medial septum) will expand the capability
of our models even more.

Whether we want to look at spontaneous or
evoked activity, we can simulate our network to
mimic in vitro or in vivo conditions. Our ultimate
goal is naturally to study how the hippocampus
behaves in a living brain, but it is also useful
to replicate in vitro conditions. In fact, most of
the data are obtained in vitro, and therefore we
may want to validate the network by compar-
ing our in silico model with in vitro data, to
gain insight or extend some experimental find-
ings. In vitro conditions may differ from in vivo
ones for several reasons. The region of interest

is normally cut and removed from its context.
As a consequence, it does not receive most of
the inputs from regions connected to it, and so
the background activity is significantly compro-
mised. Additionally, the external solution cannot
reproduce exactly the environment of the region
in the real brain. For example, the solution may
lack important molecules (i.e., ions, hormones,
neuromodulators) that influence the network be-
havior. Sometimes, the solution is altered on pur-
pose to simplify experiments. For example, ex-
perimentalists use a higher Ca2+ concentration to
make the synapses respond more strongly, ren-
dering them more easily recordable. In general,
reproducing experimental conditions accurately
is quite challenging. The fact that experimental
conditions are (apparently) under the control of
the experimenters may give the false illusion that
replicating the conditions of an experiment is
an easy task. Unfortunately, even well-written
methods cannot fully capture the reality of the
experiment, and our models may not include all
the necessary parameters to match the experimen-
tal conditions. Considering all of that, we can
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conclude that reproducing an in vitro experiment
is possible only approximately.

If reproducing an in vitro experiment is a
challenging task, this is even more true for an
in vivo experiment. Here, we have to reproduce
the extracellular solution and the background
activity—and both are seldom known. While we
cannot reproduce in vivo condition exactly, we
can nonetheless make approximations to have
an idea in which direction the system is moving
when passing from in vitro to in vivo. Markram
et al. (2015) approximated in vivo conditions
by lowering extracellular calcium concentrations
to match in vivo values (1.1–1.3 mM) and thus
applying tonic depolarization to compensate for
the reduced background activity.

11.9 Validation

Even when each of the building blocks is ap-
parently well-constrained, the correct behavior of
the network is not guaranteed. The interaction of
the different building blocks is often complex,
and the overall behavior cannot be predicted by
looking at each block individually. As a conse-
quence, extensive validation is essential and it
can unmask incorrect behavior of the building
blocks inside the network and the underlying
assumptions. There are several types of validation
as described in Chap. 10.

11.9.1 Different Types of Validation

Once we assemble the network, we should have
already validated each model component (see
Sect. 10.5.1: High-Throughput Model Compo-
nent Validation). This does not guarantee that
the model component continues to behave as ex-
pected once embedded in a compound model,
i.e. the network. For this reason, we should val-
idate model components also in the context of
the network (see Sect. 10.5.2: Sample-Based In
Situ Model Component Validation). For example,
we can inspect the position of the morphologies
within a series of slices along the main axis on
the hippocampus (Fig. 11.5, Panel b). Another

example is the validation of the single cell mod-
els. Many problems may occur at the level of
single cells, while at the same time, the network
activity appears reasonable. Cells may enter into
a depolarization block (Bianchi et al. 2012) even
when the input is expected to be low, or they get
“stuck” at certain depolarization levels even in the
absence of the input.

We reconstruct a network using a multitude
of constraints that may conflict each other. This
problem, together with the inclusion of random
number generation used in the model building
process, does not guarantee that the final model
reflects the initial set of inputs. To confirm that
the model is still consistent with the input data,
we have to perform a new set of validations (see
Sect. 10.5.3: Intrinsic Validation). For example,
we can compare the analysis of the connectome
(Fig. 11.4) again against the input parameters or
perform in silico pair recordings (Fig. 11.5, panel
e).

With the three types of validations presented
above, we assess the quality of our network in
default conditions. Indeed, network manipulation
is another useful approach to test our model. The
idea is to apply simple manipulations (we change
only one parameter at the time) for which we
know the results, either quantitatively or qualita-
tively. For example, we can block GABAAR and
check if the network shows an increased activity
as we would expect.

After performing all the previously discussed
checks, the model should be reasonably consis-
tent with the input data and each component
should work as expected. We can say that the
network is valid within a space defined by its
input parameters. While this is an important step,
it could be limiting. We would like to use the
model to explore uncharacterized regimes and
make predictions. To achieve that, we need to test
howmuch themodel generalizes and goes beyond
the input data. We need another set of validations
that compare the model with new datasets and
validate the emergent properties of the network
(see Sect. 10.5.4: Extrinsic Validation).

The first simple emergent property we may
want to check is the spontaneous activity using
default parameters (Fig. 11.6). Even if we lack

http://dx.doi.org/10.1007/978-3-030-89439-9_10
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec23
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec24
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec25
http://dx.doi.org/10.1007/978-3-030-89439-9_10#Sec26
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Fig. 11.6 Rat CA1 spontaneous activity. Simulation frame (a). Examples of single cell traces. Scale bar of 10 (b).
Firing rate distribution (c)

specific information on how the network behaves
under those conditions, we should have an idea
about what to expect. For example, we know
that CA1 neurons fire with low frequency (1 Hz)
when the network is in a resting state (Czurkó
et al. 1999; Hirase et al. 1999; Wiener et al.
1989). Cells too active or too silent could be an
indication of some issues in the model.

More complex validations are possible. We
should select experiments that test different as-
pects of our region. In addition, the more our tar-
get experiments depend onmany network compo-
nents, the more they strongly validate the model.
Once we have identified the set of experiments,
we have to reproduce (as much as possible) the
same experimental conditions, stimuli (if any),
and analyses. Our model is an approximation
of the real system and the simulation is an ap-
proximation of the experimental conditions. If we
also consider the high variability of biological
systems, it is clear that we cannot expect a per-
fect match between simulation and experimental
results. What we want here is to reproduce the

essence of the concerned phenomena. If this is not
the case, we have to understand the reason(s) for
this mismatch. For example, the model may lack
an important component, some of our constraints
or assumptions may be incorrect, or we may
have failed to reproduce the exact experimental
conditions. This exercise can be quite laborious
but often leads to an improvement of the model.

Examples of more complex validations are
the reproduction of the different types of os-
cillations observed in the hippocampus (Colgin
2016). Those rhythms include a range from slow-
frequency oscillations like theta (Buzsáki 2002)
to the high-frequency oscillations like the ones
observed during the sharp-wave ripples (Buzsáki
2015) and have been correlated with different
types of behavior.

11.9.2 Sensitivity Analysis

It is important to mention another general princi-
ple when we simulate models: biological systems
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are quite robust despite their high variability. For
this reason, our simulation results may be not
very strong if they are valid only for a narrow
space of parameters or for a particular stream of
random numbers (if the model contains random
processes). To address this problem, we can repli-
cate the simulations with slightly different key
parameters (e.g., inserting noise in the stimuli) or
random number seeds, and check if the results are
robust. An additional option is to create differ-
ent instances of the network model, wherein we
change key parameters within biological range.
For example, Markram et al. (2015) created six
equivalent circuits by varying cell composition,
selection and positioning of model neurons, and
synaptic connectivity.

11.10 Conclusions

In this chapter, we discussed how we can
adapt the approach described in Markram et
al. (2015), which was covered in Chap. 10:
“Computational Concepts for Reconstructing
and Simulation Brain Tissue,” and apply it as
a use case to reconstruct a large-scale model
of the hippocampus using the example of the
rat hippocampus CA1. The method is duly
generalizable and we need only minor changes
to take into account the particular anatomy and
physiology of the hippocampus, and the available
data for this brain region.

Despite the sparseness and heterogeneity of
the data, reconstructing a faithful model of the
hippocampus is a feasible task thanks to a series
of strategies that mitigate the variable quality of
the input data. Of crucial importance is the sys-
tematic use of validations that corroborate each
building block and demonstrate the credibility of
the final circuit.

If we proceed with rigor, we can use the final
circuit model to make in silico experiments and
predictions. There are a series of questions that
we can answer with our model that are not tied
to any particular brain region, but rather concern
dynamical systems in general. For example, we
can study which dynamical regimes the network

can enter, or what the input–output (IO) function
of the network produces.

Furthermore, each brain region has its own
specific roles and properties and research on each
brain region generates its own questions. In this
context, we can use the model to support an
existing theory, reveal the mechanism behind a
given behavior, and/or predict the behavior of the
system in conditions that are not possible exper-
imentally. A prominent example is the different
types of oscillations in the hippocampus; despite
significant research, we lack a complete under-
standing of how those rhythms are generated and
of their functional roles.What is clear is that brain
rhythms, like other emergent network phenom-
ena, can be explained only by considering differ-
ent spatial and time scales. Only a biophysically
detailed model, like the one we describe in Chap.
10 and this chapter, can provide a significant
step forward in deciphering complex network
behaviors and, more generally, can provide novel
insights into the fascinating brain region of the
hippocampus.
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Abstract

This chapter gives a short overview of compu-
tational models dealing with two fundamental
building blocks in spatial cognition: grid and
place cells, and of the open issues such models
may help address.
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12.1 Introduction

Grid and place cells are operationally defined by
the characteristic firing behavior these neurons
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show when the animal explores a typical lab-
oratory environment, usually a one-dimensional
path of various shapes or a two-dimensional, flat,
empty recording box. They can be found in dif-
ferent areas of the hippocampal division, a region
of the brain identified to be crucial not only for
spatial cognition but also for episodic memory.
Their discovery in the early 1970s for place cells
(O’Keefe and Dostrovsky, 1971) and in 2005 for
grid cells (Hafting et al., 2005) led to the Nobel
Prize in 2014. Let us take first a brief look at the
anatomy and at the firing properties of these cells.

12.1.1 Main Anatomical Traits

Place and grid cells have been discovered in the
hippocampal system, a brain region situated in the
medial temporal lobe. The hippocampal system
can be subdivided in several areas, and first in
twomain regions, the hippocampal formation and
the parahippocampal region (Burwell and Agster,
2008), which can be differentiated by their gross
cytoarchitectonic organization. The hippocampal
system is highly similar in different mammalian
species; here we give a short overview focusing
on rodents.
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The Hippocampal Formation—With Place
Cells The hippocampus proper, or cornu am-
monis (CA) has pyramidal principal cells in one
layer—a cortical structure called allocortex—
and is further subdivided in a sequence of three
areas, CA1, CA2, and CA3, with remarkably
distinct connectivity between them. It is flanked
on the input end by the dentate gyrus, or DG,
which evolves out of the same type of cortex
but with small granule cells instead of pyramidal
cells, and on the output end by the subicular
complex, which, in as many as five internal
subdivisions (Ding, 2013), links the hippocampus
to the adjacent multi-layer cortex. Place fields
have been found throughout the hippocampal
formation and have been studied especially
in CA1 and CA3. For a long time, in fact,
it was puzzling how place cells in the two
subfields looked so similar, apart from minor
statistical differences, when, instead, the circuitry
is so different: CA3 is dominated by recurrent
connections, unlike CA1, and the main afferent
connections to CA3 are from the DG granule
cells and from Entorhinal Cortex (EC) layer II,
unlike those to CA1 which are from EC layer III
and from CA3 itself (see Fig. 12.1).

The Parahippocampal Region—With also
Grid Cells The parahippocampal region is char-
acterized in part as periallocortex, to emphasize
its transitional nature to fully neocortical structure

Fig. 12.1 Schematic representation of the connectivity
between three main regions of the hippocampus: DG,
CA3, and CA1. MF-mossy fbers, PP-perforant path, RC-
recurrent connections, SC-Schaffer collaterals

with multiple layers of principal cells. It is formed
by the entorhinal, perirhinal, postrhinal cortices
and by the components of the subicular complex,
which some prefer to view separately from the
subiculum proper. The medial subdivision of the
entorhinal cortex (mEC) has risen to particular
prominence after the discovery of grid cells,
somewhat obscuring the fact that most of its
principal cells do not conform to the grid cell
stereotype even in standard laboratory settings,
nor do those of the other parahippocampal areas.
At the system level, perirhinal cortex makes
afferent connections to lateral EC that do not
appear to convey fine spatial information, unlike
the connections from postrhinal cortex to mEC.
Grid cells emerge, in this perspective, as one
form of refinement of spatial information before
it is merged with nonspatial information in the
hippocampus, where both lEC and mEC project,
and largely transformed into a place cell code, at
least in rodents.

The Entorhino-Hippocampal Circuitry Prin-
cipal cells from EC layer II reach DG and CA3,
while principal cells from EC layer III reach
CA1. Internally in the hippocampus, activation
propagates in a sort of one-directional loop, with
recurrence (in CA3) and shortcuts. DG granule
cells project their so-called mossy fibers to CA3,
where they make sparse but powerful synapses
on the apical dendrites close to the cell body
of CA3 pyramidal cells. Since the same CA3
cells receive many more (but weaker) synapses
on their distal apical dendrites from the same
fibers originating in EC layer II that, en passant,
connect to the granule cells, a major riddle has
been to understand this apparent duplication of
the information arriving to CA3, directly and, as
it were, translated by the DG. Amore recent ques-
tion involves CA2, which had long been regarded
merely as a small transition region between CA3
and CA1; recent evidence on a potentially impor-
tant role in social cognition (Stevenson and Cald-
well, 2014) has been accompanied by the obser-
vation of CA3-like anatomical features in CA2,
such as prominent recurrent collaterals (Okamoto
and Ikegaya, 2019) and the formation, perhaps
in pathological conditions, of mossy synapses
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(Häussler et al., 2016). Feedforward connections
from CA3 to CA1 (the Schaffer collaterals) and
fromCA1 to subiculum are also intriguingly com-
bined, in what may be called a heteroassociative
architecture, with EC layer III inputs to these two
regions. Fibers then project back from CA1 and
subiculum to EC layers V and VI.

12.1.2 Single Cell Selectivity

When considering spatial cognition, cells in the
hippocampal division have been first character-
ized, mainly in rodents, through their individual
selectivity, by looking at the firing rate map of
each cell. In such a map, the spike events are
plotted in a drawing representing the environment
in which the animal is moving, at the position
of the head of the animal when each spike oc-
curred. Spikes clustered in a specific region form
a field. The number of spikes occurring in each
spatial bin is typically divided by the time spent
in that bin, and the map is then regularized to look
smoother. A common trait to the various types of
cells listed below is that the localization of their
fields appears unrelated to the position of each
cell in the tissue, and neighboring cells do not
necessarily show overlapping firing fields in the
environment. The main types are:

• Place cells: Originally discovered half a
century ago (O’Keefe and Dostrovsky, 1971),
their activity is peaked at one or a few positions
in space in the typical environments in which
rodents are made to run in the laboratory.
In one-dimensional environments, such as
circular paths, n-arm mazes, or linear tracks,
place fields are typically directional, i.e. they
occur only when the animal is running in
one direction, whereas in two-dimensional
environments they tend to be, or to become,
non-directional. Place cells have been most
extensively described in CA3 and in CA1,
where it is estimated that between a quarter
and a half of all pyramidal cells show at least
one place field in a typical 1 m2 box. Place
activity, like other types of selective spiking,
is typically modulated by the speed of the
animal.

• Head Direction cells: First reported in 1984
(Ranck, 1984), HD cell activity depends on
the direction of the head of the animal, which
on average tends to coincide with, but is quite
distinct from, its direction of motion. They are
found in a variety of areas, especially in the
para-subiculum and in the EC.

• Grid cells: A startling discovery (Hafting
et al., 2005), their activity is peaked, ideally, at
the vertices of a hexagonal lattice, with spacing
from a few tens of centimeters upwards, giving
rise, in a typical two-dimensional box, to
several grid fields per cell. The spacing and
orientation of the lattice appear to be shared
by neighboring cells, but not the position
of their fields. Whereas in EC layer II grid
activity is characterized as a-directional (but
see Gerlei et al. 2020), in deeper layers of EC
the activity of most grid cells is modulated by
head direction, and they are called conjunctive
(grid) cells (Sargolini et al., 2006). The
spacing of the grid lattice increases toward
the ventral portion of mEC (Stensola et al.,
2012) in what appear to be discrete steps, or
modules. Grid cells are predominantly found
in mEC but are also present in the pre/para-
subiculum.

• Border cells: Described by Solstad et al.
(2008), the activity of border cells is intense at
one or several borders of the environment the
animal is exploring. They are found in the EC
and pre/para-subiculum.

• Speed cells: Originally found in Kropff et al.
(2015), their firing rates linearly depend
on the velocity at which the animal is
navigating. They have been found in the EC,
but variants sensitive to angular velocity have
been recently reported, also in the pre/para-
subiculum.

• Object, object-trace, object-vector, social
cells: A still burgeoning variety of selectivity
types is observed when objects (or other
animals Omer et al. 2018) are introduced in
the same environment, starting with those
observed by Deshmukh and Knierim (2011),
which fire selectively at positions related to
an object and which were found in the lateral
entorhinal cortex.



288 O. Soldatkina et al.

One should note that the selectivity of cells in
the parahippocampal region tends to be stable,
presumably due to the mixture of inputs they
receive and the network they are embedded in.
Instead, cell selectivity in the hippocampal forma-
tion is thought to be determined by the context:
The same pyramidal cells may show two place
fields in one box, none in another, and be selective
for an odor in an olfactory discrimination task
(Eichenbaum et al., 1987).

12.2 Place Cells: A Blissful
Reconciliation Between
DavidMarr and John
O’Keefe?

By 1971, at the time place cells in the rat hip-
pocampus were discovered, two other milestones
had been reached: Half a century of investigations
by many laboratories on synaptic plasticity in the
mammalian brain had just begun,with the discov-
ery of long-term potentiation (LTP) in the rabbit
hippocampus (preliminary findings from 1966,
reported in Bliss and Gardner-Medwin (1973),
see Lømo (2003)); and the solitary daring en-
terprise of a young student, David Marr, had
been concluded with the publication of his theory
of archicortex, i.e., of the hippocampus (Marr,
1971). While the work on LTP had the potential,
later expressed, to bridge the other two, the the-
oretical model developed by David Marr seemed
at first to have nothing to do with place cells, and
vice versa.

12.2.1 Integrating Place Cells Within
Memory Representations

Marr’s vision is of a memory system, a simple
memory, as he calls it in contrast with the theory
he had developed earlier for neocortex (Marr,
1970); in his memory system, representations are
disembodied, abstract entities, to which neurons,
or simple binary units, are recruited as required
by the contingency. The initial description of
place cells, instead, appeared to reveal that what
they encode is very much concrete, a specific
position of the animal, with the same dedication

and reliability with which primary visual cortex
cells would encode the presence of light in certain
regions of their receptive field. Integrating the
two approaches has required gradually broaden-
ing both perspectives, so as to ground Marr’s and
to lift up O’Keefe’s.

12.2.1.1 A Theoretical Perspective on
How the Hippocampus Does
Memory

The human hippocampus had already been as-
sociated with episodic memory. Most of the ob-
servations on hippocampal intellectual function
had come in fact from studies in brain-lesioned
patients, the most famous ones with patient HM
(Milner, 1954). Following a bilateral hippocam-
pal lobectomy in adult age, he had lost most mem-
ories about his life, extending several years before
the operation, and he was not able to form new
ones, but he had preserved cognitive capacities,
relatively spared remote memories, and remem-
bered who he was—though not his present cir-
cumstances, where he was and why he was there
(Milner et al., 1968). It was from the thorough
study of HM that BrendaMilner proposed that the
fundamental role of hippocampus is in the forma-
tion of episodic memories. With his 1971 paper
(Marr, 1971), David Marr developed a detailed
neural network theory for this function, bridging
with a mechanistic model the observations in
patients and the neuroanatomy of the mammalian
hippocampus. In the verymiddle of the brain, as it
were, the hippocampus gets inputs, direct or indi-
rect, from all the sensory areas, and “binds” them
in a way that later, when cued with partial infor-
mation, say a visual signal, the hippocampus in-
tegrates all the elements related to that memory—
and we are able to “relive” a whole episode, for
example a birthday dinner two months ago. So,
at least, the mainstream narrative goes. Marr’s
theory was a grandiose attempt to structure such
narrative into a well-definedmathematicalmodel,
aiming to understand the anatomical structure
of the hippocampus based on the memory im-
pairment described in patients with hippocampal
damage. This general logic is clear, and it has
been profoundly inspirational for later work by
many researchers. The implementation, however,
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is rather complicated, often becoming obscure,
perhaps to Marr himself, and definitely hampered
by the lack of adequate mathematics—it will be
contributed by physicists over 10 years later—and
of adequate numerics, which forced Marr to con-
tinuously zig zag between logic and quantitation,
relying solely on his powerful intuition.

Marr’s work did not consider the place cells
that were being discovered at the same time by
O’Keefe and Dostrovsky in rodents. The discov-
ery would stimulate a computational hypothesis
in a different direction: that the location of the
animal in space is computedwithin the hippocam-
pus, and therefore its internal circuitry has to
be understood as functional to self-localization,
and hence in general to navigation, rather than to
memory.

12.2.1.2 First Computational Theory
Taking Place into Memory

Sixteen years after Marr and O’Keefe with
Dostrovsky, McNaughton and Morris in a review
paper (McNaughton and Morris, 1987) set out
to recombine the two hippocampal narratives—
the memory function and the spatial function:
they suggested that the hippocampal circuitry
stores spatial representations within its synapses.
Although they obviously cite the discovery of
place cells and the book that framed it into a
conceptual theory (O’Keefe and Nadel, 1978),
the emphasis of the review is on the mechanics
of learning. For that, McNaughton and Morris
suggest a set of simple network models, all
based on the Hebb (1949) idea that “neurons
that fire together, wire together”—associative
memory at the synaptic level, which envisages
that a pair of neurons with conjunctive activity
develop a stronger synapse between them. The
spatial character of the information presumed
to be the bread and butter of the hippocampus
does not really inform the network models, all
constructed with binary units and binary synaptic
weights, which are difficult to relate to continuous
space; but the different networks are brought into
tantalizing correspondence with different parts of
the hippocampus.

Each network relies on a matrix of associa-
tively modifiable weights. This matrix captures,

Fig. 12.2 Example of a correlation matrix of converging
input patterns X and Y

through cumulative learning and in binary form,
the occurrence of conjunctive activity between
input patterns on two streams X and Y, as rep-
resented in Fig. 12.2: if two patterns on X and Y
activate the same pair of neurons, the associative
matrix is taken to learn the pairing by increasing
the correspondingweight (to a standard “1” value,
which cannot be raised further).

The memory mechanism initially proposed by
Marr in these terms looks like schema B from
Fig. 12.3: The two converging streams of infor-
mation are paired in an asymmetric fashion: One
(above in the schema) determines the original
activation pattern on the receiving units, and need
not modify its synaptic weights onto them; the
other (below, in the schema) modifies them when
paired with the first, and as a result comes to
reactivate a very similar pattern, alone, acting
as a learned cue, to retrieve what may hence be
called a memorized representation—in the sim-
plest model, a binary one. But McNaughton and
Morris point out that usually, particularly for the
spatial context, any part of it may act as the cue,
that is we may recall the whole scene starting
from any arbitrary element it contains, as long as
it identifies the scene among those concurrently in
storage—the stable division between primary and
modifiable inputs of schema B has nomeaning, in
this case, and one reverts to the undifferentiated
form of schema A, called auto-association.

Finally, a mechanism like that exemplified in
schema C associates the input X to the system’s
own output—this type of auto-association could
serve to store sequences of scenes, as in episodic
memory, that is, cued with the first memorized
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Fig. 12.3 Adapted from McNaughton and Morris
(1987): simple schemata of neuronal networks embodying
variations of associative memory mechanisms. The red

circles represent feedforward and feedback inhibitory
cells, whose control of the yellow pyramidal cells is
discussed both by Marr (1971) and by McNaughton and
Morris (1987)

pattern (or a fraction of it serving as a suitable
cue) it can recall the whole sequence of con-
secutively stored patterns. In addition, with its
recurrence it can keep the output units activated
longer than the afferent inputs, thereby realizing
a simple form of short-term memory.

These simple schemata appear intriguingly re-
lated to elements of hippocampal circuitry, al-
though McNaughton and Morris are quick to
point out that the correspondence should not be
interpreted too rigidly. Thus, the cortical inputs
to DG include the medial perforant path, con-
veying spatial information through supposedly
stronger synapses, and the lateral perforant path,
which can be paired with it, enabling its object-
related information to act as a cue to elicit the
same downstream pattern that had originally been
activated by the whole spatial scene, a bit like
in the schema of Fig. 12.3b. At the same time,
they argue that 3% of the synapses on the me-
dial pathway are 10–20 times stronger than the
others, thus acting as detonators that impress a
representation on the receiving units, which can
be later reactivated by any arbitrary subset, as
in the schema of Fig. 12.3a. The highly recur-
rent collateral network in CA3, already noted by
David Marr, resembles the scheme in Fig. 12.3c,
and there the detonator synapses could be those
on the mossy fibers, the axons of the granule cells
that, McNaughton and Morris note, provide a
transform of the same cortical inputs arriving also

directly onto the apical dendrites of CA3 pyrami-
dal cells. In this way, not only can CA3 serve for
pattern completion, it could also store sequences
of patterns. A cue coming from the dentate gyrus
would help recall the whole sequence.

The simple schemata may help interpret
also components of hippocampal anatomy
not explicitly highlighted in McNaughton and
Morris (1987): The convergence of distinct input
pathways onto the same cells, for example, is
particularly prominent in CA1 (Fig. 12.1), where
it is the Schaffer collaterals from CA3 and the
cortical layer III inputs that could entertain the
asymmetric relationship depicted in Fig. 12.3b.

12.2.1.3 Attractor Neural Networks
Help Handle Spatial
Information

The recurrent connectivity of the auto-associative
model in Fig. 12.3c implies that the neurons, serv-
ing as inputs and output to the same synaptic
matrix, will tend to reach a stable configuration,
or pattern, if they can find one in which the acti-
vation of each neuron is consistent with that of the
neurons that feed its inputs. This consistency is of
the same nature as that describing the relaxation
dynamics of dissipative physical systems of inter-
acting variables, as envisaged by John Hopfield in
his seminal paper on content addressable mem-
ories (Hopfield, 1982). Relaxation to a steady
state, though subject to additional constraints in
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physical systems, such as symmetric interactions,
can be regarded as amechanistic paradigm for the
cue-driven reactivation of a memory pattern, in
which the memory is selected on the basis of the
partial content represented by the cue. Distinct
steady states can be accessed by the different
ensembles of cues that they attract, and typically
it takes a very short time for the relaxing activity
pattern to become very similar to its attract, as the
first few steps, as it were, are much larger than
the later ones. Amit, Gutfreund, and Sompolinsky
showed how the attractors of such dynamics can
be studied with a beautiful nontrivial mathemati-
cal formalism derived from the statistical physics
of disordered systems (Amit et al., 1987). Apply-
ing the formalism, however, and even simply con-
ceptualizing attractor dynamics, is less straight-
forward when dealing with the representation of
spatial, continuous variables.

Let us take therefore a step back, and first
look at attractor dynamics in another special type
of spatially selective cells, to understand basic
aspects of attractor dynamics in the representation
of space.

Cells sensitive to the absolute head direction
of the animal were discovered in different parts
of the brain: in the subiculum, thalamus, retro-
splenial neocortex, dorsal striatum, etc. (Taube,
1998). In these studies, head direction (HD) is
calculated, typically from two diodes attached to
the head of the animal, independently of its spatial
location or the relative position of the head to
the body. With HD cells in each of these regions,
the striking finding is that the direction that most
activates a cell remains the same in every envi-
ronment, familiar or new. In fact, this is striking
because often the information on the basis of
which the animal can calculate its head direction
is partially misleading, e.g., when an object has
been moved. Therefore, although all the infor-
mation might be concurrently available, it has
to be interpreted, and perhaps in part discarded.
Further, when most of it is not coming through
the senses, for example because lights are turned
off, and olfactory cues have been washed, HD can
be reconstructed from memory, if a system exists
that keeps it in memory.

This system can be an attractor network, and
in fact such an observation has motivated the
development of a simplified version of the the-
ory of continuous attractor neural networks. In
1995, Skaggs et al. (1995) proposed that a ring
attractor could interpret sensory cues and keep
HD in active (short-term) memory. To understand
it intuitively, imagine: One places head direc-
tion cells on a ring, each at the angle it is most
responsive to (see Fig. 12.4), and the connec-
tions between the neurons are taken to have been
strengthened by Hebbian plasticity, resulting in
neurons close to each other on the imaginary ring
exciting each other. What we can observe then,
is a bump of activity or an “activity pocket”—
it corresponds to the animal’s head direction,
wherever it is pointing, among the 2π directions
on the ring. Figure 12.4 illustrates a somewhat
more sophisticated version of this concept, in
which there are three rings, not one, and slightly
asymmetric connections between the rings are
used to update the angular position of the bump
with velocity inputs. What remains true also in
the sophisticated version, however, is that the in-
teractions among the units—producing attractor
dynamics—compactify, stabilize, and can keep in
short-term memory a position on the ring, but not
select among alternative rings.

Could this system also include the selection
of one among a number of rings? The question
becomes very concrete, and easy to visualize, if
applied to place cells, in 2 dimensions.

12.2.1.4 Remapping: A Continuous
Attractor for Each Familiar
Environment

A fundamental discovery was reported the same
year as the McNaughton and Morris review (Ku-
bie and Mulner, 1991; Mulner and Kubie, 1987),
when it was found that place cells remap their
activity from one spatial context to another: They
change their firing patterns when the animal is
moved to a different environment, in a manner
that appears totally unpredictable from knowl-
edge of its place field(s) in the original environ-
ment, or from the changes, or remapping, ex-
pressed by nearby cells.
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Fig. 12.4 Head direction cell ring (adapted from Skaggs et al. (1995), to which we refer for an explanation of the
proposed mechanism.)

Fig. 12.5 Remapping illustration: the place fields of three place cells (marked by different colors) as they may appear
in three different environments

As schematically and summarily illustrated in
Fig. 12.5, in detail these experimental findings
show that:

• Place cells tend to form a new, seemingly
entirely reshuffled configuration of activity for
each new environment the animal is exposed
to, unless it is identified with a previously
familiar environment.

• A place cell may have one or more fields
of activity in some environments, and remain
silent in others.

• Relations between place fields, whether ex-
pressed by the same or different cells, are not
preserved by remapping.

• The switch between two representations is
very abrupt, although in special conditions,
when the animal is confused, remappingmight
teeter back and forth for a few seconds (Jezek
et al., 2011).

This last fact led to a strong hypothesis that the
configuration of place cells activity, in a given en-
vironment, should serve as a continuous attractor
for the network, i.e., comprise a manifold of all
the spatial positions in that environment. Attrac-
tor dynamics would then unfold at two different
levels. Within one environment, it would refine
or interpret possibly conflicting sensory evidence,
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Fig. 12.6 Adapted from Colgin et al. (2010): Population
vector correlation of firing rate maps of place cells in CA3
and in CA1, after making rats familiar with boxes A and
B, and then testing them in morphed environments span-

ning a quasi-continuum in between. Population activity
undergoes a sharp transition, especially in CA3, suggestive
of attractor dynamics between the two discrete long-term
maps of A and B

and keep in short-term memory, the continuously
varying position of the animal in the environment,
much as with the ringmodel for HDs.Whenmov-
ing the animal to a new environment, attractor dy-
namics would again refine and interpret possibly
conflicting evidence, but this time for selecting
the representation of the environment among a
set, possibly discrete, kept in long-term memory.
Unlike the continuous updating of spatial posi-
tion, this will then result in an abrupt “jump” from
one attractor to another, which could be observed
in the activity of single cells or of small groups,
as in Fig. 12.6. The distinction between the two
levels of operation, continuous and discrete, is
clearly an oversimplification, which may well
prove inadequate when moving outside artificial
environments defined in the lab.

Samsonovich and McNaughton (1997) pro-
posed a network model that accounts for the
expression of multiple continuous attractors in
2-dimensional space, which they called charts.
A chart can be conceived as an arrangement of
place cells on an imaginary plane in such a way
that each cell is represented at the location of its
highest activity (just like the placement of head
direction cells on a ring), and then the actual
spatial position within a chart is represented as
a bump of activity moving along a continuous at-

Fig. 12.7 Adapted from Samsonovich and McNaughton
(1997). Conceptualization of a chart: a place cell configu-
ration on a plane, where each cell is placed in the location
of its highest activity and the actual location of the animal
is represented by a “bump” of activity

tractor, with themotion suggested to be registered
by path integration (Fig. 12.7).

Remapping between charts should let the sys-
tem update its estimate of the position of the
animal, as the latter navigates among familiar
environments, but attractor dynamics can only
be effective, if the system can hold in long-term
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Fig. 12.8 Memory
capacity of the network for
one-dimensional charts as
a function of chart sparsity,
in the fully connected
(lower curve) and
extremely diluted (upper
curve) limits (Battaglia and
Treves, 1998)
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memory a sufficient number of environments—
therefore the chart model makes sense only if
the storage capacity of the continuous attractor
model, applied to the CA3 systems, turns out to
be substantial.

A simple mathematical model of a recurrent
network of threshold-linear units was analyzed by
Battaglia and Treves (1998), in which a unit is
assigned one field or none, in each chart, with an
overall sparsity a of population activity (roughly,
a is the fraction of significantly active units at
any one time). The model allows calculating the
maximum number pc of charts that can be stored
and individually retrieved, which scales up with
the number C of distinct recurrent connections
each unit receives, so that the result is expressed
as usual with the ratio αmax = pc/C. αmax was
found to depend mainly on a and on the degree of
recurrence of the connectivity; interestingly, for
fully or densely connected networks, αmax is seen
to have a maximum for intermediate values of
sparsity (Battaglia and Treves, 1998). Figure 12.8
shows the result for one-dimensional charts, but
for two-dimensional ones the outcome of the cal-
culation is similar, if quantitatively lower. The
indication, therefore, is that a densely recurrent
network with a number of connections per neuron
of the order of 104 can store up to roughly a
hundred charts (Treves, 2017). This provides one
form of quantitative convergence between the two

hippocampal narratives—episodic memory and
spatial cognition.

Note that these calculations assume uncorre-
lated charts, as perhaps enabled by the dentate
gyrus inputs to CA3. With correlations, the stor-
age capacity but even more the remapping dy-
namicswould be different, as already indicated by
beautiful analytical work (Monasson and Rosay,
2015).

12.2.2 How Can Place Fields Be Set
Up?

Theories of memory should conceivably devote
at least as much attention to the issue of how
memories are created, as to how they can be re-
trieved. Yet, the two dominant memory modeling
narratives of the 1980s shirked their responsibil-
ity toward memory formation in the brain, for
different reasons. For networks trainedwith back-
propagation (Chauvin and Rumelhart, 1995), the
artificial learning algorithm was an embarrass-
ment and its plausibility was best glossed over,
focusing instead on the ability of such networks
to implement whatever mapping was requested,
as if by an outside agent. For auto-associative
networks analyzed from a statistical physics per-
spective (Amit, 1992), instead, the characteristics
of the stored representations are a given, a bit like
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the constituents of a piece of condensed matter,
and the focus is on analyzing their dynamical
rearrangement—the retrieval process—not how
they came to be in the first place. It was again
the McNaughton and Morris review that raised
the issue of how to set up spatial representations
for memory.

12.2.2.1 Non-associative Inputs in
Associative Memory

As already mentioned above, the key idea was
that of synapses acting as “detonators”, a notion
borrowed from the study of the neuromuscular
junction (Eccles, 1937). It was proposed in Mc-
Naughton and Morris (1987) that a small subset
of the synapses on the medial entorhinal input to
DG act as detonators, those presumed to be much
stronger than the rest. They would then essen-
tially establish the primary selectivity of the re-
ceiving cells, with the remaining numerous mEC
and lEC inputs relaying additional attributes that
can be paired, through associative learning, with
such primary selectivity. They also proposed that
the very granule cells of the dentate gyrus, with
their sparse and powerful mossy synapses, serve
as “detonator cells” for the CA3 network. Then
they could establish a place field, for example, to
which perforant path inputs to the apical dendrites
could associate spatial context (from mEC) and
object (lEC) information.

The idea that memory representations in CA3
are primarily established by DG inputs was cast
in semi-mathematical form by Treves and Rolls
(1992), with a simple model that suggests that
the perforant path, on its own, would not have the
strength to prevail over the interference produced
by already storedmemories, reverberating in CA3
mainly on the recurrent collaterals; whereas the
mossy fiber inputs have the appropriate quantita-
tive characteristics to imbue new memories with
sufficient information content. A logical infer-
ence from this model is that, once the new mem-
ory representation has been formed, removing the
granule cells or just blocking their afferents to
CA3 should not impair the retrieval of informa-
tion already deposited there. Such a prediction
was confirmed in two different experiments, in
mice and rats, employing different manipulations

to either transiently or permanently remove DG
inputs to CA3 (Lassalle et al., 2000; Lee and
Kesner, 2004).

The intuition that emerges from these findings
is that for the CA3 network to be able to store
multiple charts the input fromDG has to be strong
and sparse. And yes, there has to be additional
input into the recurrent network in order to cue
the retrieval of the memories—this could be the
perforant path from entorhinal cortex (Lee and
Kesner, 2004). Also in 2004, Leutgeb et al. in
fact pointed out that the place fields of CA3
and CA1 cells, hitherto so strikingly similar, pre-
sented one major contrast in a suitable experi-
mental paradigm: The former remaps to orthogo-
nal representations when changing environment,
the latter shows graded changes, which reflect
the physical similarity of the two environments
(Leutgeb, 2004). Note, however, that the math-
ematical model in Treves and Rolls (1992) does
not refer to place fields at all, and is framed, in
fact, in terms of discrete patterns of activity. To
gain insight into the formation of place fields, an
even simpler computer model had been proposed
a year earlier.

12.2.2.2 Associative Model for DG
Place Fields

Sharp (1991) proposed an associative model,
which can be taken to account for the formation of
non-directional place fields wherever they appear
first, in information flow, e.g., in the dentate
gyrus. Imagine combining together sensory
information from all possible orientations, i.e.,
all possible directions in a two-dimensional
environment, which the animal can follow to
traverse a particular location. A representation of
the specific location, independent of direction,
can be established by a straightforward variant of
Hebbian learning (a trace learning rule) within a
competitive associative network. The mechanism
exploits the continuity of space: Different
viewpoints of the same environment from nearby
directions can be smoothly associated together,
as the animal changes its head direction. The
resulting simulated place fields can be seen in
Fig. 12.9: They resemble very non-noisy place
cell signals. This could therefore be a mechanism
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Fig. 12.9 Examples of simulated “place cells” and real place cells firing maps corresponding to a floor of a cylinder
rat cage, where the firing rates are binned for computational purposes (modified from Sharp (1991))

to formDG place fields, although it might have to
be extended to incorporate more than just visual
information. Note that, in the models we discuss
later, we take cellular selectivity to be already in
the form of place fields, arguably inherited from
those set up in the DG.

The Sharpmodel describes onemechanism for
the formation of place fields from inputs of a
different nature, a simple mechanism that may be
selected for even by brain-less genetic algorithms
(Treves et al., 1992), and that generalizes directly,
for instance to primates, from the learning of
arbitrary association (Wirth et al., 2003) to the
establishment of spatial view fields (Rolls and
Wirth, 2018). There is no real need for such a
mechanism if place cells are taken to emerge from
the place fields of other cells; if anything, the
computational problems that a model may try to
explain are different. For example, if place fields
are assumed to emerge from the summation of
the place fields of many different grid cells of
different phases and orientation, the challenge
may be how the former dispose of the periodicity
of the latter (Solstad et al., 2006) (but see Rolls
et al. 2006; Si and Treves 2009).

12.2.2.3 CA3 Fields from DG Fields
In the same logic, if CA3 place fields arise from
those in DG, the question is not so much how
they arise ex nihilo, but rather whether they can be
sufficiently defined by the DG inputs to overcome
the interference due to other memories, including
other spatial charts, previously stored in the CA3
network. This question was addressed in Cerasti
and Treves (2010) and Cerasti and Treves (2013),
with a study of an attractor neural network of
CA3, in whichDG inputs are in the formof spatial
maps (Fig. 12.10).

Fig. 12.10 Schematic representation of the model wiring
in Cerasti and Treves (2010)
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The model assumes that DG granule cells en-
code position in a room of size l× l, by a fraction
of them having assigned, independently of each
other, one or a few place fields each, but withmost
of them being silent. Their activity, denoted as
βi , is fed into a recurrent network corresponding

to the CA3 region, whose pyramidal cells have
activity ηi . They receive input connections from
DG cells as well as recurrent inputs from each
other, other afferents and inhibition, which are
summarily described by a stochastic term δi and
by a threshold T .

ηi(
−→
x ) = g

[∑

j

cMF
ij J MF

ij βi(
−→
x ) +

∑

k

cRC
kj J RC

kj ηk(
−→
x ) + δi − T

]+
. (12.1)

As the virtual rat follows a trajectory in the
room, simulating exploration during free forag-
ing, different sets of connections are modified,
and a quantification of the amount of information
in the population activity of CA3 cells allows to
determine the influence of each parameter in the
model.

Confirming the analytical calculations by
Treves and Rolls (1992), the results of both
analytical calculations and simulations with
varying parameters show that (Fig. 12.11) the
spatial information in CA3 population activity
does not depend on the number of fields per DG
unit and is maximal when:

• The number of connections from DG to CA3
is low, but not too low.

• Importantly, the activity of the CA3 network,
which is also in the form of place cells, is
sparse.

Moreover, plasticity on the MF synapses is
shown not to increase the information content of
CA3 representations—DG can exert its driving
force through non-modifiable weights.

12.2.2.4 Representations of Multiple
Spatial MapsWithin CA3

Experimental evidence shows that CA3 cells, in
line with theoretical predictions, form a repre-
sentation of a novel space quite different from
previously stored spatial memories, and that es-
sentially orthogonal charts are produced for at
least 11 (physically very similar) environments
(Alme et al., 2014).

However, simulations with the same model,
when trained to explore a number of different
environments, and with associatively modifiable
recurrent weights, indicate that several charts can
be stored on the same synapses, but with a de-
gree of granularity in the representation of each
space—the would-be continuous attractors are in
fact only quasi-continuous. In Cerasti and Treves
(2013) the network is simulated to learn a number
of two-dimensional environments, with the CA3
recurrent network allowed to self-organize, i.e., to
adjust its synaptic weights with a simple Hebbian
rule. This self-organizingmodel is then compared
with a pre-wired version, where the connection
strength is defined at the beginning as an expo-
nential function of the distance between the place
field centers of a pair of units.

As shown in Fig. 12.12, the information about
the newly explored environment can be stored in
the self-organizing network, independently of the
noise level, but the attractors of the population
dynamics appear to have some granularity. In
parallel, learning produces a refinement of the
place fields that would have resulted from DG
inputs alone, as shown in Fig. 12.13.

In conclusion, while the mathematical analy-
sis of an idealized model indicates a substantial
storage capacity for a CA3 network of recurrently
connected place cells, in the order of a hundred
charts, with realistic rat parameters, the simula-
tion of a self-organizing, more detailed version of
the model points at the role of disorder in deter-
mining granular charts that represent space only
quasi-continuously. Further studies are needed
to better quantify this phenomenon and its in-
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Fig. 12.11 From Cerasti and Treves (2010): computer
simulations (left, and fit parameters in blue on the right)
and analytical estimates (orange on the right) converge
on a quantification of the spatial information in a sample

of NCA3 units as a function of network parameters, here
CMF , the number of DG inputs per CA3 cell, showing a
maximum for a plausible value of CMF

Fig. 12.12 From Cerasti and Treves (2013): Contrasted
with a pre-wired chart (a), one that self-organizes during
exploration (b) is more irregular and granular, in the sense

that the continuous attractor is broken into a number of
discrete attracting locations (c)

Fig. 12.13 The progressive refinement of place fields in
the model analyzed in Cerasti and Treves (2013): Six
examples of CA3 firing maps in the DG-CA3 model
network with MF and RC connections. The top row shows

CA3 place fields with noHebbian learning; themiddle row
shows the same fields after learning; and the bottom row
shows them after mossy fiber inputs are turned off
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Fig. 12.14 Scheme of a
place cell firing in relation
to theta waves during one
run of a rat on a linear
track

fluence on the storage capacity of the network.
Such quantification appears to be important in
interpreting the representation of natural habi-
tats, for example the representation of extended,
quasi-one-dimensional spaces by bats, currently
being investigated in quasi-naturalistic conditions
(Eliav et al., 2019; Geva-Sagiv et al., 2015).

12.2.3 What Happens Within One
Chart?

The models above focus on the representation of
multiple environments, coarse-grained in time. A
most intriguing phenomenology emerges when
looking at the representation of even a limited
environment, but with finer temporal resolution.
Only a few salient traits of this phenomenology
will be mentioned in the following, to be consid-
ered in refinements of the simple models above.

12.2.3.1 Phase Precession and Its
Possible Role in the Memory
Process

A rodent finding that must be taken into account
in relation to place cells, is phase precession.
Place cells are observed to fire action potentials
in relation to local theta waves, and O’Keefe and
Recce (1993) noticed that in a one-dimensional
track place cells tend to fire late in theta cycle
when the animal enters the firing field of each cell
and as it approaches the center of the firing field
the firing occurs earlier and earlier in the theta

period, often in a burst of action potentials—as
if moving backward, i.e., precessing, within the
theta cycle (Fig. 12.14).

In one-dimensional environments place cells
are directional, meaning they normally have dif-
ferent fields when running in the two directions.
Therefore each field is entered at roughly the
same position in space, and so the spikes it elicits
code for that position also via the exact theta
phase at which they occur—an enrichment of the
pure frequency code. In two dimensions, how-
ever, the phenomenon persists, but each field,
typically non-directional, can be entered from
multiple directions, hence the additional code
loses its meaning as the correspondence between
exact position and theta phase does not hold.

Nevertheless, phase precessionmay play a role
in facilitating plasticity that promotes the learn-
ing of sequences. This can occur as cells ac-
tive at slightly displaced positions A and B can
fire together within a theta cycle, i.e., within the
appropriate plasticity window, with A, already
at the center of its field, firing earlier and thus
strengthening its connection and its influence on
the firing of Blum and Abbott (1996) suggest
this may serve to store in memory a trajectory:
A recent trajectory could then be retrieved by
replaying it at a speed not necessarily similar to
the one at which it was stored. Phase precession
may thus be away for place cells to deposit simple
navigational “plans”.
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12.2.3.2 Replay, Preplay, and
Goal-Directed Behavior

During rest, whether awake or asleep, place cells
can be observed to fire in sequences that roughly
match those seen during locomotion, typically but
not necessarily in one-dimensional environment.
The phenomenon is called replay (Louie andWil-
son, 2001) when it occurs after the behavior,
and preplay if before. In replay, as the animal is
sleeping, resting, or before it starts another run on
a track or in a box, the place cells corresponding
to a learned trajectory would activate sequen-
tially, in forward or reverse order, over short time
scales (Fig. 12.15). This has been interpreted as
a mechanism used to consolidate the trajectory
in memory, and perhaps also to replay possible
routes for future decision making.

Here the one-dimensional case from a mech-
anistic point of view is rather straightforward—a
bump of population activity can easily be made
to propagate following the remembered route,
which has no alternative. In two dimensions there
are alternatives, and a new set of intriguing ques-
tions arose following the discovery of preplay by
Pfeiffer and Foster (2013). What they reported
was that, during rest, place cells would activate
sequentially in relation to the trajectory to be
followed shortly, to a remembered goal location
(Fig. 12.16).

Interestingly, in terms of neural network
operations, this phenomenon can be seen as a
goal-directed behavior driven by adaptation—the

omnipresent characteristic of pyramidal cells,
whereby they tend to decrease their firing rate
after some time of activity, as if adapting to
the input. Such a mechanism has been modeled
(Treves, 2004) by adding a simple form of firing
rate adaptation to the attractor CA3 network
described above. Adaptation gives the place
cell code some predictive power—the trajectory
decoded from CA3 activity is shifted toward
future steps, as shown in Fig. 12.17.

Many questions of course arise around goal-
directed behavior in general: How are goals incor-
porated in a place cell code, and, most interesting,
how is the corresponding neural dynamics operat-
ing in the presence of numerous goals. Such ques-
tions still await critical experimental advances.

12.2.3.3 Further Computational
Questions Arising from Recent
Experiments

However complex the questions may seem, new
experimental findings appear as we write and
make it even more challenging to develop the-
oretical models on how spatial memory in the
hippocampus may function, in rodents and in
other species, including humans.

Place cells support memory encoding and re-
trieval as an ensemble. Recording neurons at a
time for a long period gives new perspectives
on the notion of a stable memory representa-
tion, as shown in the lab of Rubin et al. (2015).
In their experiment, mice were exposed to the

Fig. 12.15 From Louie
and Wilson (2001): a raster
plot of place cell activity
during a run on a linear
track and during a period
of REM sleep. The run
section is scaled to
correspond to the sleep
period. Reprinted from
Louie and Wilson
(2001),with permission
from Elsevier
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Fig. 12.16 Preplay phenomenon fromPfeiffer and Foster
(2013): firing of place cells corresponding to locations
in a familiar square box, as interpreted by a decoding
algorithm: The frames are summed over time durations

indicated in ms in the bottom right corners. Cyan circles
correspond to the position of the rat home, cyan arrows to
the current position of the rat

same task over five consecutive days of training.
Then, in different groups, either after 10 days
or after 28 days, they were tested in the same
task. The recordings of CA1 cells suggest that
after getting a stable representation of a novel
environment within 5 days of training, the system
is capable of retrieving it after a while again,
but the representation will be supported partly by
another subset of neurons. These findings make
us question the nature of memory representations
and the temporary role of individual neurons in
them.

The hippocampal recordings in bats that
started in the lab of Nachum Ulanovsky in the
late 2000s have shown that three-dimensional
space gives rise to three-dimensional place cells.
This fact alone raises several questions from a
theoretical point of view. One of their most recent
studies, by Eliav et al. (2019), focuses on the
neural representation of a long one-dimensional
tunnel, and the findings make us reconsider many
assumptions used in modeling up to date: It
appears that on a long track place cells acquire
multiple receptive fields of various sizes and peak
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Fig. 12.17 From Treves (2004): the spatial location de-
coded from network activity relative to the present position
of a virtual animal (point 0 on the x-axis) for different
values of an adaptation parameter d. Steps in the past have
negative values

rates, in a spatial code that appears dominated by
disorder. One wonders whether such disorderly
representation can be deposited in memory as is,
just by virtue of associative plasticity.

12.3 Grid Cells: From the Hope of
Perfect Symmetry to the
Beauty of Irregularity?

Grid cells have been discovered in two main
steps. First, when looking at the region of rat
medial entorhinal cortex (mEC) posited to project
strong spatial signals to place cells in the dorsal
hippocampus, some cells in layer II were seen fir-
ing over multiple place fields (Fyhn et al., 2004).
A year later (Hafting et al., 2005), it was realized
that themultiple fields were strikingly arranged at
the vertices of a regular lattice, expressing a vir-
tual hexagonally symmetric structure, as shown
in Fig. 12.18.

The firing map of a single grid cell shows
clustered, approximately round grid fields at most
of the vertices of an equilateral triangular grid

(red dots in Fig. 12.18). Every time the animal is
placed in the same environment, evenwith limited
sensory information, the samemaps emerge, indi-
cating that such maps are amemory phenomenon.
Each cell has its own grid, such that the fields
are placed at different positions; however, nearby
cells tend to share the spacing and orientation—
not the spatial phase—of the underlying sym-
metric structure. This observation has been later
extended with the discovery of modules, large
populations of grid cells ideally sharing the very
same field size, spacing, and orientation, with
the first two quantities increasing, in roughly 4–5
discrete steps (or more), from the most dorsal to
the ventral aspect of mEC (Stensola et al., 2012).
This regularity and the alignment of nearby cells,
which is found to be maintained across envi-
ronments (Fyhn et al., 2007), are closer to the
ideal for cells with small spacing, near the dorsal
border of mEC.Grid cells have also been detected
in the mEC of mice (Fyhn et al., 2008) and bats
(Yartsev et al., 2011), with reports of a grid-like
selectivity or indirect signatures also in primates
(Doeller et al., 2010; Jacobs et al., 2013; Killian
and Buffalo, 2018). For detailed reviews of the
initial experimental results we refer to (Moser
et al., 2008, 2014).

12.3.1 HowDo GridMaps Emerge?

A huge experimental effort has been devoted over
the last 15 years to describe the properties of grid
cells. As a result, the more we know about them,
the more the scenario becomes complex and irre-
ducible to idealized models, which nevertheless
help define, particularly with their shortcomings,
relevant questions for further experiments. Here
we first provide a brief overview over the types
of theoretical models developed to understand
the emergence of perfect regular grids. Later, we
discuss some of the findings which have high-
lighted the complexity of the phenomenon and
its irreducibility to idealized notions, raising new
theoretical questions.

Let us first define terminology. We will call
grid fields the portions in space where the activity
of a cell (averaged over other variables, e.g.,
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Fig. 12.18 Grid cell example: (Left) Action potentials
(red dots) emitted in a 30 min recording session in a circu-
lar arena, superimposed on the rat trajectory (gray trace).
(Center) Color-coded firing rate map for the same cell, red

stands for a 17Hz rate, blue for zero rate. (Right) Spatial
autocorrelogram of the rate map from blue (r =−1), green
(r = 0), and red (r = 1). The figure is adapted from Hafting
et al. (2005)

orientation) is highest, gridmap the average firing
rate distribution of a cell in a specific environ-
ment, grid pattern the ensemble of all grid maps
in one environment, and population vector the
average rate of each neuron in a point-like posi-
tion in space. In laboratory setups which we call
regular, grid fields are approximately arranged
within a grid map in a hexagonal lattice.

Three main classes of mathematical models
have been devoted to account for the emergence
of regular grid maps. Two of them, the Oscillatory
Interference (OI) models and the models based on
Self-Organization (SO), focus on mechanisms at
the single cell level, while the third one, continu-
ous Attractor Neural Networks (cANN) models,
is based on structured interactions among grid
cells which, if conveyed by a network of recur-
rent collaterals, can also account for short-term
memory properties, as discussed in the first part
of this chapter.

12.3.1.1 Oscillatory Interference (OI)
Models

Theta oscillations reflect rhythmic activity mea-
surable in the local field potential of the hip-
pocampus. As in place cells (O’Keefe and Recce,
1993) also in some grid cells (Climer et al., 2013;
Hafting et al., 2008) one observes phase pre-
cession, the tendency of the action potentials of
active excitatory cells to be modulated at a fre-

quency somewhat higher than theta, which itself
reflects mainly inhibitory interneurons (Buzsáki
et al., 1983; Tóth et al., 1997). Already before the
discovery of grid cells, phase precession had stim-
ulated the development of models based on the
interference of two oscillators at slightly different
theta-range frequencies (Lengyel et al., 2003),
one of which, perhaps on the apical dendrites, is
related to the speed of the animal—a velocity con-
trolled oscillator (VCO). The basic idea is that the
envelope of the interference between VCO and
global theta oscillation (the baseline frequency
on the soma) is itself an oscillation whose lower
temporal frequency can be proportional to speed,
and hence lead to constant spacing on a linear
trajectory.

The idea was quickly adapted to grid cells, by
assuming that VCOs reflect intrinsic frequency
slightly different from the global theta, and more
critically assuming that a modulation by head
direction can generate distinct VCOs aligned in
different directions, whose interference patterns
with the global oscillator can be superimposed,
and generate a two-dimensional pattern (Burgess
et al., 2007; Burwell and Agster, 2008; O’Keefe
and Burgess, 2005). These directional VCOs are
considered to be the inputs to the grid cells,
and they can be associated with the activity of
separate neuronal ensembles (which are indepen-
dent, in order to avoid phase locking (Remme
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Fig. 12.19 Basic interference model for the emergence
of grid maps, in one dimension. Each would-be grid cell
in two dimensions is supposed to receive inputs from units
belonging to three groups of directional oscillators whose
frequency is modulated by speed above that of the global
theta (red); here in the 1D case only one is shown (green).

The resulting interference pattern (blue) is modulated by
a low frequency envelope (pink) whose peaks can be at
constant spatial distance if speed modulation is linear.
Picture adapted with permission from D’Albis (2018),
where it is reproduced from Blair (1996); Blair et al.
(2008)

et al., 2010)). As the key OI components, they
are assumed to increase their frequency linearly
with the speed of the animal to enable a regular
spacing, and to be aligned 60 degrees apart from
one another to enable the equilateral triangular
pattern to emerge.

Two VCOs and a baseline frequency suffice to
create a grid map; however, to account for phase
precession in all directions six VCOs are required
(D’Albis, 2018). Figure 12.19 illustrates the idea,
for simplicity only in one dimension.

Two types of experimental evidence were re-
garded as consistent with OI models. The intrin-
sic resonance and general temporal properties of
stellate cells in mEC, increasing in time scale
along the dorso-ventral axis, seemed to comply
with the corresponding increase in grid spacing
(Giocomo et al., 2007). Further, abolishing theta
oscillations through the medial septum was found
to destroy grid regularity (Brandon et al., 2011;
Koenig et al., 2011). However, grid cells were

soon discovered in fruit bats (Yartsev et al., 2011)
in the absence of significant theta, while theo-
retically the problem of identifying a mechanism
that could stabilize directional oscillators at 60
degrees of each other proved intractable (Remme
et al., 2010), besides the incongruence with the
observed membrane dynamics (Domnisoru et al.,
2013). Thus OI models, despite a number of
variants that addressed this or that difficulty, have
by and large lost their epistemological appeal.

12.3.1.2 Single Cell Plasticity Models
Single cell plasticity models consider grid maps
to be an emergent property of self-organized
competition, arising through a pattern-formation
process. A mechanism such as firing rate
adaptation favors distancing among place fields
of the same cell, while competition and inhibition
constraining the overall activity level favors
dispersing fields evenly across space. Although
the basic idea is straightforward (Cerasti
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Fig. 12.20 Schema of the basic self-organizing model.
(a) Each would-be grid unit (black) receives inputs from
spatially selective cells (white). (b) Pattern-formation
schema. The light blue area corresponds to the region in
which the grid cell which fired in the central red field
tends to be silent, due to adaptation. The peripheral red

field is one of the locations where it could again be active,
and reinforce connections with active input units. (c) Mu-
tual exclusion zones imposed by adaptation lead Hebbian
learning to establish a hexagonal gridmap. Picture adapted
with permission from D’Albis (2018)

and Treves, 2006), it was first successfully
implemented when Emilio Kropff understood
that decreasing the variability among the
competing inputs is essential to reduce the spatial
averaging required, and so carry out simulations
with small size networks (Kropff and Treves,
2008). Taking the spatial information conveyed
by afferent inputs to the would-be grid units to
be in the form of evenly distributed place fields
is very effective in decreasing such variability,
although it has been shown not to be essential
(Kropff and Treves, 2008). There is no prediction,
therefore, that grid cells can only be established
with inputs from place cells. As depicted in
Fig. 12.20, the vanilla version of the model
assumes that each would-be grid unit receives
inputs from other spatially selective neurons,
which can be hippocampal place cells or other
position-selective cells. The connectivity matrix
gradually evolves with Hebbian learning to form
the grid pattern.

Although the gradual learning process has to
be studied with computer simulations, a simple
mathematical analysis prescribes the form of the
asymptotic states reached after sufficient training,
if the network stabilizes the firing rate maps of
its units. In the basic implementation, models
of this type do not account for the alignment
of the fields of neighboring units (Fyhn et al.,
2007), an issue that can be resolved by adding
recurrent collaterals—much like those invoked in

themodels of the next type, below—togetherwith
a head direction selective input to each would-be
grid unit (Si et al., 2012). Later studies, however,
have shown that the weight of such recurrent
connections could be learned in an unsupervised
manner (Si and Treves, 2013), thereby returning
fully within the domain of self-organization.

12.3.1.3 Continuous Attractors Neural
Networks (cANN) Models

The idea of continuous attractors models is that
properly wired units may dynamically evolve to-
ward stable manifolds of fixed points, without
the need for spatially selective external inputs.
Suchmodels have been discussed in the place cell
section. Each manifold, in this case, represents a
grid pattern, a continuum set of fixed-point states,
each a population vector coding a position in a
specific environment. Such models are not in-
tended to describe the emergence of the grid, but
solely its expression in the mature animal (Fuhs
and Touretzky, 2006), and its contribution to path
integration (Burak and Fiete, 2009). The major
challenge to such class of models has been indeed
to explain how a plausible developmental process
might implement the connectivity structure, that
in the computer model was engineered with one
of two different strategies. A way to visualize
both strategies is to imagine grid cells lying on
an abstract sheet. In the abstract sheet each cell
is placed with a distance from a reference cell
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resembling the physical distance between two of
their grid fields. The first strategy is to generate
multiple bumps of activity at the population level
(Fuhs and Touretzky, 2006) by defining a suitable
connectivity profile in the network. Indeed, when
the connectivity strengths between cells in the ab-
stract sheet follows a damped oscillating profile
(Mexican hat) or even a square function (Lin-
coln hat, i.e. restricting excitatory interactions to
neighbors within a given radius), the fixed man-
ifolds correspond to multiple bumps, arranged in
hexagonal grids, in physical space. The second
strategy is to assume ad hoc periodic boundary
conditions in a twisted torus topology (Guanella
et al., 2007), with the side borders of the abstract
sheet being at 60 instead of 90 degrees from the
lower and top borders. With this second strategy
the grid pattern is obtained by fiat (Guanella et al.,
2007).

In McNaughton et al. (2006) the authors have
proposed a two-step model. In a first stage, the
activity profile emerges in a “teaching layer,”
arranged topographically as the abstract sheet.
This layer leads to the formation of the cANN
among the mEC neurons, and later disappears
in the adult animal. This variant of the model
is intended to approach the problem of how to
“learn” the continuous attractor but has found so
far little developmental evidence to support it.

cANN models predict that only minimal af-
ferent input to the recurrent network is needed
for the grid maps to emerge, consistent with the
observation that self-motion alone is a sufficient
input (although it seems difficult to estimate its
actual strength, in mEC). The major evidence
supporting a role for recurrent interactions among
grid units, direct or indirect, is of course the grid
alignment seen among (most) neighboring units.
Because of this evidence a perspective that is
becoming more widely shared is that as the grid
pattern emerges in development, based on the
self-organization of afferent inputs to mEC, also
recurrent connections self-organize among all or
some of the would-be grid units (e.g., among the
conjunctive grids of the deeper layers, Si and
Treves 2013), leading to grids which are aligned
without any ad hoc engineering. A straightfor-
ward extension of such a hybrid model predicts

the self-organization of the different grid modules
(Urdapilleta et al., 2017). Unlike what would be
the outcome of a process of module formation,
in which units are wired together strictly based
on their position in the mEC tissue, such model
envisages modules appearing in a somewhat dis-
orderly fashion, dependent on the vagaries of
the self-organization process, similar to what is
observed experimentally (Stensola et al., 2012).

12.3.2 One Attractor or More?

When moving a rodent across environments, grid
cells within the same module appear to change
grid orientation, but coherently, while field size,
spacing and relative distance between fields are
maintained constant (Fyhn et al., 2007). Grid
patterns are stable, i.e. when an animal is exposed
a second time to a familiar environment, the ac-
tivity of each neuron reproduces on average the
samemap as the previous time. However, whether
the information extracted from grid patterns by
itself is enough to discriminate between environ-
ments is not clear. In Fyhn et al. (2007) it is
shown that, in a lab setting, when the animal is
moved to another environment (another record-
ing box or another lab room) coactivity relations
between grid units are maintained, as the spatial
phase of all the fields of nearby units moves
coherently—therefore one can identify the envi-
ronment by looking at the position of the animal
in it, but not by considering only the coactivity
relations among grid maps. In particular, when
hippocampal place cells undergo rate remapping
(only change the rate, not the position of their
fields), no shift occurs in the spatial phase of grid
fields, instead when place cells undergo global
remapping, grid fields realign. Both place maps
remapping and grid cell realignment are very
fast, suggesting a simple change of charts, but
one in which distinct hippocampal charts are at-
tached to the same grid chart (Agmon and Burak,
2020). These results lead to a rather general view
of the putative hippocampus-mEC memory-for-
navigation system: Grid cells provide a detailed
metric, a universal chart, while place cells rep-
resent the landmarks and additional information,
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e.g. social information, with specifically anno-
tated charts, which represent not just metric dis-
tances but the more complete notion of a territory.

This view started to be challenged with the
results focused on grid irregularities. For exam-
ple, ten years after the Fyhn et al. (2007) re-
sult, it was shown in Kanter et al. (2017) that
chemically inducing a variation in the activity
peaks of the fields of some of the grid units can
induce global remapping in hippocampal place
cells, as well as extensive rate changes in other
grid cells. The authors have argued that some
context-specific information might be present in
the firing rate of each grid field, challenging the
previous assumption. From a theoretical point of
view, alignment implies remaining in the same
continuous attractor (Agmon and Burak, 2020).
The easier way to understand this concept is if
we restrict to one elementary tile, a rhomboid
portion of space including only one field per
cell and having border lengths equal to the pe-
riodicity. The connectivity profile between two
units which enables the emergence of a bump of
activity depends only on how distant their fields
are on the elementary tile. If in two different
environments the grid pattern shifts to a different
absolute position but maintains the same relations
between pairs of units, the same attractor governs
network dynamics. Is it possible to conceive of an
alternative scenario?

The alternative was raised in Spalla et al.
(2019), where the authors have asked whether
a network of grid units can potentially store
multiple (collective) grid patterns, and the answer
was positive. In particular, they have adapted the
calculations for the storage capacity of place cells
to a network of grid cells. The quantitative results
show the dependence of the storage capacity on
the exact model considered, on its connectivity
and sparsity, but in general they demonstrate
that no theoretical limitation prevents grid cell
networks from learning and setting up different
attractor manifolds, leading to the question of
why they have not really been observed, yet. We
hypothesize two possible answers:

1. On the one hand, alignment is observed in ex-
periments in which animals explore different

but extremely simplified environments, such
as square or round flat empty arenas, with dif-
ferent lights or wall colors. These conditions
are far from resembling real complex habitats,
with curvature and objects. In those scenarios,
grid charts may be forced to be distinct, to
reflect the incongruence of the physical spaces
they chart.

2. On the other, we may be forcing upon our ob-
servation the idealized, oversimplified model
of perfectly regular grids. When experiments
point to a more complicated picture, the ten-
dency, also in order to publish, is to either
extract another simple story or dismiss the
variability as noise. This is a major distortion
of the insight to be gained from experimental
findings, considering that in fact no grid field
is equal to another.

In the end, these two answers are likely to be
two aspects of the same problem: that regular
grids require simple, flat, empty environments,
probably even two-dimensional ones. While ex-
perimentally testing this hypothesis is only just
beginning (Boccara et al., 2019), we briefly men-
tion some indication extracted from the analysis
of self-organizing models.

12.3.3 Are Indeed Grids Always so
Regular?

Several experimental results have shown that grid
regularity can be distorted as soon as the environ-
ment becomes more complex, for example in the
hairpin maze (Derdikman et al., 2009) or with
non-standard shapes of the walls (Krupic et al.,
2015) or in the presence of goals (Boccara et al.,
2019)—on the other hand, the variability in the
peak rates of the fields of the same cell, not just
in their position, has been shown to be reliable,
hence it probably carries some information (Dunn
et al., 2017; Kanter et al., 2017). Such effects are
expected to be huge in the natural environments
in which the grid cell system has presumably
evolved, for example of the Norway rat (Calhoun,
1963). These observations call for a theoretical
analysis, but defining a mathematical model of
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Fig. 12.21 The natural habitat of a Norway rat (drawn
from Calhoun (1963)) spans a limited number of quasi-
flat portions (green) and others where Gaussian curvature
reaches positive and negative values for which a self-

organizing model would predict, if it were constant, the
appearance in isolated cells of regular grid maps with
fivefold and sevenfold symmetry, among others. Redrawn
from Stella et al. (2020)

an arbitrarily shaped environment containing a
number of arbitrary objects is a sure recipe for an
arbitrary outcome.

An alternative is to focus on curved two-
dimensional environments. Gaussian curvature
is a simple intrinsic property of surfaces that,
within certain limits, can be introduced into
experimental paradigms and can also be set to
a non-zero constant value, leading to a single
independent variable with a nontrivial effect on
several aspects of grid structure.

A series of studies have shown that a self-
organizing grid model, in an environment with
constant Gaussian curvature and either no bound-
aries (a sphere, Stella et al. 2013) or minimal
boundaries (a pseudosphere, with constant nega-
tive curvature (Urdapilleta et al., 2015)), would
make non-interacting single units develop reg-
ular grid maps with 5-fold or lower symmetry,
on spheres, or 7-fold or higher symmetry, on

hyperbolic surfaces, as indicated in Fig. 12.21.
These results are the straightforward outcome of
the tendency of the pattern-formation process to
yield the most compact arrangement possible,
with fields at the same distance from each other.
Given suitable positive or negative values of the
radius of Gaussian curvature, this yields regular
patterns, but non-hexagonal ones.

These are however predictions expected to
hold only for non-interacting single units. What
happens when allowing for interactions, those
interactions that in flat environments are thought
to align and refine the single unit grid fields?
On curved surfaces, the self-organizing model
predicts that the opposite happens.

In Stella et al. (2020), it is shown that the “co-
herence” among would-be grid units on a sphere
decreases considerably, if one adds recurrent col-
lateral interactions (Fig. 12.22). This occurs when
simulating the self-organizing model based on
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Fig. 12.22 Recurrent connections added to self-
organizing would-be grid units on a sphere tend to increase
disorder. The model without recurrent interactions (left) is
more regular, both in the fields array for the sample unit,

and in the coincidence of field centers (after a suitable
unit-specific rotation) across different units. Rearranged
from Stella et al. (2020)

firing frequency adaptation, but is supposed to
be quite a general consequence of the impossi-
bility to have translation on a sphere. The same
would hold also on generic curved surfaces, even
with non-constant curvature. Other detailed re-
sults, such as the inverse square root scaling of
the clustering coefficient, may be particular to
spherical environments, but the general glassy
nature of grid structures in curved environment
should be general, and something similar should
characterize also environments enriched with ob-
jects, goals, or the presence of co-specifics.

In summary,modeling the development of grid
cell firing maps in curved environments raises
the possibility that the strikingly beautiful regular
structures observed with grid cell recordings in
the lab may be essentially lab artifacts, which
obscure the genuine disorderly character ofmulti-
field selective cells in rodent entorhinal cortex—
and of their presumed homologous cells in the
cortex of other species. Such disorderly multi-
peaked spatial cells may still contribute, not de-
spite but as a result of their disorder, to the stor-
age of memories with a strong spatial component,
such as memories of territorial contingencies, in
which metric and spatial information has to be
combined with a multitude of other attributes of
social relevance.
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and Future
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Abstract

Whole-Brain Modelling is a scientific field
with a short history and a long past. Its var-
ious disciplinary roots and conceptual ingre-
dients extend back to as early as the 1940s.
It was not until the late 2000s, however, that
a nascent paradigm emerged in roughly its
current form—concurrently, and inmanyways
joined at the hip, with its sister field of macro-
connectomics. This period saw a handful of
seminal papers authored by a certain motley
crew of notable theoretical and cognitive neu-
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roscientists, which have served to define much
of the landscape of whole-brain modelling as
it stands at the start of the 2020s. At the same
time, the field has over the past decade ex-
panded in a dozen or more fascinating new
methodological, theoretical, and clinical direc-
tions. In this chapter we offer a potted Past,
Present, and Future of whole-brain modelling,
noting what we take to be some of its greatest
successes, hardest challenges, and most excit-
ing opportunities.
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13.1 Preliminaries

13.1.1 What Is Whole-Brain
Modelling?

paradigm, n.
4. A conceptual or methodological model
underlying the theories and practices of a
science or discipline at a particular time;
(hence) a generally accepted world view.
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Fig. 13.1 Schematic of the WBM approach. ‘Local’ neu-
ral dynamics are described by the activity of (1) millions
of point-process spiking neuron (differential) equations,
aggregated by connectivity into regions; OR (2) hundred-
s/thousands of point-process neural mass/mean field/neu-
ral field (differential and/or integral) neural population
equations—variously termed; OR (3) hundreds/thousands
of point-process linear algebraic neural population equa-
tions (normally grouped into a single matrix-valued equa-
tion). Typically, all nodes in the network are described
with the same local neural dynamics model and same
parameters. Neural populations are coupled together based
on a structural connectome, which is defined principally

by noninvasive neuroimaging data, including T1-weighted
MRI, diffusion-weighted MR tractography, and others.
Simulated neural activity is compared against empirical
measurements such as fMRI/MEEG time series or covari-
ance structure using brute-force or parameter optimiza-
tion approaches. When coupled together in the regime
achieving good fits with empirical data, the collective
behaviour of the system produces quasi-periodic activity
whose static/dynamic functional connectivity patterns are
similar to those observed for empirical data. Theoretical
analysis of these models provides insight into principles
and physiological details of large-scale brain organization,
and can be used for in silico perturbation studies

Whole-Brain Modelling (WBM) is the sub-
field of computational neuroscience concerned
with computational and theoretical models of
approximately whole-brain neural activity. The
usual objective of this approach is to study how
macroscopic spatiotemporal patterns of neural
activity result from the interaction of anatomical
connectivity structure, intrinsic neural dynamics,
and external perturbations (sensory, cognitive,
pharmacological, electromagnetic, etc.). Such
macroscopic phenomena, and models thereof,
are of particular scientific interest because (a)
they represent neural systems in a holistic and
relatively intact state, and (b) they are the type of
measurement that can be most readily obtained
from the brains of healthy human subjects, using
noninvasive neuroimaging and related methods.
Simulations of human brain activity, in both

health and disease, are therefore a principal focus
of current WBM research.

The predominant research paradigm used in
WBM emerged in roughly its current form at the
end of the 2000s (e.g. Deco et al. 2009; Ghosh
et al. 2008; Honey et al. 2007)—a development
that we survey in detail in this chapter. Figure 13.1
gives a schematic summary of the approach.
The basic idea is to model the brain at the
macro scale as a network of interconnected
regions, where the network nodes representing
those regions are defined by (principally)
neuroimaging-based brain parcellations, and
the presence and weights of the network edges
interconnecting the nodes are derived from
neuroimaging- or chemical tract tracing-based
anatomical connectivity measurements. We
refer to whole-brain anatomical connectivity
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networks and matrices of this kind as ‘macro-
connectomes’, or just ‘connectomes’ for short
(see Sect. 13.2.4). Most commonly, activity in
this network is then studied with numerical
simulations of population-level neural activity
(neural masses, mean fields, neural fields; see
Sect. 13.2.2), aimed at reproducing a wide
range of empirical data features across multiple
measurement modalities. These features include:
fast oscillations in local field potential (LFP)
and extracranial electromagnetic (MEG, EEG)
signals; slow quasi-periodic activity fluctuations
in haemodynamic (BOLD fMRI, fNIRS) signals;
inter-regional synchrony/covariance (functional
connectivity) and causal interactions (effective
connectivity) in both fast and slow activity
patterns; sensory- or electromagnetic stimulation-
evoked response waveforms; graph-theoretic
properties large-scale network activity; and many
others.

In addition to neural population model simu-
lations, both more complex (large-scale spiking
neuron) and simpler (linear algebraic) modelling
approaches are also often used. The theoretical
dialogue between these three levels of description
and degrees of detail—spiking neurons, neural
populations, and linear systems—is a characteris-
tic feature ofWBM research, for two key reasons:
First, we wish to understand, for any given em-
pirical phenomenon observed in large-scale spa-
tiotemporal neural activity measurements, what
is the appropriate level of explanation for that
phenomenon. As a rule, the most appropriate
level is the most parsimonious and the simplest
(i.e. Occam/Einstein/Conan Doyle ‘as simple as
possible, but no simpler’). Balancing this, the
second reason for a multi-pronged approach in
terms of spatial scale and detail is that models
and theories at higher or coarser scales should
aim (as far as possible) to be consistent with
descriptions at finer scales, as well as with known
physiological parameters. An example of this cri-
terion in action is the practice of demonstrat-
ing, both theoretically and numerically, consis-
tency between a given spiking neuron model and
its neural population-based reductions (e.g. Deco
et al. 2013a; Stefanescu and Jirsa 2008).

13.1.2 Overview of This Chapter

In this chapter we offer a survey of the Past,
Present, and Future of WBM. In Sect. 13.2 we
cover the historical antecedents of several foun-
dational concepts and formalisms. Our objective
in these discussions is not to undertake a rig-
orous historical examination per se, but rather
to use the development of certain key ideas and
methodologies over the years as a didactic device.
We also believe that a dash of history brings
a welcome dose of colour and perspective to
those ideas. For our expository purposes, The Past
ends and The Present begins in 2006 (for reasons
explained below). Also, naturally enough, The
Present ends and The Future begins at the time
of writing (2021). In Sect. 13.3 we consider sev-
eral key components of current WBM research,
including the neural population model landscape,
specification of connectivity structure, parameter
estimation, and clinical applications. Finally, in
Sect. 13.4 we offer thoughts on emerging themes
and important future directions for the field.

13.2 The Past

13.2.1 The Long and the Short

The idea of a young scientific field having a ‘short
history and a long past’ is a well-worn trope, but
often a well-placed one. It was Ebbinghaus who
first coined the aphorism in 1908, in reference
to the then-nascent discipline of Experimental
Psychology (Ebbinghaus, 1908). This new field
had emerged some two decades earlier through
the pioneering work of Wundt (the short history),
out of many centuries’ groundwork in natural
philosophy (the long past). The situation is not
dissimilar for the field of WBM in the early
2020s, which has similarly concretized in the past
two decades or so, building as it does on a rich
(but diffuse) legacy of ideas and formulations ex-
tending right back to as early as the 1940s. In this
chapter we have opted to label the second of these
two phases ‘The Present’ rather than the (recent)
‘History’ as Ebbinghaus did, but the sentiment
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is otherwise the same: The late 2000s and early
2010s witnessed the birth and rapid maturation
of a newWBM paradigm, which we summarized
briefly in Sect. 13.1.1 and shall discuss in detail
in the following pages. This maturation included
both widespread use of the principal methodol-
ogy (connectome-based neural population mod-
elling), and a modest but consistent appearance
of the three-word phrase ‘whole brain modelling’
itself in the academic literature.

The transition point from The Past to The
Present in our exposition is identified as the
year 2006. Of course, to identify a major
scientific shift such as this with just a single
year is a major oversimplification and highly
artificial.1 Acknowledging this, and allowing
for a little didactic license, this characterization
is we believe an informative, useful, and
broadly correct one. The demarcation point
of 2006 is chosen for two reasons. First, it
was only a few months earlier that the macro-
connectomics paradigm in neuroimaging—
a necessary precondition for the subsequent
development of WBM—began in earnest.
Two major expressions of this were the first
graph-theoretic analysis of fMRI functional
connectivity matrices (Salvador et al., 2005),
and scientific literature debut of the neologisms
‘connectome’ and ‘connectomics’ (Hagmann,
2005; Sporns et al., 2005). The second reason for
our choice of demarcation at 2006 is that it was
only a few months later that the first fully fledged
examples of WBM research appeared in print
(Honey et al., 2007; Sotero et al., 2007). More on
both of these in Sect. 13.2.4.

Over the next few pages we examine the long
Past of WBM. The timeline in Fig. 13.2 gives an
overview of key scientific developments in and
relating to WBM, from the 1940s to 2021. A
full breakdown of this entire timeline is beyond
the scope of this chapter, and so we leave it to
the reader to consult the original sources and

1 Ebbinghaus (1908), for example, located the end of the
‘past’ in 1879 when Wundt founded the world’s first
psychological laboratory; but Wundt, Müller, Helmholtz,
and others had been actively pursuing that research for at
least 25 years before that date.

relevant secondary literatures according to their
interests.2 Three threads in this timeline do how-
ever deserve particular attention, which we spell
out in the next three sections. In Sect. 13.2.2 we
look at the emergence and evolution of the neural
population model, and more generally the sta-
tistical mechanics-inspired approach to describ-
ing and modelling neural activity. In Sect. 13.2.3
we examine macroscopic neural field models—
which were not only the first mathematical mod-
els of whole-brain neural activity but also (in a
sense) the first type of macro-connectome. Fi-
nally, in Sect. 13.2.4 we discuss the emergence of
macro-connectomics in neuroimaging and com-
putational neuroscience, and how this directly and
proximally contributed to the conclusion of The
Past and the transition to The Present of WBM.

13.2.2 Origins of the Neural
Population Model

As noted, the principal methodology used in
WBM is connectome-based neural population
modelling—i.e. numerical simulations with
whole-brain networks of coupled neural
populations. The basic atomic unit of these
simulations is the neural population model—
a mathematical representation of the collective
activity within an ensemble of neurons. Neural
populationmodels aremesoscopic3—that is, they
describe aspects of nervous system organization
at spatial scales on the order of millimetres to
centimetres. The main rationale for taking this

2 Whilst there is not to our knowledge any single authorita-
tive historical reference on the development of WBM con-
cepts from the 1940s to the 2020s, informative discussions
of some aspects of this timeline can be found in Cowan
(2014), Chow and Karimipanah (2020), Sporns (2013),
and Liley (2013).
3 The lower and upper boundaries of the ‘mesoscopic’
regime are fuzzy, and terminological conventions vary
across neuroscience sub-fields. It is therefore not uncom-
mon to see neural populations described as microscopic
or macroscopic in some contexts (although they are most
commonly and properly regarded as mesoscopic). Note
that these terms can also be somewhat at odds with con-
ventions in other disciplines (in physics, for example, the
mesoscale is smaller than the microscale, being interme-
diate between nano and micro).
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Fig. 13.2 Timeline of major developments in and per-
taining to whole-brain modelling. Shown are a selection
of key publications and events that have had a major
influence on the development ofWBM and adjacent fields.
Particularly important entries are indicated in bold italics.
The earliest neural population model formulations were
outlined by Shimbel and Rapoport (1948), Beurle (1956),
and Uttley (1955), building on the seminal work ofMcCul-

loch and Pitts (1943). Arguably most central in the entire
timeline is the period 1970–1975, during which the key
contributions of Wilson and Cowan (1972), Lopes da Silva
et al. (1974), Freeman (1972); Freeman et al. (1975), and
Nunez (1974) were published. In this chapter we identify
The Past as the period leading up to 2006 and The Present
as the period 2006–2021. See main text for full citations
and discussions of the studies referenced in this figure
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approach is that many (indeed, most) types
of neural recording (particularly LFPs, ECoG,
M/EEG, fMRI) are intrinsically population-
level measurements. That is, the signals they
are based on are aggregate quantities, that only
reach detectable levels when contributed by at
least a minimum number (tens of thousands) of
simultaneously active neurons. The reasoning
is, therefore, that it is both unnecessary and
inefficient to attempt to model such data at the
microscopic spatial scale of individual neurons,
since we cannot see that level of detail in meso-
or macroscopic measurements, and certainly not
ones at the whole-brain scale. Better, then, to
formulate the models directly at the mesoscopic,
or population-level, spatial scale. A commonly
used analogy here is with the properties of gases
in statistical physics: Just as in thermodynamics,
one does not (usually) simulate the activity
of every single individual particle in a gas to
track its temperature, so in neuroscience we
should not be simulating the activity of all
individual neurons in a patch of tissue when
our main interest is tracking population-level
dynamics. This reasoning depends, of course, on
the availability of population-level models that
can accurately summarize the particular aspects
of neural ensemble activity that are of interest.

A wide variety of mathematical forms are used
to represent neural population activity, the most
common of which are summarized in Sect. 13.3.2
and Fig. 13.6. All of these choices are, ultimately,
motivated by the statistical physics-type rationale
described above. However only a subset of com-
monly used neural population models attempt to
incorporate cellular and local circuit organiza-
tional features of neural (usually cortical) tissue,
and only a subset of those are rigorously derived
in a bottom-up fashion from equations govern-
ing single neuron activity, without any arbitrarily
chosen non-physiologically based components.
This is sometimes reflected in binary catego-
rizations of ‘biophysical/physiological’ vs. ‘phe-
nomenological’ neural population model types
(e.g. Sanz-Leon et al. 2015; see Sect. 13.3.2); al-
thoughwewould argue it is more useful to instead
think about a spectrum from less tomore biophys-
ically/physiologically detailed and/or motivated.

The earliest neural population model
formulations took a heavily physics-driven and
bottom-up approach to deriving equations for
neural ensemble activity (e.g. Beurle 1956;
Griffith 1963a; Shimbel and Rapoport 1948).
Interestingly however, these did not4 draw on
what are nowadays considered the definitive
and canonical mathematical description of
single-cell neural activity—the Hodgkin–Huxley
equations (Hodgkin and Huxley, 1952). Instead,
they took as their starting point the seminal
work of McCulloch and Pitts (1943), who
showed that networks of binary threshold
elements could perform computations and
thus serve as a basis for cognition. This idea
laid the groundwork for a substantial slice of
modern systems neuroscience, cognitive science,
and artificial intelligence, including notably
neural networks in machine learning—first via
Rosenblatt (1958) and Grossberg (1968), and
later Hinton and colleagues (e.g. Krizhevsky et al.
2017; Rumelhart et al. 1986). The development
of neural population modelling has thus far
proceeded largely independently from artificial
neural networks in machine learning however,
despite their shared ancestry. In themid-twentieth
century, theorists such as Shimbel and Rapoport
in the 1940s (Shimbel and Rapoport, 1948),
Uttley and Beurle in the 1950s (Beurle, 1956;
Uttley, 1955), Griffith (Griffith, 1963a,b) in
the 1960s, and others embraced the task of
developing a statistical mechanics of collective
activity in McCulloch–Pitts-like ‘neural nets’.
The equations for neural population activity
developed by these early thinkers had three
essential ingredients (Chow and Karimipanah,
2020): (1) a continuous time-dependent activity
variable, (2) a linear weighted sum over these
activity variables in the input, and (3) a nonlinear
activation function linking input to output.

4 For the early work of Shimbel and Rapoport, Beurle,
and Uttley, this is unsurprising as their contributions ei-
ther preceded or were contemporaneous with Huxley and
Hodgkin’s Nobel Prize-winning work. But this was also
the case for the later work of Griffith, Wilson and Cowan,
and others, who do not appear to have been much influ-
enced by cellular- andmembrane patch-level physiological
modelling work of the time.
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The most influential and well-known set of
such activity equations are those introduced by
Wilson and Cowan (1972). In developing this
model, Jack Cowan followed fairly closely the
earlier work of Beurle (1956) on the dynamics
of an excitatory neural ensemble, but made
the important addition of a separate inhibitory
subpopulation. The inspiration for this came
from the Lotka–Volterra equations for predator–
prey dynamics in ecology, which were proposed
to account for the well-known phenomenon of
multi-year cycling in species abundances. In the
Wilson–Cowan equations, the negative feedback
resulting from interactions between excitatory
and inhibitory neuronal subpopulations endows
this relatively simple system with a level of
dynamical richness (including multistability,
oscillations, travelling waves, and hysteresis)
that has secured them an enduring interest in
theoretical neuroscience.

In the models of Wilson and Cowan,
Beurle, and Griffith, the time-dependent activity
variable(s) represent proportion of cells in the
population that are active (i.e. firing) per unit
time. Other neural population models developed
at a similar time instead choose as their state
variable the population-average membrane
potential (Freeman, 1972; Lopes da Silva et al.,
1974; Nunez, 1974). In these so-called voltage-
based neural population models, the nonlinear
activation function converts the membrane
potential to an efferent (outgoing) population
firing rate, and an additional set of equations
describing axo-dendritic synaptic responses
are added that convert an afferent (incoming)
firing rate into membrane potential perturbations.
Freeman (Freeman, 1972; Freeman et al., 1975)
popularized the description and interpretation
of these input/output conversions in terms of
‘pulses’ (firing rates) and ‘waves’ (membrane
potentials) as ‘pulse-to-wave’ and ‘wave-to-
pulse’ operators, respectively. He also coined
the term ‘neural mass’, borrowing in part from
Beurle’s ‘mass of cells’ (Beurle, 1956), and his
mentor Karl Lashley’s concept of ‘mass action’5

5 Freeman also made numerous other contributions tomul-
tiple neuroscience sub-fields in a career spanning seven

in the neural basis of memory encoding. In
computational neuroscience today, a ‘neural mass
model’ is the most widely recognized generic
term for physiologically based, point-process
neural population models. Somewhat awkwardly,
it is almost entirely synonymous6 with another
commonly used term, ‘mean-field model’, which
also has the advantage of consistency with the
usage of ‘mean field’ in other areas of science.
To complicate things further, a closely related
term to ‘neural mass’ and ‘mean field’ is ‘neural
field’, which refers to a neural population model
defined over some contiguous spatial domain, as
opposed to neural masses/mean fields which are
space-less point-processes. To be clear: the sense
of ‘field’ in a neural field and in a (point-process)
mean field is not the same.78

Two other neural population models from the
mid-1970s that were highly influential for later
WBM work were those of Nunez (1974) and
Lopes Da Silva and Zetterberg (Lopes Da Silva
et al., 1976; Lopes da Silva et al., 1974; Zetterberg
et al., 1978), both of which were designed to
account for the 8–12Hz ‘alpha rhythm’ observed
in human EEG recordings, albeit with very
different hypothesized mechanisms. Nunez’s
contributions are discussed in Sect. 13.2.3. In
their work, Lopes Da Silva and colleagues drew

active decades, including the idea of the ‘K set’ hierarchy
(Freeman et al., 1975), linear system analysis of neu-
rophysiological models (Freeman, 1972), discovery and
naming of the gamma rhythm (Bressler and Freeman,
1980), pioneering the use of independent components
analysis and the Hilbert transform, amongst others.
6 Although some authors adopt a further technical distinc-
tion, where neural mass models are taken to describe only
the mean of activity over a neural population, and mean-
field models describe both the mean and the variance of
activity (and thereby also an estimate of the full probability
distribution of activity levels over the population) (Moran
et al., 2013).
7 The difference is the domain over which the field is a
field over. Neural field models describe fields over space.
Mean-field models describe fields over arbitrary abstract
probability distributions. However in the latter case the
field per se is not actually used in the model; rather it just
refers to how the model is derived.
8 ...It is this terminological bog, plus the necessity to
distinguish between physiological and phenomenological
model types, that leads us to prefer and use the looser term
‘neural population model’ in this chapter.
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Fig. 13.3 Lopes Da Silva–Zetterberg model. The model
by Lopes da Silva et al. (1974) designed to study cor-
ticothalamically generated EEG rhythms, was an early
instance of the convolutional voltage-based neural mass
model type, now regularly used in the form of the Jansen
& Rit, David & Friston, and Robinson models, amongst
others. Left panel: Equivalent current circuit of the model.

Right panel: Analytic power spectrum. The linearization
and systems analysis of the model allow calculation of the
steady-state noise-driven power spectra algebraically from
the parameter values. The model shows clear peaks in the
alpha range, for a range of parameters. Figures taken from
Lopes da Silva et al. (1974)

closely on bothWilson&Cowan’s and Freeman’s
approaches, proposing a voltage-based neural
population model with membrane potential state
variables and excitatory and inhibitory cell types.
They presented both numerical simulations and
corresponding steady-state linear system analysis
of neural power spectra that reproduced the alpha-
frequency spectral peak and 1/f scaling observed
in resting-state EEG data (Fig. 13.3). This model
was later adapted and extended by Jansen et al.
(1993) and Jansen and Rit (1995), who were
able to use it to reproduce both steady-state
EEG rhythms and time-locked EEG sensory-
evoked responses. The so-called Jansen–Rit
model, which comprises three interconnected
neural subpopulations (pyramidal projection
neurons, excitatory interneurons, and inhibitory
interneurons forming feedback loops), is now one
of the most widely studied and commonly used
neural population models. A major contributor
to this popularity was its adoption by David
and Friston (2003), David et al. (2006a), and

David et al. (2006b), as the model-of-choice for
the first EEG/MEG variants of Dynamic Causal
Modelling (DCM; Friston et al. 2003).

DCM is a mathematical framework for fit-
ting neural models to neuroimaging and neu-
rophysiological data, and testing scientific hy-
potheses pertaining to those models. The vari-
ous model variants, technical innovations, and
research questions addressed under the auspices
of DCM are numerous and beyond the scope
of this article to summarize even briefly (see
Moran et al. (2013) for a useful summary of
some of the electrophysiological DCM variants).
We will therefore limit ourselves here to a few
select observations. The general DCM approach
was first developed in the context of task-based
fMRI data analysis (Friston et al., 2003). In the
original fMRI DCM model, effective connection
strengths, or ‘gains’, between brain regions, as
well as their task- or condition-dependent mod-
ulation, are estimated from time series data for
small networks of <10 brain regions, using a
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sophisticated Variational Bayesian model inver-
sion scheme. The generative model of neural dy-
namics in this fMRI DCM model is specified
by a simple, slow (i.e. with a characteristic time
scale on the order of seconds), first-order linear
dynamical system. Model-generated neural ac-
tivity time series are then converted, through a
rather complex nonlinear haemodynamic forward
model, into predicted BOLD fMRI activity, to
be compared against empirical measurements. In
M/EEG, rather than a slow first-order linear dy-
namical system, the generative model used is in-
stead a set ofmodified Jansen–Rit equations, with
the usual pulse-to-wave and wave-to-pulse oper-
ations at the synapses (inputs) and axon hillocks
(outputs). The approach of fitting activity from
a voltage-based neural population model to EEG
time series and spectra had been successfully
demonstrated previously (Robinson et al., 2001;
Valdes et al., 1999). What was notable about
David and Friston’s contribution was (following
the model of fMRI DCMs) to extend this ap-
proach to small, distributed networks of coupled
neural populations. In relation to this, they also
added architectural constraints around backwards
and lateral connections between neural popula-
tions, according to the observations of Felleman
and Van Essen (1991).

We return to DCM at various points through-
out this chapter, particularly in discussions of
connectomics (Sect. 13.2.4) and parameter esti-
mation (Sect. 13.3.3). For present purposes, a key
overall point is that one of the major lasting con-
tributions of the M/EEG DCMmodels (including
importantly their easy-to-use implementation in
the SPM software library9) was to introduce con-
cepts of physiologically grounded neural popu-
lation modelling to the broader (non-theoretical)
human neuroimaging and neurophysiology com-
munities.

This concludes our short survey on the origins
of the neural population model as it pertains to
The Past of WBM. We note that for reasons of
space it has been necessary to skip over several
other important developments, including the early
history of the Stuart–Landau, Fitzhugh–Nagumo,

9 www.github.com/spm.

Kuramoto, and other models, which will never-
theless feature prominently in later discussions.
We return to neural population models specifi-
cally in Sect. 13.3.2, which summarizes the main
models currently used in WBM work.

13.2.3 Macroscopic Neural Field
Models

A neural field model is a neural populationmodel
defined over some contiguous spatial domain,
such as a patch of cortical tissue, an entire cere-
bral hemisphere, or even an abstract cognitive
space. This differs from neural mass and mean-
field models that model local neural population
dynamics as point processes—i.e. with no explicit
representation of space. This inclusion of space
in neural field models entails some description of
the connectivity structure of the spatial domain,
which in turn determines how activity propagates
between locations on the field. Neural fields are
therefore, in a sense, a special kind of neural
population network model (i.e. a network of cou-
pled neural masses), where the discrete topology
and connectivity of the network are replaced by
the continuous topology and connectivity of the
field. Conversely, networks of neural masses can
in certain cases be considered as discretizations of
neural fields with equivalent connectivity struc-
ture. This parallel between network-based and
field-based representations of cortical tissue has
been a characteristic feature of WBM since its
earliest days.

Broadly speaking, two kinds of neural field
model have been studied intensely in the theoret-
ical neuroscience literature: (a) mesoscopic and
(b) macroscopic. The difference between these
two is, naturally enough, the physical size of the
field, and what it is intended to represent. Meso-
scopic neural field models typically describe a
flat two-dimensional patch of cortex with radius
somewhere between a few dozen millimetres and
a few centimetres. Macroscopic neural field mod-
els, in contrast, generally describe each cerebral
hemisphere with a sphere, toroid, or rectangu-
lar patch, with a pole-to-pole (i.e. posterior-to-
anterior) length of 10–20 centimetres. For further

www.github.com/spm
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simplification, the two cerebral hemispheres are
often collapsed into a single field representing
the entire cerebral cortex (e.g. Daini et al. 2020;
Nunez et al. 2006; Robinson et al. 1997). The
majority of work on neural field models—from
the early studies of Beurle (1956) and Griffith
(1963a), Griffith (1963b), to the continuous ver-
sion of the Wilson–Cowan model (Wilson and
Cowan, 1973) and the Amari (1977) model with
centre-surround inhibitory (Mexican Hat) con-
nectivity, and most work since then—has been
of the mesoscopic variety.10 In terms of tracing
the history of ideas of WBM research however, it
is the macroscopic flavour of neural field models
that are of particular importance. An interesting,
and perhaps under-appreciated, point here is that
the early macroscopic neural field models can
reasonably be considered the first proto-macro-
connectomes, in virtue of their (posited) connec-
tivity structure.

In themid-twentieth century,when neural field
and neural population concepts were first being
developed, detailed information on macroscale
anatomical connectivitywas not readily available,
and so it was necessary to use heuristics. A prime
example of this is the work of Uttley (1955) in
the 1950s, who used the rather sparse available
anatomical data, along with reasonable geometric
and statistical assumptions, to derive mathemat-
ical formulae for the spatial structure of axonal
projections and axo-dendritic connectivity. Utt-
ley’s calculations were mostly based on anatomi-
cal studies from his colleague Sholl (1953, 1956)
on the dendritic systems of stellate and pyramidal
neurons in the striate and motor areas of cat cor-
tex. A key feature of these measurements was the
observation, nowwidely recognized, that connec-
tion probability decays as an exponential function
of distance. Using this relationship, and employ-
ing Freeman’s concept of a neural mass, Nunez
(1974) proposed the first macroscale neural field
model aimed at describing neural dynamics on
the scale of the entire cerebral cortex. Charismat-

10 A comprehensive and mathematically detailed review
of this work, and of neural fields in general, is beyond
the scope of this review. Excellent summaries on various
aspects of neural field theory can be found in Coombes
et al. (2014).

ically named the ‘BrainWave Equation’ (because
it is a wave equation for brain waves), this model
contains an implicit description of whole-brain
connectivity, via the isotropic, translationally in-
variant, and exponentially decaying connectivity
kernel of the neural field. In addition to formu-
lating the model, Nunez (1974) also emphasized
that approximate analytic solutions for reasonable
values of the model’s parameters suggested oscil-
latory solutions within the frequency range of the
EEG alpha rhythm. The idea here, later developed
in considerable detail (Katznelson, 1981; Nunez
and Cutillo, 1995; Nunez and Srinivasan, 2006;
Nunez et al., 2006), and receiving some empirical
support (Nunez et al., 2006; Sivakumar et al.,
2016; Valdés et al., 1992), is that wave–wave in-
terference due to boundary conditions imposed by
the approximately spherical geometry and topol-
ogy of the cortex results in standing waves (aka
harmonics, eigenmodes) with comparable spatial
and temporal characteristics to that of EEG alpha
activity.11

Two notable extensions of the Nunez model
were introduced in the 1990s and early 2000s.
In 1997, Robinson and colleagues developed a
partial differential equation (PDE) neural field
model and studied its properties under three
global topologies: an infinite 2D plane, a 2D
square with periodic boundary conditions, and
a sphere (with spherical boundary conditions)
(Robinson et al., 1997). As these authors note,
the PDE formulation is an order of magnitude
more efficient to simulate than the equivalent
integrodifferential equation (IDE) formulation
of Wright and Liley (1996) (on which their
model was directly based), and also lends itself
more straightforwardly to analytic investigation
of spatial properties, such as eigenmodes and
inhomogeneities (later explored extensively,
e.g. Connor et al. 2002). Examination of
spatial damping in the model also led the
authors to dispute Nunez’s global standing wave

11 It is doubtless not a coincidence that the other set of
problems Nunez was working on at the time were signal
processing and electromagnetic forward models for EEG,
making extensive use of idealized spheres and electromag-
netic field equations (Nunez et al., 2006).
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theory of alpha activity, on the grounds that
cortical waves are heavily spatially damped,
and do not propagate rapidly and far enough
to generate the interference needed for standing
waves to occur (Nunez and Srinivasan, 2006;
Robinson et al., 1997). Later, Robinson and
colleagues augmented this neural field model
with oscillatory corticothalamic loops, which
they have explored extensively over the past
20 years as a candidate mechanism of EEG
rhythmogenesis (Robinson et al., 2001, 2016).

In a similar line of work occurring at roughly
the same time, Jirsa and Haken (1996a,b) de-
rived a novel general neural field equation, from
which they could recover both the Nunez (1974)
and Wilson and Cowan (1973) systems. Building
on this, Jirsa later pioneered the integration of
macroscopic neural field models with structural
neuroimaging data. Specifically, in 2002 Jirsa
et al. (2002) were able to project and visualize dy-
namics modelled through a spherical neural field
on to the folded cortical surface, using the then-
new (now-standard) surface-based MRI registra-
tion tool Freesurfer (Fischl et al., 1999). This use
of spherical or spheroidal neural fields as first-
order approximations of global cortical geome-
try, whilst also utilizing in various ways detailed
MRI-derived geodesic mesh representations for
more realistic non-uniform cortical surface fea-
tures, has been since developed by several other
authors (e.g. Daini et al., 2020;Gabay et al., 2018;
Nunez et al., 2006; Robinson et al., 2016; Visser
et al., 2017; c.f. Fig. 13.4). Interestingly how-
ever, whilst it may be gaining traction, this line
of work is still not widely known within either

the neuroimaging or computational neuroscience
communities.

The two key ingredients of Nunez’s model,
and most of its subsequent variants, are the two
approximations: (1) exponentially decaying ax-
onal connectivity as a function of distance, and
(2) a roughly spherical cortex. In the 1970s, these
approximations were both useful and necessary.
During the early 2000s however, they began to be
obviated by the ability (as surveyed in the next
section) of modern neuroimaging and chemical
tract tracing techniques to make detailed mea-
surements of whole-brain anatomical connectiv-
ity and cortical geometry. Thus there was a palpa-
ble sense at around the start of The Present that the
‘old’ translationally invariant distance-based and
spherical approximations would look embarrass-
ingly far off themark in light of the richly detailed
and heterogeneous network structure of ‘real’
white matter anatomical connectivity and cortical
geometry information coming from noninvasive
imaging. Interestingly, 15 years into The Present,
the picture is a little more nuanced:

First, regarding the distance-connectivity ap-
proximation: Both tractography (Betzel et al.,
2016; Deco and Kringelbach, 2020; Henderson
and Robinson, 2011; Roberts et al., 2016) and
chemical tract tracing (Braitenberg and Schüz,
1998; Markov et al., 2014; Sholl, 1956) data
show that a simple exponential distance rule in
fact does a remarkably good job of characteriz-
ing distance-connectivity relationships through-
out cortex. This heuristic is not perfect, for exam-
ple resulting in mis-location of hub structures and
under-estimation of longest-distance connection
strengths (Roberts et al., 2016). It is however

Fig. 13.4 Spherical neural fieldmodels. Macroscale neu-
ral field models on a spherical domain, representing en-
dogenous or evoked activity over an entire cerebral hemi-
sphere, have played an important role in more theoretical

circles (sic.) of WBM, and continue to do so. From left
to right (1981–2020): Katznelson (1981), Nunez et al.
(2006), Jirsa et al. (2002), Gabay and Robinson (2017),
Visser et al. (2017), and Daini et al. (2020)
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sufficiently close to empirical measurements for
distance-dependent neural field or field-like mod-
els to continue to make a valuable contribution to
the theoretical landscape.

Second, regarding the spherical approxima-
tion: One interesting nod to Nunez’s initial in-
troduction of this is that spherical brains, con-
structed by a process of ‘computationally inflat-
ing’ a geodesic mesh representation of the pial
and white matter surface, are now used routinely
in neuroimaging for inter-subject alignment of
cortical surfaces, such as with the Freesurfer li-
brary (Fischl et al., 1999). Indeed, the ubiquity of
geodesic mesh representations in structural neu-
roimaging data analysis has facilitated a number
of extensions of the spherical neural field model.
These can be summarized as follows:

(1) The geodesic mesh can be directly used as
themanifold onwhich to evaluate neural field
equations (Daini et al., 2020; Robinson et al.,
2016; Atasoy et al., 2016; Visser et al., 2017).

(2) The Laplace–Beltrami operator, computed
numerically for the surface mesh, can
replace the spherical Laplacian operator in
neural field equations that use spatial partial
derivatives (Robinson et al., 2016).

(3) The eigenvectors of the cortical surface
Laplace–Beltrami operator turn out, in
practice, to be highly similar to the
eigenvectors of the Laplacian operator for
a sphere (i.e., the spherical harmonics),
for at least the first 5 or so modes (Gabay
and Robinson, 2017; Gabay et al., 2018;
Robinson et al., 2016). Thus, a large amount
of the low-order spatial mode structure in
a folded cortical surface (i.e. the real brain)
is similar to that for a more mathematically
idealized spherical cortex.

(4) Relating to the point noted above regarding
connectivity: The implied Laplacian connec-
tivity structure of a cortical surface geometry
incorporates within it the exponentially de-
caying distance-connectivity profile already
discussed to be empirically observed in fi-
bre tracking data. So, the geometry and con-
nectivity statistics of spherical cortex neu-
ral field models are actually fairly consistent

with the dominant characteristics of experi-
mental connectivity measurements.

13.2.4 Macro-Connectomics and the
Emergence of theWBM
Paradigm

By the mid-2000s, many of the key ingredients
of the modern WBM approach were in place.
Most of the mathematical formalisms for neuron
and neuron population activity used today
were available and well understood by the
computational neuroscience community. The
notion of using physiologically based models to
describe emergent large-scale activity dynamics,
such as EEG rhythms and evoked potentials,
was well established (David and Friston, 2003;
Jansen and Rit, 1995; Robinson et al., 2001;
Valdes et al., 1999). Networks of coupled neural
population models had been used to model
activity in delimited small-scale systems (David
et al., 2006a; Friston et al., 2003); but whole-
brain connectivity, and models of whole-brain
activity dynamics, had at that point only really
been conceptualized and tackled through the
somewhat boutique lens of macroscale neural
fields. Questions about whole-brain structural
and functional organization were of particular
interest to an established and rapidly growing
human neuroimaging community—working
primarily on questions in clinical and cognitive
neuroscience, but increasingly drawing on and
integrating with systems and computational
neuroscience. The ‘mass univariate’ approach
that had dominated fMRI since its invention in
the early 1990s gave a particular perspective
on task-evoked whole-brain activity patterns,
made possible by treating activity in all brain
areas (all voxel time series) as dependent
variables and as independent of each other.
Coupled with the Dondersian doctrine of
cognitive subtraction, this mass univariate,
general linear model-based paradigm for design
and analysis of neuroimaging experiments
was (and continues to be) especially well-
suited to identifying differentially ‘activated’
regions on various cognitive tasks (affectionately
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referred to in the community as ‘blobs’ in
virtue of their colourful visual presentation).
This early focus in neuroimaging on functional
specialization of brain regions (an idea also
developed earlier, over many decades from
neuropsychological lesion studies) is also often
understood as an emphasis on ideas of ‘func-
tionally segregation’—and thereby contrasted
with ideas about ‘functional integration’, such
as inter-regional communication, connectivity,
and network structure (Friston, 1994; Tononi
et al., 1994). By the turn of the twentieth century
functional segregation-based research questions
in neuroimaging were becoming balanced (and
arguably, eventually superseded) by questions
about functional integration. These connectivity-
based investigations were largely not whole-brain
however,12 but rather focused on pairwise or
global covariance patterns amongst small sets of
brain regions.13 The scene, then, was set for the
final part of the picture on the way to modern
WBM: the emergence of network science and
(shortly afterwards) connectomics.

Network science is an academic discipline that
studies network phenomena, both from first prin-
ciples and as they occur in nature and human
activity, across an extremely broad range of em-
pirical domains. Its two principal tools are alge-
braic graph theory and dynamical systems. Net-
work science developed as a highly prominent
autonomous field in the early 2000s, following
key theoretical developments on the mathemat-
ical properties of various graph topologies (e.g.
Barabási and Albert 1999; Watts and Strogatz
1998), and other enabling conditions such as the
rapid growth of data on extremely large internet-
based communication and social networks. Par-
ticularly influential in the early years of network
science was the concept of a ‘small-world net-
work’, introduced by Watts and Strogatz (1998),
who studied some simple but compelling demon-
strations of the computational and dynamic prop-

12 Notable exceptions to this being eigenimage analysis
and early spatial ICA.
13 A prime example of this being DCM, as discussed
earlier.

erties of graphs with small numbers of randomly
introduced long-range edges.

The principal emphasis in network science has
been on topological features of (typically) large
networks, such as small-worldness, community
structure, modularity, communication, and con-
nectedness. These approaches to network char-
acterization are often highly ‘statistical’ in na-
ture, involving things like counts and distribu-
tions of node degrees, connection weights, and
path lengths. This differed somewhat from the
typical approach in neuroscience, which tended
to be more interested in specific well-defined,
and functionally characterized brain systems and
anatomical pathways, rather than spatially non-
specific topological properties of an entire net-
work per se. Graph-theoretic investigations did
nevertheless gain some traction in neuroscience
in the 1990s and early 2000s, notably through
the contributions of Olaf Sporns, with early col-
laborators Gerald Edelman, Giulio Tononi, Rolf
Kotter, andKarl Friston (Sporns andKötter, 2004;
Sporns et al., 2000; Tononi et al., 1994). In neu-
roimaging, however, it was only in the mid-2000s
that the power of graph- and network-theoretic
approaches began to be realized and embraced.

It was the group of Ed Bullmore and col-
leagues (Achard et al., 2006; Salvador et al.,
2005) who pioneered the methodology in fMRI
(following earlier work in sensor-level EEG by
Stam (2004)) of taking representative time series
from a brain parcellation, calculating correlations
between each parcellation time series, treating
this correlation matrix as an adjacency matrix
and as a complex network, and studying graph-
theoretic topological metrics. The corresponding
analysis methodology in structural neuroimaging,
also using greymatter parcels to define nodes, but
now using diffusion-weighted MRI tractography
streamline densities as a measure of anatomical
connection strengths, was developed at roughly
the same time (Hagmann, 2005; Hagmann et al.,
2008; Iturria-Medina et al., 2007). Figure 13.5
shows an example of such tractography-based
anatomical connectomes at multiple parcellation
scales (Daducci et al., 2012), which are now a
regular object of study in neuroimaging, macro-
connectomics, and WBM.
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Fig. 13.5 Multiscale macro-connectomes. Upper row:
Regions of interest (ROIs), aka parcels, shown on corti-
cal surface meshes for five different scales of the ‘Lau-
sanne2008’ parcellation (Hagmann et al., 2008). The par-
cellation scales are increasingly fine-grained from left to
right, with 83 parcels in the smallest scale, and 1015
parcels in the largest scale. Lower row: Adjacency or
connectivity matrices, consisting of diffusion-weighted

MRI tractography-derived connection strengths (stream-
line counts) for every ROI pair. Exactly the same infor-
mation is used to construct each connectivity matrix, with
the only difference being the level of spatial granularity at
which network nodes (matrix rows/columns) are defined.
The final anatomical connectivity matrix, or ‘anatomical
connectome’ in the lower right of the figure is 1015
rows× 1015 columns. From Daducci et al. (2012)

Also at this time, Sporns et al. (2005) and
Hagmann (2005) independently coined the term
‘connectome’ for the notion of a comprehensive
map of the brain’s connections, by analogy with
the map of the genes successfully developed
within genomics. The idea of the ‘connectome’
and of ‘connectomics’ is caught on in a big
way in the broader neuroscience community—
and, interestingly, particularly so in two quite
different sub-fields: human neuroimaging and
non-human light and electron microscopy.
It is therefore useful to distinguish between
macro-connectomics—concerned with whole-
brain connectivity structure at relatively coarse
(macroscopic) spatial resolution, and micro-
connectomics—concerned with (for example)
reconstructing and mapping every individual
synapse and axo-dendritic connection within
an isolated, excised, cubic-millimetre patch
of mouse cortex.14 In the intervening years,

14 In addition, we could also define ‘meso-connectomics’
for the (less common) efforts at characterizing connectiv-
ity at spatial scales intermediate between micro and meso
(e.g. Oh et al. 2014).

macro-connectomics methodologies and ideas
have consistently enjoyed an ascendancy in
neuroimaging research.

The natural conclusion of our historical survey
is to summarize the emergence of the WBM
paradigm in full, which occurred through a few
seminal papers in the first few years of The
Present. One of the catalysts for these, and for
many of the developments listed above and in
later sections, was the founding by Rolf Kötter
and others of a regular, small-scale scientific
meeting called the Brain Connectivity Workshop
(BCW).15 The BCWs provide a discussion
forum for researchers thinking and working at
the intersection of the neuroimaging, systems,
and computational neuroscience communities.
The event has an explicitly encoded culture
of short talks with most time reserved for
productive interactive discussions. In an effort
to further rally the BCW community into focused
collaborative projects, Randy McIntosh—
a prominent advocate of connectivity-based

15 https://www.brain-connectivity-workshop.org.

https://www.brain-connectivity-workshop.org
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thinking and methodologies in neuroimaging
and cognitive neuroscience (McIntosh, 2000;
Mclntosh and Gonzalez-Lima, 1994)—founded
in 2005 an international consortium called the
Brain Network Recovery Group (NRG).16 As
part of this, in 2006 he spent a sabbatical in
Dusseldorf working with Kötter on translating
his macaque brain CoCoMac database into
corresponding human brain anatomy, to make it
more easily interoperable with human structural
and functional neuroimaging data. In parallel
with this, one of Viktor Jirsa’s conclusions from
his earlier spherical neural field work discussed in
Section 2.3 (Jirsa et al., 2002), communicated and
discussed intensely at BCW meetings, was that
inhomogeneous and non-translationally invariant
connectivity structure and time delays were
essential for a faithful modelling of human large-
scale brain dynamics. The natural replacement of
the spherical cortex was therefore the anatomical
connectome, now available from chemical tracing
data thanks to the efforts of Kötter and McIntosh,
and shortly after from tractography data from
Hagmann et al. (2008), Iturria-Medina et al.
(2007), and others.

These various behind-the-scenes activities
began to be felt in the scientific literature
through a series of publications starting in 2007,
when both Honey et al. (2007) and Sotero
et al. (2007) investigated emergent dynamics
in whole-brain networks. The model of Sotero
used diffusion-weighted MRI tractography to
define the anatomical connectome, and Jansen–
Rit equations for the activity at each network
node, focusing on large-scale patterns in EEG
activity. Also that year, Honey et al. (2007)
published the first of several excellent WBM
studies exploring various aspects of large-
scale brain organization, using models based
on non-human primate connectivity from the
CoCoMac database (Kötter, 2004). More fully
in the connectomics vein (as would be expected
given the authors), this study focused on the
relationship between anatomical connectivity and
simulated BOLD fMRI functional connectivity
patterns, as characterized using graph-theoretic

16 https://brain-nrg.squarespace.com/.

metrics such as node degree distributions and
hub structure. In a follow-up paper, Honey and
Sporns (2008) studied the effects of lesions
on graph properties of simulated functional
connectivity in whole-brain networks. This
study used the Kuramoto phase oscillator
model to describe neural population activity,
as opposed to the (more unwieldy) coupled
chaotic oscillators they used earlier inHoney et al.
(2007). Shortly after, Deco et al. (2009) (using
the standard CoCoMac connectivity), Ghosh
et al. (2008) (using McIntosh’s human-modified
CoCoMac connectivity), Bojak et al. (2011)
(using a different human-modified CoCoMac
connectivity), and Knock et al. (2009) (directly
comparing the CoCoMac and tractography-
derived connectivities) examined the contribution
of noise and time delays to large-scale network
dynamics.

The methodology and questions from these
briefly surveyed studies have largely laid the pat-
tern for the past 10 years of WBM research. One
prominent manifestation of the research program
that grew out of these activities was the evolu-
tion in 2010 of the NRG into The Virtual Brain
Consortium, which further focused the group’s
attentions on the development of a new neuroin-
formatics and brain simulation platform called
TheVirtual Brain (TVB),which was first released
in 2012. Since then, TVB has facilitated a large
amount of research activity in WBM,17 including
some of its most significant achievements, which
we discuss in the next section.

13.3 The Present

Thus far we have outlined the historical trajectory
and neurobiological rationale behind the use of
WBMs in studying large-scale brain dynamics
and organization. The previous Part concluded
with a summary of some early examples of the
matureWBMparadigm in action.Whilst the sub-
sequent decade has seen many exciting develop-

17 Another notable achievement of the TVB platform was
to be ‘drafted in’ as the poster-child human brain simulator
within the activities of the European Human Brain Project.

https://brain-nrg.squarespace.com/
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ments, there have been no major qualitative shifts
in themethodological approach used now and that
used ten years ago. In this Part on The Present we
therefore turn our attention to current technical
and conceptual issues in the field, and key recent
successes (of which there are many) in scientific
and clinical applications. We first discuss three
important technical areas: (1) the canonicalWBM
equations, (2) physiological parameter estimation
and inference, and (3) anatomical connectivity.
We then offer highlights and general comments
on the extensive and rapidly growing WBM clin-
ical applications literature.

13.3.1 The Canonical WBM Equations

Figure 13.1 gave a schematic of how WBMs
are built and used to simulate large-scale neural
activity patterns. As we have indicated in this
figure and elsewhere, a satisfactorily inclusive
definition of WBM should include three differ-
ent modelling flavours: spiking neural models,

neural population models, and algebraic models.
The second of these is however by far the most
commonly used, and so in this section and the
next we discuss briefly some technical consider-
ations on connectome-based modelling of neural
population activity.

The most generic and comprehensive math-
ematical summary to date of neural population
models and their deployment in WBM can be
found in Sanz-Leon et al. (2015). These authors
provide detailed equations for a wide range of
physiological and phenomenological neural pop-
ulation models, as well as various types of neural
population coupling function, forward models,
neural field kernel variants, numerical integration
schemes, and more. It is beyond the scope of
the current chapter to cover this material at a
detailed technical level. We will however give
some comments on the overall approach.

A generic or canonical formulation for
connectome-based neural population models
is given by the following stochastic delay
integrodifferential equation (ref. Sanz-Leon et al.
2015, eq. 2.4):

P(d/dt)�(t) = −�
(
�(t)

)+ Z
[
�(t) +

2∑

ν=0

Uν ◦ Vν�ν

[
�(t −Kν ◦ C−1

ν )]
]

Here, the neural population state variables are
contained in the vector � and are mapped on
to their derivatives by the temporal differential
operator P. The state variables may be, for ex-
ample, population-average membrane potentials
(as in Jansen–Rit) proportions of active cells (as
in Wilson–Cowan), or something as minimal as
the population-level phase (as in the Kuramoto
model). The operator � in the first term on the
RHS represents the component of this update that
is a function of current activity within each state
variable, sometimes called the ‘local nonlinear-
ity’. The lengthy expression in the second term
on the RHS describes how each state variable re-
sponds to synaptic inputs from other states in the
system—which are first summed and then passed
through the coupling function Z, which typically

takes a sigmoidal shape. The first term within the
large square brackets, �, injects external inputs
to one or more state variables, which may in-
clude random noise (if the system is stochastic),
and/or other direct perturbations such as electro-
magnetic stimulation. The second termwithin the
large square brackets aggregates synaptic inputs
to � across three hierarchical levels, denoted by
the subscript ν: inputs from other state variables
within a neural population (ν=0), inputs from spa-
tially nearby populations (ν=1), and inputs from
spatially distant populations (ν=2). The first and
third of the levels in this hierarchy are universal
components of all WBM models. The second
level is based on the approach first introduced
by Spiegler and Jirsa (2013), incorporating lat-
eral interactions in mesoscopic neural fields into
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Fig. 13.6 Neural population model topologies. The vast
majority of neural population models used in the literature
consist of small motifs of 2–4 neuron excitatory and
inhibitory subpopulations within a cortical or corticotha-
lamic circuit. This figure shows a non-exhaustive set of

examples of model topologies that differ, often subtly,
in their wiring and specification of afferent/efferent input
signals. Note that these motifs are independent of the exact
equations governing the dynamics used, which also differ
across models

WBMs through a discretized local network of
neural masses defined over vertices of a corti-
cal surface geodesic mesh. This approach is less
commonly used in the field, in part because it
leads to orders of magnitude more numerically
intensive simulations due to the large number of
neural mass populations in the discretized local
networks.

Within the sum, the matrix V specifies the
connectivity topology. At ν=0, this is the inter-
action between states within a neural mass (c.f.
Fig. 13.6). At ν=1, V represents the topology
of lateral connectivity within a cortical surface
patch given by the local neural field kernel. At
ν=2, V is the large-scale anatomical connectivity

matrix (the anatomical macro-connectome), as
obtained for example fromDWI tractography (see
Fig. 13.5). The function � applies (if necessary)
a rescaling operation. Finally, the term �(t −
K ◦ C−1) indexes the previous values of Ψ at
a delay that is a function of the per-connection
distance or tract length K and axonal conduction
velocity C. C may be scalar-valued (for a single
global conduction velocity) or matrix-valued (for
a different conduction velocity per connection).
At ν=0 and ν=1 these delays are conventionally
set to zero, and the only non-negligible delays are
assumed to come in at ν=2 due to the large spatial
distances and finite conduction velocities of long-
range inter-regional communication.
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The notation above is useful in that it
encompasses all connectome-based neural mass
model variants that are formulated in terms
of ordinary or stochastic integrodifferential
equations.18 However because of its generality,
models are not commonly seen written (in articles
and code) in exactly this way. More usually,
the v = 0 and v = 2 terms within the sum,
reflecting intra-neural population and long-range
inter-neural population interactions, respectively,
are written out explicitly as separate terms (e.g.
Griffiths and Lefebvre 2019;Griffiths et al. 2020).
Note also that we have said nothing here about the
actual form of the neural population dynamics—
i.e. the equations defining the operator �. We
turn to this next.

13.3.2 Neural Population Models

In Sect. 13.2.1 we traced the development of the
idea of using dynamic models at the level of
neural populations to represent and track the col-
lective activity of a patch of neural tissue. To com-
plete this picture, in this section we provide some
brief summaries of the major neural population
models that have been used in WBMwork during
The Present. Due to space restrictions we do not
go into formal mathematical details—for a more
technical presentation of most of these models we
refer the reader again to Sanz-Leon et al. (2015),
and to the original and exemplary studies cited
below.

As noted earlier, one of the key distinctions
made in the field is between ‘phenomenological’
and ‘physiological’ (or sometimes ‘biophysical’)
model types19 (Sanz-Leon et al., 2015; Sanz Leon

18 The notation does not cover alternative expressions
using partial differential equations (e.g. Sanz-Leon et al.
2018), but those have not been widely used for WBM to
date.
19 As argued earlier, the categorical distinction sometimes
made between ‘phenomenological’ and ‘physiological’
model types is, in our opinion, not a particularly helpful
one. The reason for this is that, in a nutshell, some physio-
logical models are ‘more physiological’ than others. For
example, the Jansen–Rit and Robinson models, despite
including several neural subpopulations and aspects of
their physiology, are ultimately based on a set of equations

et al., 2013). The early neuralmass and field mod-
els discussed in Sect. 13.2.1 were all of the ‘phys-
iological’ type. Physiological models attempt to
describe, parsimoniously but accurately, relevant
aspects of the physiology of neural tissue that de-
termine dynamics at the population scale. This in-
cludes the state variables and parameters that rep-
resent physiological quantities like firing rates,
synaptic strengths, rate constants, synaptic ki-
netics, and conduction delays. Phenomenological
models, in contrast, adopt the ‘spirit’ of the neural
population activity idea outlined in Sect. 13.2.1,
but typically do not attempt to ground the equa-
tions used in biological concepts and mecha-
nisms. Beginning with the second of these first:

13.3.2.1 Phenomenological Models
Linear Diffusion The linear diffusion (LD)
model (also linear time-invariant system, linear
dynamical system, linear graph diffusion model),
has been used extensively in WBM, in several
variants. The basic model takes the form �̇ =
V� + �, where (as in the previous section) � ,
V, and � represent neural activity, large-scale
connectivity, and additive noise, respectively.
This is the simplest possible linear dynamical
system, and when V is a graph Laplacian
(V = D − A, i.e. the diagonalized node degree
matrix D minus the adjacency matrix A; see also
Sect. 13.3.4), this gives the standard equation for
linear diffusion on a graph. Whilst the LD model
is best thought of as a phenomenological neural
population model type, we note these or similar
equations have been arrived from consistent
and reasonably well-motivated reductions and
simplifications of more physiologically detailed
neural mass models (Deco et al., 2013a, 2014;
Galán, 2008).20

(Freeman et al., 1975; Lopes da Silva et al., 1974) that were
chosen to accurately reproduce characteristics of neural
activity recordings, but not actually derived in a mathe-
matically consistent way from physiological description of
single neurons, as was done for example with the Wilson–
Cowan (Wilson and Cowan, 1972) and Dynamic Mean-
Field (Deco et al., 2013a) models.
20 As noted, earlier the above equation is also the same
as used in the original generative model for fMRI DCMs
(Friston et al., 2003) (assuming zero values in theDCM‘B’
and ‘C’matrices), and features heavily in themore recently



Whole-Brain Modelling: Past, Present, and Future 331

The LD model plays a special role in neural
population model simulations, as it represents a
null model for hypotheses proposing that phys-
iologically detailed and nonlinear dynamics are
needed to produce a given simulated data fea-
ture. The main data feature that has been studied
in this context is temporal covariance structure
(aka functional connectivity), and for this the LD
model has usually been found to perform at least
as well as more complex nonlinear models (Ab-
delnour et al., 2014; Deco et al., 2013a; Honey
et al., 2009). Furthermore, due to its simplicity
the LD model allows questions around functional
connectivity patterns to be explored analytically,
through algebraic calculations of steady-state co-
variance structure (i.e. time-domain functional
connectivity), power spectra, and complex cross-
spectra (i.e. frequency-domain functional con-
nectivity). In particular, a closed-form expression
for the standard Pearson cross-correlation func-
tional connectivity matrix can be easily obtained
from the LD model in terms of the eigenvec-
tors and eigenvalues of the anatomical connectiv-
ity matrix (Abdelnour et al., 2018; Galán, 2008;
Honey et al., 2009; Robinson, 2012). We return
to the relationship between anatomical and func-
tional connectivity and implications of these LD
model results later.

Kuramoto Like the LD model, the Kuramoto
model (Breakspear et al., 2010; Kuramoto, 1984)
gives a highly simplified description of neural
population activity, using only a single state vari-
able per neural population or network node, with-
out differentiating neuronal subpopulation types.
The distinguishing feature of Kuramoto model
is that this state variable is the phase of a limit
cycle oscillator, giving a direct but quite abstract
representation of rhythmic neural activity.WBMs
employing the Kuramoto model aim to describe
large-scale neural activity in terms of the syn-
chronization dynamics of multiple phase oscilla-
tions, coupled weakly according to the underly-
ing anatomical skeleton (Breakspear et al., 2010;

developed spectral fMRI DCMs (Friston et al., 2014),
which have also recently been extended to connectome-
scale networks (Razi et al., 2017).

Cabral et al., 2011). These oscillatorsmay sponta-
neously lock to a common frequency despite hav-
ing differences in their natural frequencies (Stro-
gatz, 2000). Assumptions of the Kuramoto model
as applied in WBM include the existence of weak
coupling between oscillators and the dependency
of interactions on the sine of phase differences
between pairs of brain regions. Indeed, applying
more abstractedmodels not only enhances analyt-
ical tractability but also better explains common
fundamental mechanisms that may underpin a
variety of diverse anatomical and physiological
processes. Despite being highly abstract, the Ku-
ramoto model and its different variants (e.g., in-
cluding delays and complex coupling structures)
have proven to be capable of reproducingmany of
the non-trivial collective dynamics and complex
emergent synchronization behaviours observed in
empirical neuroimaging data (Breakspear et al.,
2010; Cabral et al., 2011). Notably, Kuramoto
also introduced the complex order parameter, by
averaging the complex numbers representing the
phases of coupled phase oscillators, to capture the
level of macroscopic (whole-network) synchrony
of the collection. The magnitude of the order
parameter describes the global phase coherence
of the whole system at each time point. Usually,
the global dynamic behaviour of a network of
coupled oscillators is described by the mean and
standard deviation of the magnitude of the or-
der parameter across all time-points, respectively
called the global synchrony and global metasta-
bility of the system (Breakspear et al., 2010;
Kaboodvand et al., 2019; Strogatz, 2000).

Stuart–Landau The Stuart–Landau (SL)
model, originally derived and studied by John
Trevor Stuart, Lev Landau, and others as a
model of turbulence in hydrodynamics, is a two-
state nonlinear dynamical system that gives the
canonical model (normal form) for an Andronov–
Hopf bifurcation (the switch from a quiescent
equilibrium state to a self-sustained limit cycle).
The SL model has been used extensively in the
WBM literature (Deco et al., 2017; Freyer et al.,
2012; Kaboodvand et al., 2019), particularly in
the context of research questions on criticality
and bifurcations. It is capable of expressing both
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noisy asynchronous dynamics and oscillatory
behaviours. Notably, recent studies using coupled
SL oscillators to model resting-state dynamics
in fMRI data found that the best fit of this
model to neuroimaging data occurs at the brink
of the bifurcation (transition from fixed point
to oscillating behaviour), where both steady-
state solutions and periodic oscillations co-exist
(Deco et al., 2017; Kaboodvand et al., 2019).
In addition to multistability, this model also
captures another key feature of healthy brain
dynamics: highmetastability. Metastability refers
to the simultaneous realization of two competing
tendencies to synchronize and desynchronize,
achieved by spontaneous shifting between
unstable states or transient attractor-like states
(Scott Kelso, 2012). Models exhibiting a Hopf
bifurcation are particularly well-suited for
simulating the effects of external manipulation
(including perturbation and neurostimulation,
e.g. (Spiegler et al., 2016, 2019), and grey matter
lesions (Kaboodvand et al., 2019)). Relatedly,
introducing frequency dynamics into the system
of coupled Stuart–Landau oscillators has been
shown to improve performance of WBM fits
to empirical data, by yielding temporally richer
dynamics (Kaboodvand et al., 2019).

Fitzhugh–Nagumo The Fitzhugh–Nagumo
(FHN) model is a planar oscillator that is well-
known within computational neuroscience as a
2-dimensional reduction of the 4-dimensional
Hodgkin–Huxley equations, that retains their
essential qualitative dynamical behaviour. It
has been used extensively (Ghosh et al., 2008;
Sanz Leon et al., 2013; Spiegler et al., 2016) in the
WBM literature as a simple model of oscillatory
neural population activity. Like the SL model,
the FHN model is easily moved via variation of
its parameters through a Hopf bifurcation, where
it switches from quiescent to self-sustained limit
cycle oscillations. In WBM studies using FHN
model, the natural frequency is usually set to
either alpha or gamma.

13.3.2.2 Physiological Models
A number of different physiological neural
population models are currently used in WBM

research. These differ along two primary
dimensions: (a) the local circuit motif (number
of neuronal subpopulations, and how they are
connected), and (b) the dynamics—i.e. the
equations used to describe activity in each
subpopulation. Speaking to the first of these,
Fig. 13.6 shows the local circuit motifs for a
number of commonly used physiological neural
population models.

Wilson–Cowan As described earlier in Sect.
13.2.1 The Wilson–Cowan model (Chow and
Karimipanah, 2020; Cowan, 2014; Wilson
and Cowan, 1972) features two interacting
excitatory and inhibitory subpopulations, with
coupled first-order nonlinear ordinary differential
equations describing activity level (proportion
of active cells per unit time) in the population.
Whilst this is the most widely known neural
populationmodel in computational neuroscience,
it has actually not been used extensively in
WBM, compared to other alternatives. The
Wilson–Cowan model has however provided the
inspiration for many of the more commonly used
models discussed in this chapter.

Jansen–Rit Also described at length in
Sect. 13.2.1, the Jansen–Rit model (Jansen and
Rit, 1995) features one inhibitory and two excita-
tory neural subpopulations, with second-order
differential equations describing population-
average membrane potential dynamics. Widely
known in part due to its use in DCM for M/EEG
(David and Friston, 2003;David et al., 2006a), the
Jansen–Rit model has been employed in WBM
studies to study neurostimulation (Kunze et al.,
2016; Spiegler et al., 2011) and brain rhythms
(Stefanovski et al., 2019).

Dynamic Mean Field The dynamic mean field
(DMF) model, also known as the ‘Reduced
Wong–Wang’ or ‘Wong–Wang–Deco’ model,
was derived by Deco et al. (2013a) from the
equations of a (leaky integrate-and-fire) spiking
network. A key part of the model’s derivation
included ignoring fast glutamatergic (AMPA
receptor-mediated) and GABAergic activity, and
only tracking the slow glutamatergic (NMDA
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receptor-mediated) activity within a neural
population. For this reason it is particularly suited
to modelling slow neural fluctuations seen in
haemodynamic signals such as fMRI (Deco et al.,
2013a; Hansen et al., 2015). In the following
year, the 1-state DMF model was extended to
include a second inhibitory neural population,
resulting in a two-state system very similar to the
classic Wilson–Cowan equations, with negative
feedback that is capable of generating oscillatory
activity. This 2-state DMF model has been
principally use to study resting-state fMRI (static
and dynamic) functional connectivity data (Deco
et al., 2014; Murray et al., 2018; Zimmermann
et al., 2018).

Robinson The Robinsonmodel (Robinson et al.,
2001) is a neural field model that includes a
rhythm-generating corticothalamic circuit with
nonzero conduction delay. The dynamics of
membrane potential fluctuations in each cortical
and thalamic subpopulation are second-order in
time, with many mathematical similarities to
the Lopes Da Silva and Jansen–Rit equations.
As shown in Fig. 13.6, the corticothalamic circuit
includes excitatory and inhibitory subpopulations
in the cortex, as well as excitatory (relay) and
inhibitory (reticular) thalamic nuclei. The circuit
has been studied extensively as a model of
EEG alpha rhythms (Robinson et al., 2001), as
well as in relation to sleep (Abeysuriya et al.,
2015), Parkinson’s (Müller et al., 2017), and
TMS plasticity (Wilson et al., 2016, 2018). In
addition to the corticothalamic circuit dynamics,
the whole-brain aspect of this model relates to
the cortical compartment, which is an extended
neural field representing all of cortex (or, in
more recent versions, separated into left and
right hemispheres (Gabay and Robinson, 2017;
Robinson et al., 2016)). A recent focus on the
spatial structure of neural activity eigenmodes in
this model (Gabay and Robinson, 2017; Gabay
et al., 2018; Robinson et al., 2016) is following
similar ideas to Nunez (1974), Nunez and Cutillo
(1995), and Nunez and Srinivasan (2006).

Others Honorary mentions in this expedited
neural population model survey go to Liley—

whose model (Liley et al., 2002) gives an
alternative account to Robinson’s of EEG alpha
oscillations and has been developed with a focus
on EEG phenomena during anaesthesia; AdEx—
the adaptive exponential integrate-and-fire neural
population model, one of a new breed of mean-
field reductions that have a more consistent
relationship to single-cell behaviour (see also
Montbrió et al. 2015; Zerlaut et al. 2018).

13.3.3 Parameter Estimation

A central component of all mathematical mod-
elling is the tuning of parameters of a model to
match experimental observations. In parameter
estimation (aka parameter optimization, model
fitting, model inversion; we treat these terms as
synonymous here) the features of interest in those
experimental observations are encoded in an ob-
jective function, and various algorithms are used
to efficiently (or inefficiently!) find the optimal
parameter values that minimize/maximize the ob-
jective function by best replicating the experi-
mentally observed features, after taking into ac-
count any other (regularization) constraints. Iden-
tifying these optimal parameters is useful in at
least three ways: First, one might be interested
in the actual numeric value of the parameter.
This applies in particular to parameters that rep-
resent concrete, meaningful physiological quan-
tities, such as axonal conduction delays Van Al-
bada et al. 2010, effective connection strengths
David et al. 2006a, and excitation–inhibition ra-
tios (Murray et al., 2014; Zimmermann et al.,
2018). For other commonly explored but less
physiologically interpretable parameters such as
global coupling, the Kuramoto order parameter,
or the FHN self-recurrence control parameter, the
absolute numerical value may not be as useful.
Second, one might be interested not in the param-
eter values per se, but in the dynamical properties
of the modelled system when the parameters are
set to their optimal values. Third, WBM parame-
ter estimates can be treated ‘blindly’ (i.e., without
specific concern to their physiological interpre-
tation) as additional data features for biomarker
discovery efforts (Iravani et al., 2021).
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Fig. 13.7 WBM FC fit is
maximized in the vicinity of
a bifurcation point. In
brute-force 1-D
optimization of the global
connectivity scaling
parameter g, Deco et al.
(2013a) found that the fit
of simulated to empirical
functional connectivity
matrices (upper panel) is
maximized at the (second)
bifurcation point where the
network’s behaviour
(pattern of firing rates)
changes qualitatively from
multistability to instability
(lower panel). Modified
from Deco et al. (2013a)

In WBM research, the data features of interest
have typically been one or more of (1) functional
connectivity (static or time-varying), (2) power
spectra, and (3) evoked response waveforms, in
fMRI, MEG, EEG, ECoG, or SEEG recordings.
Within fMRIWBMs, the most common objective
function used to date is based on the Pearson cor-
relation between the vectorized upper triangles of
simulated and empirical functional connectivity
matrices (e.g. Deco et al. 2013a; Honey et al.
2009), although several recent studies have high-
lighted the importance of dynamic connectivity
patterns as well (Deco et al., 2017; Kaboodvand
et al., 2019). It has been suggested that maxi-
mizing similarity of global dynamic behaviour of
the ensemble of oscillators (captured by global
synchrony and globalmetastability) andminimiz-
ing the distance between distributions of instanta-
neous phase synchrony patterns can significantly

improve the model fit to empirical data. In a
now-classic study, Deco et al. (2013a) computed
this objective function for a series of BOLD-
fMRI simulations using the DMF neural popu-
lation model. This was done across a range of
values for a global coupling parameter g, which
linearly scaled connectivity weights. The authors
found (Fig. 13.7) that the optimal value of g (the
one that maximized correlation with empirical
functional connectivity) was also in the vicinity
of a bifurcation to multistability in the neural
dynamics. Proximity to specific bifurcations con-
fers certain important properties on dynamical
systems, including criticality and pattern forma-
tion, and is believed to be important for optimal
brain functioning (Deco et al., 2013b). This work
is an excellent example of a scenario where the
qualitative system behaviour (the bifurcation) is
of principal interest, not the final estimated values
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of g, which have no direct physiological interpre-
tation (Deco et al., 2013a).

The global coupling scaling parameter g is one
of the most sensitive and important components
of a WBM, and its tuning is a standard part of
almost all WBM studies. This is also seen in
Fig. 13.8, which summarizes key results from
Abeysuriya et al. (2018), who used the Wilson–
Cowan model to study the fast-timescale whole-
brain dynamics seen in source-space MEG data.
The model fitting approach here varied g (as in
Fig. 13.7), and in addition simultaneously varied
a global axonal conduction velocity parameter
v. The optimum values of g and v (red dot
in Fig. 13.8a) were determined by the best fit
between simulated and empiricalMEG functional
connectivity, as defined by bandpass-filtered,
alpha-frequency range amplitude envelope
correlations (AECs; Fig. 13.8b,c).

Searching across all parameter values within
a specified range and displaying some high-level
(usually scalar-valued) feature of each model run,
as is done in both Figs. 13.7 and 13.8, is known as
‘parameter space exploration’ (PSE). The point
of these low-dimensional PSEs is usually to
visualize the pattern of changes in qualitative
system behaviour over the parameter space. In a
model fitting context, this is also known as ‘brute-
force’ parameter optimization.21 This brute-force
approach has been the primary model fitting
methodology used this far in WBM. It works
particularly well in 1D and 2D (i.e. when one
or two parameters are varied simultaneously), in
which case the results can be easily visualized
with scatter plots and heatmaps, as in Figs. 13.7
and 13.8. The down side of brute-force search is
that the number of simulation runs required grows
exponentially with the number of parameters
varied. For WBMs—particularly of fMRI data—
depending on the implementations used and
the type of data being simulated, single run
times may vary from a minute or less to several
hours or days. Brute-force search therefore
becomes infeasible for parameter spaces of

21 Although from an algorithmic point of view brute-force
search is so simple and computationally inefficient as to
barely warrant the name ‘model fitting’.

around 5 dimensions or higher (depending
naturally on the granularity of sampling within
the ranges for each parameter). At this point, if
essential parameters cannot be fixed or otherwise
ignored, it becomes necessary to employ more
sophisticated optimization approaches.

Several authors have proposed sampling-
based approaches (e.g. Abeysuriya and Robinson
2016) and evolutionary algorithms (e.g. Cona
et al. 2011) for neural mass model parameter
estimation. Both of these work well for relatively
simple models (e.g. of algebraic power spectra
Abeysuriya and Robinson 2016) that are quick to
evaluate, and therefore allow for large numbers
of samples. For more complex models however,
it is necessary to employ some form of gradient-
based approach to achieve workable scaling and
speeds. The pre-eminent example of gradient-
based parameter optimization in the brain
modelling space is DCM, which employs several
variants of gradient descent on the log model
evidence (a complexity-penalized goodness-
of-fit metric), using variational techniques to
guarantee convergence. Generalizing these
implementations from small-scale networks to
whole-brain models presents two challenges,
however. First, a ‘trick’ employed in most
DCM M/EEG model types is to employ a re-
formulation of the original David–Friston neural
mass model equations that yields an analytic
Jacobian, and absorbs the delay operator into the
Jacobian. The analytic Jacobian dramatically
facilitates gradient-based methods (because
it allows the calculation of the gradients).
Unfortunately however, it is not possible to
write the majority of neural population models
(particularly those with explicit and variable
conduction delays) in this way. An emerging
alternative to only using models admitting of
an analytic Jacobian comes from modern tools
developed principally in the machine learning
community (such as Tensorflow, PyTorch, STAN,
and Jax) that employ algorithmic or automatic
differentiation (commonly known as ‘autodiff’).
Automatic differentiation allows gradients to
be computed directly from numerical code,
without the need for extra mathematical work
(which is anyway unfeasible in the general case)



336 J. D. Griffiths et al.

Fig. 13.8 Fitting MEG Functional Connectivity. Shown
are (2-D brute force) model fitting results fromAbeysuriya
et al. (2018). These authors used modified Wilson–Cowan
equations to model MEG power spectra and functional
connectivity. (a) Model fit is shown for all values of the
global connectivity scaling parameter g and global axonal
conduction velocity (converted into a mean delay over

connections for ease of interpretation). The zone of best fit
is a diagonal manifold within the 2D parameter space, and
the best-fitting parameter combination is indicated in the
figure with a red dot. (b) Best-fitting simulated alpha-band
MEG amplitude enveloped correlation (AEC) functional
connectivity, (c) Empirical MEG AEC

(Baydin et al., 2018). The version of this type
of optimization employed by STAN is known
as ADVI (Automatic Differentiation-based
Variational Inference Kucukelbir et al. 2017).
Recent WBM work on personalized epilepsy
treatments, also discussed in Sect. 13.3.5, has
successfully employed a hybrid global (MCMC
sampling) and local (STAN ADVI) inference
approach (Hashemi et al., 2020). Given the
importance of robust and meaningful parameter
estimation in WBM, further technical work in
this area is a high priority for the field.

13.3.4 Connectivity

As we have seen, definition of the network struc-
ture subtended by long-range white matter fi-
bres (i.e. the anatomical macro-connectome) has
a quintessential and critical role in WBM. One
of the great promises of WBM is the possibility
of using noninvasive brain imaging to incorporate
individual subjects’ and patients’ unique connec-
tivity fingerprints, potentially perturbed by vari-
ous disease processes into ‘personalized’WBMs.
Whilst the general approach for building such
models is now fairly well established, there are
a number of attendant technical details that vary
considerably across published work and need to

be properly understood by researchers. In addi-
tion, normative atlases of human and non-human
connectivity structure, at various levels of res-
olution, have a key role to play in refining the
use of connectivity in WBMs. In the following
paragraphs we offer some commentary on these
issues.

13.3.4.1 Scaling of Connection Weights
In tractography-based analysis pipelines for re-
construction of inter-regional anatomical connec-
tivity, the chief end-result is usually a matrix
containing the number or ‘count’ of tractography
streamlines interconnecting a given pair of re-
gions in a parcellation. The analysis steps leading
up to this matrix are extensive and include the
specifics of diffusion-weighted MRI data acqui-
sition, preprocessing, local tissue model and trac-
tography algorithm used, and tractography post-
processing (e.g. application of lower and upper
thresholds on streamline lengths, streamline fil-
tering with e.g. SIFT or LiFE). It is beyond the
scope of this chapter to summarize all of these
options, which are in any case not specific to
WBM per se, and well covered in the diffu-
sionMRImacro-connectomicsmethods literature
(e.g. Jeurissen et al. 2019; Sotiropoulos and Za-
lesky 2019). We therefore focus the discussion
here on transforms one might apply to the raw
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streamline count matrix to prepare it for WBM
simulations.

First, it is essential to appreciate that
streamline counts are not direct measurements
of the actual quantity of interest—which is,
broadly speaking, number of axons. Fortunately,
comparisons against chemical tract tracing
studies in non-human primates have at least
shown proportionality between axonal count
estimates and tractography streamline counts
and densities (Donahue et al., 2016), although
the degree of correlation leaves a lot to
be desired. Tractography-based connectivity
estimation is nevertheless well-known to suffer
from substantial numbers of false positives
(in the case of probabilistic algorithms) and
false negatives (in the case of deterministic
algorithms) (Maier-Hein et al., 2017). One
common source of false positives is the large
number of locations in white matter that contain
crossing fibres, at which points tractography
streamlines are liable to ‘skip’ from one white
matter tract to another, thereby yielding an
erroneous ‘composite’ connection. A common
source of false negatives is the bias against
long connections, resulting from the fact that the
larger number of steps required to track a long
fibre leads to a higher probability of termination
due to local signal noise at some point along
the fibre’s trajectory (Jeurissen et al., 2019;
Zalesky and Fornito, 2009). Countering this,
tractography is also known to have a positive bias
towards long connections when the streamline
initiation points are set randomly throughout
white matter, because fibres that are long are
also large, and so take up proportionally more
of that volume, making them more likely to be
seeded at Hagmann et al. (2008) and Jeurissen
et al. (2019). Due to the latter consideration,
a distance correction is often applied, dividing
the tractography-estimated connection weight
between two regions by the average streamline
length (Adhikari et al., 2015; Hagmann et al.,
2008; Roberts et al., 2016). This correction is
also however sometimes erroneously applied
following analysis pipelines when streamlines are
initiated at the grey–white matter interface rather
than deep white matter. A further correction

sometimes used is to normalize streamline counts
by the total size of the two connecting ROIs, or
by the combined total volume of their surfaces
receiving tractography projections, resulting in
a per unit volume connection density (Adhikari
et al., 2015; Hagmann et al., 2008; Schirner et al.,
2015; Van Den Heuvel and Sporns, 2011). In
chemical tract tracing studies, the distribution of
connection strengths (density of axons per unit
area) is logarithmic and very wide, spanning six
orders of magnitude (Markov et al., 2014). The
distribution of streamline weights in tractography
is also logarithmically distributed, although it is
unclear to what extent this is due to the real
anatomical features seen in the ground-truth data,
versus the biases noted above (Donahue et al.,
2016; Sotiropoulos and Zalesky, 2019). It has
been suggested (without much justification) by
Honey et al. (2009) that ‘effective’ connection
strengths in the brain likely do not span several
orders of magnitude. These authors’ proposed
solution to this ‘issue’ was to resample the highly
skewed tractography weights matrix to a unit-
normalized Gaussian distribution. Other authors
simply apply a log transform to the connection
strengths (Abeysuriya et al., 2018; Griffiths et al.,
2020). It is certainly true that, whether well
biologically justified or not, in connectome-
based neural population model simulations,
logarithmically distributed connectivity weights
will likely lead to a small number of areas having
disproportionately high influence on the activity.

After these explicit adjustments to the con-
nection strength distribution, it is usually neces-
sary to rescale so that the values lie within some
desired range (e.g. 0 and 1). Most commonly
this is done at a global level, for example by
dividing all values in the matrix by the maximum
value (Abeysuriya et al., 2018), or by the Frobe-
nius norm (Mehta-Pandejee et al., 2017). Alterna-
tively, rescaling is sometimes done at the row (i.e.
node) level (Demirtaş et al., 2019; Spiegler et al.,
2016). Again, rows can be unit-normalized by
dividing each row by the maximum value of that
row.More standard in other areas of science (par-
ticularly graph theory) is to compute the network
or graph Laplacian, by subtracting a diagonal ma-
trix of node degrees (i.e. row sums) from the orig-
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inal adjacency (in this case, rescaled streamline
density) matrix. The effect of both these latter two
operations—normalizing row-wise and taking the
Laplacian22—is to make the row sum (i.e. total
incoming connection weights for each node) take
a uniformvalue over regions (value of 1 in the first
case, value of 0 in the second). Neither of these
approaches are advisable if the aim is to main-
tain clear biological interpretability of connection
weights in the WBM, however. The reason for
this is that the implicit assumption that all brain
regions receive identical net input, and differ only
in the distribution of input strengths over net-
work nodes, is highly questionable. Moreover,
the heterogeneity of approaches for tractography
streamline and connectivity weights matrix ad-
justment and rescaling is somewhat problematic
for the field. The resultant differences in connec-
tivity matrix structure are likely to have a major
impact on the generalizability and reproducibility
of modelling studies. We return to this issue, with
some proposals, in Sect. 13.4.2.

13.3.4.2 Atlases and Exemplar
Datasets

In WBM studies where tractography-derived
subject-specific anatomical connectivity is not a
key component, it is useful to have a go-to dataset
that serves as the default option for a critical mass
of researchers. There are two datasets that have
served this role in WBM over the past decade:
the CoCoMac database (and its derivatives)

22 Note that moving from the original adjacency to the
Laplacian only involves a change in the diagonal val-
ues of the matrix—specifically it adds a strong negative
self-connection on the diagonal equal to the number or
weighted sum of positive incoming connections. Whether
it makes sense to use the Laplacian in a WBM, and what
the implications of that choice are, depends on whether the
model of interest (and its software implementation) does
actually use the matrix diagonals. When they are used,
diagonal entries denote self-connections within a node,
but WBM modelling software often ignores the diagonals
because nodal self-connections are encoded separately
within the neural population model equations. In the TVB
software, for example, matrix diagonals are ignored for
this reason; in the DCM software, however, matrix diag-
onals are used for parameterization of self-connections.
Naturally, diagonal values play a profound role in the
behaviour of linear algebraic WBM models.

and the connectivity matrices first described in
2008 by Hagmann et al. (2008) and Daducci
et al. (2012) (see Fig. 13.5). The ‘Hagmann
Connectivity’ Hagmann et al. (2008) has been
used by dozens if not hundreds of research
studies on brain connectivity, including many
using WBM. Despite being over 15 years old,
the Hagmann diffusion-weighted MRI dataset
is actually still a relatively high quality one by
current standards. Nevertheless, the Hagmann
Connectivity’s role as one of the WBM and
neuroimaging macro-connectomics community’s
primary exemplar connectivities has now
been all-but relinquished23 to tractography
reconstructions from the (original, ‘phase 1’)24

WashU-Minnesota Human Connectome Project
(HCP) dataset—a rich, multimodal neuroimaging
and neurocognitive assessment resource, with
a large sample size (N> 1000) of healthy
subjects.25

As described in Sect. 13.2.4, several early
WBM studies were based on CoCoMac
connectivity (Deco et al., 2009; Ghosh et al.,
2008; Honey et al., 2007), which at the time
was the only real source of approximately
human whole-brain connectivity before macro-
connectomics neuroimaging took off in the late
2000s. CoCoMac has the distinct advantage
of representing ‘gold-standard’, ‘ground-
truth’ information on anatomical projections;
something that cannot be said for tractography-
based estimates, whose relationship to anatomical
ground truth remains somewhat unclear. The
main disadvantages of CoCoMac are that (a) it
is based on macaque rather than human tracer
studies, and (b) its connectivity weights have a
somewhat limited range of values (0, 1, 2, or 3).
The first of these has been addressed somewhat
by mapping (as discussed in Sect. 13.2.4) of the
CoCoMac brain regions CoCoMac on to the
human brain. This human-mapped CoCoMac

23 Gradually asymptoting to ‘every man and his dog has
played with HCP’.
24 (there are now over a dozen ongoing HCP follow-up
studies).
25 Curiously, however, at the time of writing the Human
Connectome Project is still after 10 years yet to release a
Human (anatomical) Connectome.
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connectivity was studied by Ghosh et al. (2008)
and Knock et al. (2009), eventually grew into the
‘default’ connectivity matrix distributed in and
used extensively by the TVB simulator library.
Here it serves very much as the go-to dataset for
WBM in the way described above. Recent work
has developed a procedure for fusing CoCoMac
and tractography data (Bezgin et al., 2017),
which importantly also includes a detailed and
high-resolution map of intra- and extra- thalamic
connectivity (Bezgin et al., 2017; Spiegler et al.,
2016), which cannot be easily obtained from
tractography. The limitation in the weights
range of CoCoMac has also been addressed
somewhat by the more recent availability of high-
quality macaque tract-tracing data—which spans
several orders of magnitude in weights (Markov
et al., 2014). Shen et al. (2019) have found that
probabilistic tractography, when using the best
parameters, achieves good correspondence with
tracer injection data.

Looking beyond primate species, a relatively
new and extremely powerful addition to the
WBM space is the Allen Mouse Brain Atlas.26

Featuring an extremely detailed microscopy-
based, cellular-level resolution map of mouse
brain connectivity, as well as richly characterized
cell type, gene expression, and physiology
information, the Allen Mouse Brain Atlas is
widely recognized as the most comprehensive
and useful neuroinformatics resource in the field
of neuroscience today. Recent work has adapted
the connectivity and cortical surface data from
the Allen Atlas for use within the TVB platform
(Melozzi et al., 2017; Spiegler et al., 2019), and
this joint resource (‘The Virtual Mouse Brain’;
TVMB) is likely to be an important vehicle for
discovery and innovation for WBM research the
coming years.

13.3.5 Clinical Applications

Applications of WBM to questions in clinical
neuroscience has been a central focus in the field
from its inception, as indeed it has been in other

26 https://mouse.brain-map.org/.

fields that employ neural population models,
macro-connectomics, and neuroimaging. The
specific and unique contributions of WBM to
these efforts relate to:

1. Mechanisms—studying how physiological
processes underlying various pathologies
manifest at the whole-brain level.

2. Personalization—the development of patient-
personalized WBMs for diagnosis, prognosis,
and treatment design.

3. Virtual Therapies—the in silico testing ofmul-
tiple alternative treatment options, and use of
this information in clinical decision support.

As we shall see in the following pages, the
majority of work done on clinical applications
of WBM to date has been concerned with the
first of these. This is entirely proper because the
second two are contingent on the availability of
appropriate WBMs that incorporate and express
solid biological understanding.

We have already discussed in previous sections
personalization of WBMs in a non-clinical con-
text, through their connectivity structure. How-
ever it is in the clinical setting that personalization
of WBMs really comes into its own. This is
because inter-subject variability in disease pro-
gression, and how that interacts with the individ-
uating characteristics of a given patient’s brain,
undoubtedly leads to many subject-specific as-
pects of clinical conditions that warrant a per-
sonalized, patient-level characterization. The idea
here is therefore to develop for each patient a
model that is specific to their pathology in their
brain, based on information from neuroimaging
and other sources.

The third dimension of clinical application
work—development of Virtual Therapies—is
something that draws strongly on understanding
of mechanisms, and (although not strictly nec-
essary) would benefit heavily from patient-level
personalization. The aim here is to use WBMs
to assess, on mechanistic neurobiologically
based (and well-validated) grounds, the expected
outcome of a given clinical intervention. With
this in place it is then in principle a simple
(embarrassingly parallel) matter of software

https://mouse.brain-map.org/
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engineering to assess the expected outcome of
thousands or millions of alternative simulated
intervention variations, and find the optimal
choice under the relevant practical constraints.

In the following pages we discuss applications
of WBM in work on epilepsy, traumatic injury,
stroke, neurodegeneration, neuropsychiatry, and
brain stimulation. It is impossible in the space
available to do justice to the breadth of work
in any of these domains, and so we do not aim
here to be either comprehensive or systematic.
Instead, we restrict ourselves to summarizing a
few notable examples, and in addition offer some
high-level comments on general themes and con-
siderations.

13.3.5.1 The General Approach
The general approach in clinical WBM work can
be summarized as follows: changes due to patho-
physiology or pharmacological interventionsmay
be (a) specified a priori (using e.g. regional brain
pathologies detectable on structural MRI scans),
(b) estimated from functional (fMRI/MEG/EEG)
data through parameter optimization, or (c) some
combination of the two.

For the second of these—changes estimated
from functional data—the starting point is a ho-
mogeneous model with uniform parameters, for
all brain regions and all subjects. Fitting is then
performed—iteratively comparing the simulated
and empirical data for the brain activity feature
of interest, and updating model parameters to
maximize the (penalized) goodness-of-fit. The
resultant parameter estimates may then be used at
the single-subject level as diagnostic evaluations
of current brain state, or in second-level (group or
condition comparison) analyses.

In the case of a priori (or ‘bottom-up’)
modelling of disease-related changes: these
changes may—depending on the pathology
in question—be modelled either as disrupted
anatomical connectivity or as disrupted regional
neural dynamics. The two principal ways of
modelling anatomical connectivity pathologies a
priori are to modify (usually weaken) connection
strengths or change (usually decrease) conduction
delays between region pairs. Removal of all
edges connecting a node constitutes removal

of that node. Pathological changes in node
dynamics may be expressed either through a
novel dynamical model, or (more often) an
off-the-shelf model, with modified parameters
reflecting the hypothesized changes. These
changes may be global or (more commonly)
region-specific, reflecting such things as lesions,
pathophysiological tissue, spatial maps of
neurotransmitter efficacy, or brain stimulation
therapy. The end-result in this case is a prognosis
or prediction about how the hypothesized disease
process will influence brain dynamics, at either
the group- or individual patient-level.

13.3.5.2 Epilepsy
Epilepsy is a severe neurological condition
with high prevalence (~5–8%) in the general
population worldwide. It is characterized by
spontaneous recurrence of seizures—sudden
bursts of uncontrolled synchronous neural
activity—causing neurological, cognitive,
psychological, and social disturbances (Muhigwa
et al., 2020). Neurophysiological modelling
of epileptiform activity is a veritable cottage
industry in computational neuroscience (e.g.
Breakspear et al. 2006; Jirsa et al. 2014;
Kameneva et al. 2017; Taylor et al. 2014). The
reasons for this are likely twofold: First, epilepsy
is by its very nature a dynamical disease, and
for this reason is an inherently attractive research
area to scientists of both a mathematical and
computational bent. Second, seizure-like (high-
amplitude, fast-bursting) activity is a relatively
easy-to-induce regime in many computational
models of neurons and neural populations;
and so epilepsy presents itself as a natural
topic of study for scientists already working
on and exploring those systems. Similarly, for
scientists working on and interested in network
dynamics, the phenomenon of seizure spreading
‘infectiously’ throughout a network, in ways
that are influenced by the network’s topology, is
an inherently interesting phenomenon. Clinical
questions in WBM work on epilepsy relate
to the physiological mechanisms of seizure
initiation and spread, and to interventions aimed
at controlling or minimizing seizures through
therapeutic drugs, stimulation, and neurosurgery.
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Somewhat uniquely in neural population
modelling, models of epileptic activity are often
specific to that application, not general-purpose
descriptions of neural activity. There are roughly
two flavours: (1) models that describe seizure
generation through bistability mechanisms,
and (2) models where seizures are generated
via parameter-induced bifurcations—where a
(slowly varying) model parameter moves the
system into and out of a regime where seizure is
the only stable state.

In an early example of epilepsy modelling
with WBMs, Taylor et al. (2014) developed one
of the first personalized connectome-based neu-
ral population models of epileptic activity.27 The
population model used was an Amari-type neural
field with centre-surround inhibition, placed in
a parameter regime able to spontaneously gen-
erate seizure-like activity. Subsequently Taylor
et al. (2015), these authors used a modified ver-
sion of this model to derive an optimal stimu-
lation control algorithm, that could be used to
abate seizures through implanted neurostimula-
tors. There is much interest currently in the devel-
opment of physiologicalmodel-based technologi-
cal devices of this sort, although to our knowledge
a working prototype has yet to be demonstrated in
practice.

Whilst neurostimulation is an area of active
study, the usual treatment option for the ~20–
40% of epilepsy patients who are unresponsive to
drugs is surgical resection of the epileptogenic tis-
sue. Importantly, there is room for improvement
in the efficacy of epilepsy surgery, principally
by improved identification of the epileptogenic
zone or other nearby resection targets. The epilep-
togenic zone also usually spans multiple brain
regions, often including areas of Eloquent cor-
tex, whose removal increases the risk of serious
neurological complications. In those cases, alter-
native resection targets that decrease seizure fre-
quency with negligible impact on neurocognitive
function are needed. In response to this, major
WBM research efforts have been directed towards

27 See Wang et al. Wang et al. (2019) for an excellent
review on the history and successes of personalized brain
network modelling in epilepsy.

the mathematical analysis of seizure dynamics,
with the aim of identifying universal rules gov-
erning the initiation and termination of seizures,
and establishing a taxonomy of seizures, to aid in
surgical interventions.

In addition to neurostimulation, Taylor and
colleagues also pioneered the use of patient-
personalized brain network models to study the
effects of surgical resection (Sinha et al., 2014).
However, the most influential work in this area in
recent years has come from the group of Viktor
Jirsa and colleagues in Marseille. In 2014, they
(Jirsa et al., 2014) developed a generic neural
population model, termed the ‘epileptor’, that
characterizes dynamics governing seizure onset
and offset in terms of well-defined mathematical
events.

The Epileptor model comprises five state vari-
ables described by a system of integrodifferential
equations acting on three different time scales.
Two variables operate on the fastest time scale,
and are responsible for generating the rapid dis-
charges (fast oscillations) during the seizure. At
the intermediate time scale, a further two state
variables act to determine the so-called spike and
wave events. On the slowest time scale, a so-
called permittivity variable governs transitions
between interictal and ictal states, where seizure
onset and offset are respectively associated with
saddle-node and homoclinic bifurcations. Impor-
tantly, the authors showed that although a wide
array of possible biophysical parameters/mecha-
nisms (representing specific experimental condi-
tions) can push the system towards seizure, the
dynamical system theory-based properties of the
system remain invariant (Jirsa et al., 2014). Sub-
sequently, Jirsa and colleagues focused on using
the Epileptormodel to characterize seizure propa-
gation in patient-specific connectome-based neu-
ral population models, with the aim of improving
surgical resection strategies. In this so-called Vir-
tual Epileptic Patient (VEP) approach (see also
Sects. 13.3.3 and 13.4.4), Epileptors describing
individual brain regions were coupled according
to the patient’s structural connectome (An et al.,
2019; Jirsa et al., 2017), resulting in a WBM that
accurately reproduced epileptic seizure dynamics
recorded by implanted stereotactic EEG (sEEG)
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electrodes. A graph theory-based community de-
tection algorithm was then employed to identify
candidate areas for resection, as brain regions and
fibre tracts involved in seizure propagation. ‘Vir-
tual’ resection of those areas in the VEP model
was confirmed to result in suppression of seizure
propagation in simulations. As discussed further
later, the VEP is fairly unique amongst clinical
applications of WBM, in that a clear route to
positively influencing patient treatment has been
identified, with clinical trials well underway.

13.3.5.3 Stroke and
Neurodegeneration

Several early WBM studies investigated the
impact of focal brain lesions on large-scale
brain dynamics by ‘lesioning’ the connectivity
matrix, usually by removing or reducing the
strength of specific connections, or by removing
specific network nodes (Alstott et al., 2009;
Cabral et al., 2011; Honey and Sporns, 2008;
Váša et al., 2015). Following implementation
of a hypothesized lesion within the anatomical
connectivity, these authors have tended to focus
chiefly on characterizing observed shifts in hub
regions and other graph-theoretic properties of
simulated (fMRI) functional connectivity. One
issue with these lesion-based studies, however, is
that they made only limited direct comparisons
with empirical imaging data in actual patients
with brain lesions, such as stroke survivors.
There have however not, to our knowledge, been
any WBM studies demonstrating that patient-
specific, empirically derived changes in WBM
connectivity structure result in modified fMRI
functional connectivity patterns seen in those
same subjects.

Falcon et al. (2015) conducted parameter
space explorations with WBMs built from
individual stroke patients’ connectivity matrices.
They found that stroke-related white matter
changes led to changes in excitation–inhibition
balance. Falcon et al. also conducted a ‘virtual
intervention’, in which they were able to
accurately predict improvement in motor
performance in recovering stroke patients using
simulation parameter estimates. Building on this,
in a recent study on brain tumours, Aerts et al.

(2018) also studied excitation–inhibition balance,
via local model parameters, using empirical
structural connectivity to specify connectivity
(encoding tumour presence via both the tumour’s
impact on the tractography-derived weights
matrix, and also via model fits to fMRI data to
estimate local model parameters). Kaboodvand
et al. (2019) also studied the effect of malfunction
or lesions by changing each brain region’s
local dynamics—in this case to evoke noisy
behaviour, rather than removing nodes/links from
the underlying structural connectome. These
authors introduced vulnerability as a measure
of each region (or connection)’s hypo-/hyper-
connectivity risk in the face of malfunction
in other areas. Along with this, they proposed
a ‘hazard’ map predicting the level of brain
network deterioration inflicted by each region’s
malfunction, and provided evidence of lower
tolerance to lesions in the central hub regions
compared with random lesions.

A major growth area for clinical WBM at
present is Alzheimer’s and dementia. One of
the first WBM studies exploring this area was
that of Zimmermann et al. (2018), who used the
DMF model to analyse fMRI data from patients
and control subjects, observing a reduction
in E/I balance in Alzheimer’s patients. More
recently, Stefanovski et al. (2019) used the
Jansen–Rit model to study changes in EEG in
Alzheimer’s (Stefanovski et al., 2019). In an
interesting and methodologically novel model
design, these authors introduced PET-derived
spatial maps of plaque-related amyloid beta load
as a regionally varying modulation of the ratio of
excitatory and inhibitory neural population time
constants. This spatially varying ‘perturbation’
was found to account well for EEG results
showing a characteristic pattern of changes in
Alzheimer’s patients—namely spectral slowing
in EEG oscillatory activity. Stefanovski et al. also
studied a ‘virtual’ intervention in their WBM,
mimicking the influence of cognitive enhancing
drug prescribed for mild cognitive impairment,
and found that this successfully re-normalized
the spectra—paving the way for new hypothesis-
driven WBM-based pharmacological investiga-
tions for dementia and related conditions.
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13.3.5.4 Neuropsychiatry and
Neuromodulation

Investigation of large-scale brain changes using
neuroimaging-informed WBM has become a
prominent arm of the multi-disciplinary field
of computational psychiatry (see Deco and
Kringelbach 2014; Murray et al. 2018 for
excellent reviews on this topic), which explores
both neurophysiological and neurocognitive
models of psychiatric pathologies. One of the
key ideas in computational psychiatry is the
proposal that schizophrenia may constitute a
form of ‘disconnection syndrome’ (Friston and
Frith, 1995; Friston et al., 2016). Unlike the
relatively focal (or at least contiguous) lesions
seen in stroke and tumour patients, however,
disconnectivity in schizophrenia is considered to
be relatively more global and diffuse. In a classic
study, Cabral et al. (2011) investigated this using
a WBM with Kuramoto dynamics. These authors
report that decreased connectivity strengths in the
model led to altered graph-theoretic properties
in simulated fMRI functional connectivity,
including decreased small-worldness and
clustering—replicating qualitatively observed
changes in patient recordings. Others have
explored the idea that functional disconnectivity
patterns in schizophrenic brains may result from
disrupted local dynamics, rather than anatomical
connectivity disruptions per se. For example,
using a WBM with two-state DMF dynamics,
Yang et al. (2016) and Krystal et al. (2017)
found that implementing a spatial hierarchy of
altered E-I balance accounted parsimoniously
for the emergence of inhomogeneous fMRI
disconnectivity profiles in schizophrenic patients.

Two of the principal treatment types used
in psychiatry are (a) drugs and (b) electri-
cal/magnetic brain stimulation. One of the
areas where WBM can make an important
contribution is in helping to better understand
the macro-physiology of brain responses to
novel pharmacological interventions, such as
LSD, psilocybin, ketamine, etc. A new and
fast-developing line of WBM work in this
area has been lead by the groups of Gustavo
Deco, John Murray, and others. In a 2018
study, Deco et al. (2018) investigated the impact

of LSD on brain dynamics using WBM with
the DMF model. In particular, they modified
their computational model using regional
variations in 5-HT2A (serotonin type 2A) receptor
binding, obtained from PET (similar to the use
of PET amyloid beta maps by Stefanowski
described above (Stefanovski et al., 2019)).
Addition of this spatial serotonergic receptor
expression information improved the fit to
fMRI data recordings in human subjects on
LSD, consistent to its known mechanism of
action. More recently, these authors continued
in this line of research by incorporating spatial
serotonergic connectivity (as opposed to receptor
expression) information into a WBM, using the
targets of ascending serotonergic projections
from the raphe nucleus, and again modelling
the influence of neuromodulation through the
steepness of the coupling function (Kringelbach
et al., 2020). They similarly found that adding
these neurotransmitter systems into WBMs
improved fits to empirical fMRI data. This
work stands out as exemplary for the future,
as it builds in a level of richness of brain
organization—modification of ongoing neural
activity via spatially structured pre- and post-
synaptic neuromodulatory systems—that has
been largely absent from WBM studies to
date (for a recent review of physiological and
mathematical concepts related to this, see Shine
et al. 2021).

The other neuromodulatory therapy type is
brain stimulation. Electroconvulsive therapy,
deep brain stimulation, transcranial magnetic
and electrical stimulation are all now regularly
used in many countries for treatment of major
depressive disorder. There have not to our
knowledge been any WBM studies of brain
stimulation in a direct clinical context, and
this remains a relatively unexplored area with
many opportunities. Comprehensive work from
Spiegler and colleagues used the FHN model
to explore how canonical brain networks may
be selectively activated given targeted sensory,
cognitive, or electromagnetic perturbation
(Spiegler et al., 2016). More recently, the
same authors have deployed a similar FHN
model within TVMB to study stimulus-evoked
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responses in mouse brains, as measured with
wide-field dorsal view calcium imaging (Spiegler
et al., 2019). The combination of WBM with
the high temporal resolution, large-scale (albeit
not quite whole-brain), invasive, and highly
manipulable experimental preparations possible
in the mousewill be critical for further refinement
of models and understanding of macro-scale
responses to stimulation perturbations.

In models of noninvasive brain stimulation
in humans, the two principal modalities are
transcranial (electrical) current stimulation (TCS)
and transcranial magnetic stimulation (TMS),
each of which in turn have two principal variants:
transcranial direct vs. alternating electrical
current stimulation (TDCS/TACS), and single
pulse vs. repetitive magnetic stimulation (spTM-
S/rTMS). spTMS, combined with concurrent
EEG, has shown some utility as an index of brain
excitability in different states (wake vs. sleep) and
in patient groups with disorders of consciousness
(Massimini et al., 2005, 2012). Fascinating recent
work by Wendling and colleagues has developed
the first WBM capable of reproducing both
resting-state spectral changes from wake to slow-
wave sleep in whole-head EEG recordings, as
well as the broad spatiotemporal pattern of EEG-
measured TMS-evoked potentials (Bensaid et al.,
2019).

An important development of the past 5–
10 years in noninvasive brain stimulation, that
has excellent potential for integration with
WBMs, has been the refinement and increasingly
widespread adoption of the so-called biophysical
E-field models (see also Sect. 13.4.1). These
models aim to characterize the physics (as
opposed to the physiology) of brain stimulation
modalities such as TMS and TCS. They use
Maxwell’s electromagnetic field equations,
combined with detailed tissue conductivity
and tissue boundary location information from
structural MRI scans, to estimate the spatial
pattern of stimulation induced for a given set
of stimulation parameters (location, orientation,
and intensity for TMS; those plus anode/cathode
source-sink channel arrangements for TCS).
An early attempt at integrating E-field models
with WBMs is the study of Kunze et al. (2016).

These authors proposed an approach to injecting
a distributed E-field current distribution as inputs
into multiple nodes of a WBM, and studied
the effects on oscillatory brain activity and
connectivity using the JR model. In related
work, Dagar et al. proposed a WBM-based
framework for electrical stimulation with TDCS
to renormalize disrupted E/I balance (with a
particular focus on stroke), incorporating E-Field
inputs and combined simulations of EEG and
fNIRS signals (Dagar et al., 2016).

Finally, a question of substantial clinical rel-
evance is how best to model and understand the
effects of therapeutic rTMS. Cona et al. (2011), in
an approach similar to that of Kunze et al. above,
found that fitting a Wilson–Cowing-based neural
mass model to rTMS spectral responses within a
small network was able to capture successfully
differential frequency effects of rTMS in differ-
ent brain regions. In a different line of work,
Fung, Robinson, Wilson, and colleagues have
studied in mathematical detail the synaptic and
sub-cellular mechanisms of potentiating and de-
pressive synaptic responses to rTMS (Fung et al.,
2013; Wilson et al., 2016, 2018). An important
frontier for WBMs is to build on the above work
by integrating the spatiotemporal characteristics
of TMS/TCS perturbation patterns with their hy-
pothesized longer-term plasticity-related effects,
and determine how best to use these models as
tools to help improve clinical outcomes.

13.4 The Future

Over the past two Parts in our surveys of The Past
and The Present, we have outlined most of the
ideas, tools, techniques, and areas of application
at play in current WBM research. Now we look
to The Future. Naturally, the actual future trajec-
tories taken by the field will be driven in large
part by new empirical discoveries and measure-
ment techniques. A prime example of this is the
‘discovery’ of resting-state brain dynamics in the
early 2000s (Biswal et al., 1995; Raichle et al.,
2001), which has dominated neuroimaging and,
by association, WBM research for the past 15
years. Qualitatively new scientific ideas such as
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this are of course difficult to predict, and we do
not attempt to do so here, beyond acknowledging
their influence. Developments in various techni-
cal domains are a little easier to forecast however,
and wemainly restrict our attention to these in the
following pages.

13.4.1 Multiscale

Multiscale modelling is an approach, now taken
in several scientific fields, of using two or
more interlinked models with different levels
of resolution and complexity to study a single
system (Weinan and Lu, 2011). The motivation is
to strike a balance between accuracy (favouring
more detailed microscale models) and feasibility
(favouring less detailed meso/macroscale
models). In physics, the canonical levels that may
be linked throughmultiscale approaches are those
of quantum mechanics, molecular dynamics,
kinetic theory, and continuum mechanics. In
computational neuroscience, the usual levels of
physiological description are (1) morphological
neuron models (transmembrane ion fluxes and
passive current flow within and between small
sub-cellular compartments), (2) spiking neuron
models (point-process, single-cell level), and (3)
neural population models. In addition to these,
important phenomena also occur at the level of
biophysics (e.g. using Maxwell’s field equations
for electrical stimulation), biochemistry (e.g. sub-
cellular reaction–diffusion equations), biome-
chanics (e.g. accounting for effects or trauma or
vascular pulsatility), and cognition/information
processing (e.g. predictive coding) (Lytton
et al., 2017). Multiscale modelling approaches.28

combine two (or more) of these levels of

28 It is worth noting that we are using a strong technical
definition here. The term ‘multiscale’ is also commonly
used throughout neuroscience, indicating the more general
notion of spanning scales in one or other aspect.

description in a single simulation.29 We can
furthermore distinguish ‘weak’ and ‘strong’
multiscale variants, depending respectively on
whether information is passed between levels in
a uni-directional or bi-directional manner. The
bi-directional case carries with it considerable
additional technical challenges in terms of
numerical stability and biological accuracy.

Weinan and Lu (2011) distinguish two types
of question that may be addressed by multiscale
modelling, which they term Type A and Type B
problems. Type A problems are where some inter-
esting events (complex chemical reactions, mate-
rial defects, singularities) occur at some precise
spatial location and require a microscale model
to describe them in adequate detail, but otherwise
macroscale models can be used for the rest of
the system. Problems are of Type B when the
macroscale model does not include some im-
portant constitutive information, and as a result
coupling with a microscale model is required in
order to supply this missing information.

In the context of WBM, an example of a
Type A problem would be to replace the neural
population model at one node in a connectome
network with a detailed spiking neuron-based
network (the localized microscale model), and
use neural population equations for the rest
of the network (the macroscale model). An
application area where this type of approach
will be of particular interest is the modelling of
simultaneously recordedmacro-scale neuroimag-
ing and microscale stimulation and/or activity
measurements from various neural implant
devices. These are being increasingly used to
treat patient populations with ailments ranging
from Parkinson’s, paralysis, depression, obesity,
blindness, deafness, and epilepsy. Major recent

29 Note that the three hierarchical levels outlined in
Sect. 13.3.1—namely the coupling between neural mass
subpopulations, local lateral interactions, and long-range
interactions—would not be multiscale (in the strong sense
of the term), even though they together span several or-
ders of magnitude in spatial scale. This is because the
defining characteristic of multiscale models is the use
of multiple different theoretical formulations of system
behaviour—appropriately interlinked but having different
variable types, units, and governing principles.
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efforts in this particular multiscale modelling
direction have centred around integrating the
respective neural population-level and spiking
neuron-level simulation capabilities of the TVB
and NEST platforms (Meier et al., 2021).30

An example of a Type B problem would be
to combine a WBM of ongoing activity with a
biophysical model of electrical stimulation en-
tering multiple brain regions. Unlike the previ-
ous example, where (in principle) the macro-
scale behaviour of the spiking neuron model is
well-approximated by the neural population-level
model, in this case the electromagnetic physics
of the E-field model are nowhere to be found
in the theoretical framework of neural activity
dynamics. An interface is therefore needed to link
the two levels of description, translating the phys-
ical, spatiotemporal electrical field pattern into
a neural population activity input. In an excel-
lent example of this approach (also noted above),
Kunze et al. (2016) used a biophysical E-Field
model to estimate the current amplitude and ori-
entation received by all nodes in a WBM, using
Jansen–Rit population dynamics. The pulse-to-
wave transformation function was used to calcu-
late the firing rate input to the stimulated areas
during TDCS.

An interesting (albeit considerably more com-
plex) alternative to the approach of Kunze et
al., which combines both Type A and Type B
problems, could be to merge both of the above
examples: use Maxwell’s equations to calculate
the E-field strengths, model stimulated areas with
detailed neuron models, and describe the rest of
the brainwith neural populations. Interestingly, in
this case the best choice for the type of detailed
model to couple to a neural population model
may in fact be morphological neurons, rather
than (as might be expected) spiking neurons (Seo
and Jun, 2017). This is because the shape and
orientation of neurons impact considerably the in-
fluence of electrical currents and magnetic fields
on their activity, and so the formulation of mor-
phological compartmental models is better-suited

30 https://github.com/the-virtual-brain/tvb-multiscale. For
a different approach, coupling TVB simulations to cogni-
tive-level brain simulations, see Ulloa and Horwitz (2016).

than (non-spatial) point-process spiking neurons
to capture this physical interaction. In our opin-
ion, the goal of developing effective multiscale
WBMs—and using them to study these and many
other fascinating and challenging neuroscientific
phenomena—is likely to be a defining character-
istic of the next decade of computational neuro-
science.

13.4.2 Standardized, Hybrid, Model
Construction

We have discussed in Parts 13.1 and 13.2
of this chapter how various kinds of large-
scale anatomical connectivity information from
diffusion-weighted MR tractography, chemical
tract tracing in rodents and non-human primates,
and geometric statistical considerations, are
currently being used in the process of building
WBMs. Many variants in connectivity matrix
construction have been and continue to be
explored, as the state of the art in experimental
techniques progresses. However, heterogeneity
across the WBM literature in certain critical
procedures such as the definition and rescaling
of edge weights have a major impact on the
generalizability and replicability of reported
results. Standardization of themodel construction
process (particularly the connectivity part) is
therefore an important future direction for the
field of WBM. One approach to dealing with
this issue is to introduce a neuroanatomically
grounded parameterization of large-scale connec-
tivity structure—which is separate from, but can
be heavily informed by, empirical information
like tractography streamline densities. These
‘connectivity models’ would be specified in
biologically meaningful units, such as number or
per-unit-area density of axons, and be constrained
to exhibit certain statistical properties known
from gold-standard tracer studies in non-human
primates, such as exponential fall-off with
distance and multiple orders of magnitude in
weights. Personalized connectivity information
from tractography reconstructions in individual
subjects would be introduced into these models
through a (yet to be determined) modulation of

https://github.com/the-virtual-brain/tvb-multiscale


Whole-Brain Modelling: Past, Present, and Future 347

the basic structure, in such a way that allows
flexibility but retains the desired overall spatial
and graph-theoretic statistical properties the
network. Contrast this with the current situation,
where connectivity edge weights are more-or-
less defined as simply the direct output numbers
from the latest tractography algorithm, applied
to data from the currently available scanner,
running the current best available MR sequence,
and using an often rather arbitrarily chosen
selection of transformations and rescalings. The
issue with this is that tractography algorithm
outputs such as ‘streamline densities’ are highly
artificial constructs that are not expressed in
physically, physiologically, or anatomically
meaningful quantities. WBMs built around these
numbers are therefore at danger of producing
results that are liable to be as transient and
temporary as the currently en vogue algorithms,
software packages, and scanner sequences they
are constructed from.

A version of the ‘normative parameterization’
approach outlined above was taken by Stephan
et al. (2009), in their work on tractography-based
priors for fMRI DCMs. These authors examined
several functional forms (quantified through hy-
perpriors) for how to map (probabilistic) tractog-
raphy streamline densities on to the parameters
(mean and variance) of prior distributions for
DCM effective connectivity strengths.31 Poste-
rior distributions for those connectivity strengths
were subsequently estimated from fMRI data in
the usual way. This work gives some indica-
tion of the type of statistical framework that a
WBM standardized connectivity model could use
to integrate individualized data measurements. In
addition to individual edge-wise priors, as was the
focus of Stephan et al. (2009), it may be desirable
to also parameterize network-level characteris-
tics, such as graph-theoretic and spatial statistics
(see e.g. Betzel et al. 2016; Roberts et al. 2016).

A second reason for moving towards a con-
vention where connectivity matrices for WBMs
are not fully defined from tractography data alone

31 Effective connectivity strengths in DCMs are the same
as connectivity weights usually given by anatomical con-
nectivity in connectome-based WBMs.

is that this would facilitate the incorporation of
important connectivity information that is not
currently resolvable by conventional DWI meth-
ods. This is particularly the case for subcortical
structures, such as thalamic and basal ganglia nu-
clei, that undoubtedly have a profound influence
on neural and cognitive function, but are largely
ignored in most current WBM efforts. Some lim-
ited progress in this direction has already been
made: Spiegler et al. (2016) studied responses
to stimulation in a WBM using a connectivity
consisting of 82 cortical regions (the standard
CoCoMac regional map parcellation connectivity
matrix) and, in addition, 116 thalamic regions.32

The thalamic regional parcellation and connectiv-
ity used here, which was compiled frommacaque
tracer study databases, has far greater detail than
that achievable using just tractography in humans
for thalamic connectivity mapping. More gener-
ally, the contribution of subcortical structures to
cortical activity, and brain function in general,
has been largely under-appreciated in WBM to
date. Hybrid connectivity models of this kind
would provide some of the tools to enable further
development in this area.

13.4.3 Cross-Species

As noted from the outset, the core application
and interest area of WBM to date has been un-
derstanding the human brain in health and dis-
ease. A key source of progress over the next
decade however is likely to come from exten-
sion of the methodology to non-human primate
and rodent brains. The principal reason for this
is that as a rule, developments in neuroscience
recording technology move faster in animal than
human fields. EEG, MEG, and fMRI, for exam-
ple, have not enjoyed substantial improvements
in spatiotemporal resolution or SNR (except in
some niche areas) for over twenty years. At the
same time, in other areas of neuroscience, a major
focus of technical development has been increas-

32 This combined corticothalamic connectivity matrix is
distributed with the TVB software library (‘connectiv-
ity_192’).
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ing the total area of brain covered and num-
ber of channels per unit area in invasive elec-
trophysiology and optical imaging experiments,
and extent and resolution of connectivity tracing
techniques. Examples of these trends include the
stated priorities of the US ‘BRAIN Initiative’
funding program (namely, improvement of neural
recording hardware), the industrial-scale func-
tional, anatomical, cellular, and genetic mapping
of the mouse brain by the Allen Institute, and
the miniaturization and ‘un-tethering’ (wireless
data transfer, wireless charging) achievements of
the new Silicon Valley neurotechnology outfit
Neuralink. As these invasive techniques continue
to ‘scale up’ in this way, they begin to approach
the kind of whole-brain coverage only currently
available from noninvasive methods, but with an
order of magnitude or more improvement in spa-
tial resolution.

The three non-human animal species where
these improvements are likely to be most clearly
seen are the mouse, rat, and marmoset. The
macaque continues to be the gold-standard
for comparative non-human neuroanatomy
and neurophysiology, but is likely to remain
a niche research area for both economic and
ethical reasons. For the normative ‘connectivity
model’ proposed in the previous section, careful
tracer injections and structural neuroimaging
in macaques shall be essential. Marmoset and
rodent anatomical connectivity information is
of substantially less relevance in that domain.
The critical contributions of these other species
will be in the area of interventional physiological
experiments, and large-scale brain dynamics in
general. Excellent progress has already been
made in WBMs for resting-state and stimulus-
evoked activity in the mouse, building on the
high-quality connectivity information from the
Allen Mouse Brain Atlas, and integrating with
experimental data from other sources (Melozzi
et al., 2017; Spiegler et al., 2019).

13.4.4 Translation

As we saw in Sect. 13.3.5 and elsewhere, a sub-
stantial amount of WBM work has been aimed at

clinical applications across the spectrum of neu-
rology and psychiatry.Most of this work has been
concerned with modelling or inferring potential
disease mechanisms of various kinds. Some of
it however, such as Jirsa and colleagues’ VEP
work (Jirsa et al., 2017), are explicitly and directly
trying to improve clinical care itself usingWBMs.
The success of these and related efforts over the
next few years will be a major litmus test for
WBM.

A reasonable question here might be ‘what
would successful clinical translation of WBMs
look like?’. There are several options, most of
which are untried and untested. Ultimately, suc-
cessful translation means making a positive im-
pact on the lives of patients. In practice, this
means either a) the development of a new and bet-
ter form of therapy or b) providing more and bet-
ter information to clinicians, with which to select
the best of available options. Realistically, devel-
opment of fundamentally new therapies and ther-
apeutic technologies is unlikely to come purely
fromWBM work, at least at its present and near-
future state of maturity. The more likely route
to impact in the short and medium term is by
assisting with and improving decision making
and therapy design within established medical
paradigms. A general term for this is a ‘clinical
decision support tool’.

Within this space, once a promising approach
has been identified, the next question is what
strategy to take with respect to regulatory ap-
proval. The conventional option is to undertake
extensive clinical trials, to demonstrate compre-
hensively that the actions taken under recom-
mendations from a WBM-based decision support
tool are superior to those without it. This is the
route currently underway with the VEP. The aim
is to show that surgical resection decisions have
better outcomes (according to standard metrics)
when factoring in (alongside the standard sur-
gical planning process) recommendations from
patient-personalized Epileptor-based WBMs.

The process of obtaining regulatory approval
for novel medical techniques and technologies
is a long and expensive haul, and rightly so.
In many countries, including notably the USA,
the real target for companies developing new
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medical technologies is not regulatory approval
per se, but health insurance ‘billing codes’. In
countries with insurance-based health systems,
billing codes (which do nevertheless depend on
regulatory approval) are the route to reimburse-
ment and sales, which in turn open the door
for viable business models. A more modest and
more expedited route to impact is to develop tools
that can be classified as assistive devices. Two
examples that are somewhat adjacent to WBM
and useful to consider here are neuronavigation
and electromagnetic field modelling for nonin-
vasive brain stimulation. Both of these are com-
putational methods that improve the accuracy of
brain stimulation therapies.33 Neither have un-
dergone major clinical trials themselves, but they
are increasingly considered important tools for
the accurate quantification and delivery of FDA-
approved brain stimulation therapies. In a similar
vein, one can imagine a useful line of future
WBMs that supply robust, validated, physiolog-
ically meaningful, and fast (ideally real-time, at
the point of administration) predictions/reports
about the expected outcomes/other characteristics
of brain stimulation, pharmacological, or other
therapeutic interventions.

13.5 Conclusions

In this chapter we have sought to provide the
reader with a perspective on the intellectual his-
tory, current major issues, and possible futures
of the new scientific discipline of whole-brain
modelling. One thing that has stood out clearly
in conducting this survey is that as the field con-
tinues to grow, the rate of innovation and of
major progress in new research directions also
increases at a rapid pace. The volume and quality
of new WBM research ideas and discoveries can
be daunting, in fact. Yet, we are sure most would
agree that even the most well-developed lines

33 Actually E-field modelling and neuronavigation are two
very similar variants of one general method—solving
Maxwell’s equations for brain stimulation. Neuronaviga-
tion is usually more ‘coarse-grained’ than E-field mod-
elling, and—critically—operates in real-time.

of enquiry have barely begun to scratch the sur-
face of what—hopefully—can be achieved with
WBM techniques. The future is, we believe, a
bright one, and there is plenty of work to do!
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Glossary

Action potential a pulse-like voltage wave
across the membrane of electrically excitable
cells (such as those of the nervous system,
heart and endocrine system). The action
potential serves as a major signal for the
initiation of both cellular and network
processes. In neural tissues the action potential
is thought to be the biophysical primitive
underlying information transfer. In neurons,
the action potential consists in a fast (1–2 ms)
upstroke of the membrane potential, occurring
in response to a sufficiently fast and strong
external perturbation.

Bistability a dynamical system occupying one
of two stable states is said to be bistable.
Similarly, a system with multiple stable states
exhibits multistability.

Current dipole (moment) two nearby point
currents of opposite polarity form a current
dipole, with an associated current dipole
moment given as the product of the magnitude
of the current and the separation between
the two current sources. Because the
outwards- and inwards-going transmembrane
currents across entire cell membranes always
sum to zero, a neuron does not produce
current monopoles. This implies that the
lowest non-zero current moment is the
current dipole moment. Consequently, at a
sufficient distance from the neural source,
signals like the LFP, ECoG and EEG can
be calculated using formulas giving the

extracellular potential generated by current
dipole moments.

Current source density (CSD) a type of
inverse modelling that aims to reconstruct
the neural current sources giving rise to the
extracellular potentials measured on a set of
spatially distributed electrodes.

Cytoarchitecture the composition of brain
regions in terms of the sizes, shapes, and
densities of neuronal and non-neuronal cells.

Data-driven modelling a modelling approach
that aims to produce models that abide by
known facts from experiment. In the case
of neuroscience, such models attempt to
introduce anatomical and physiological results
as modeling constraints.

Diffusion the net movement of particles, for
example ions or neurotransmitters, from a
region of high concentration to a region of low
concentration, driven by randommotion of the
individual particles (cf. electrodiffusion).

Electrocorticography (ECoG) a measurement
of electrical potentials using electrodes
placed directly on the exposed brain surface,
thought to predominantly reflect subthreshold
activity in large numbers of neurons following
synaptic activation. ECoG measurements
are more invasive than EEG measurements
because of the necessary craniotomy.

Electrodiffusion the net movement of (charged)
particles, due to the joint effect of diffusion
and migration along the electrical field.
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Electroencephalography (EEG) a non-invasive
measurement of electrical potentials on the
top of the scalp, thought to predominantly
reflect subthreshold activity in large numbers
of neurons following synaptic activation.

Forward modelling a modelling approach
that starts with modelling the behaviour of
a system, for example the neural activity,
and then calculating the experimentally
measurable signals that would arise from this
behaviour, like extracellular spikes, the LFP,
or the EEG (cf. inverse modelling).

Head model the complex folded geometry of
the human brain, and the widely different elec-
trical conductivities of the brain, cerebrospinal
fluid, skull and scalp, have large effects on the
electric potential outside the head (EEG), orig-
inating from neural activity in the brain. When
doing either forward or inverse modelling of
the EEG signal, these effects can, at various
degrees of complexity and accuracy, be taken
into account by using different head models.

Inverse modelling a modelling approach that
starts with an experimentally measured signal,
and aims to infer aspects of the underlying
behaviour of the system that generated the
measured signal (cf. forward modelling).

Local field potential (LFP) the low-frequency
component of the electrical potential (lower
than a few hundred hertz) recorded extra-
cellularly, thought to predominantly reflect
subthreshold activity in neurons following
synaptic activation.

Macroscopic scale at this scale, each cerebral
hemisphere is described with a pole-to-pole
(i.e. posterior-to-anterior) length of 10–20 cm
(cf. microscopic and mesoscopic scales).

Mean field theory a mathematical approach
suited for the statistical description of the
collective behavior of a dynamical system
comprising many interacting particles. In the
case of neural circuits, mean field theory
is typically employed to provide a concise
description of the firing rates of distinct but
homogeneous subgroups of neurons.

Mechanistic modeling a modelling approach
grounded in a set of first physical principles,
considered as axioms, and that deduces from

them consequences to explain the structure
and/or function of a system, going from the
general to the particular.

Mesoscopic scale this scale typically covers
volumes of neural tissues with a radius
somewhere between a few millimetres and
a few centimetres (cf. microscopic and
macroscopic scales).

Microscopic scale this scale typically covers
a volume of neural tissue including at most
a few neurons, where details of neuronal
morphology are relevant (cf. mesoscopic and
macroscopic scales).

Model a quantitative description of a neurobio-
logical system, expressed with mathematical
rigour and language, composed of assump-
tions, data, and inferences.

Multi-unit activity (MUA) the high-frequency
component of the electrical potential (higher
than a few hundred hertz) recorded extracel-
lularly, thought to predominantly reflect the
occurrence of action potentials emitted by
neurons positioned in close proximity to the
recording electrode.

Neural field model a neural population model
defined over some contiguous spatial domain,
such as a patch of cortical tissue, or an
entire cerebral hemisphere (cf. neural mass
model).

Neural Mass model a neural population model
that treats local population dynamics as point
processes, with no explicit representation of
space (cf. neural field model).

Noise any source of uncertainty that is
considered in a model or hypothesis. In
a mathematical model noise can represent
non-deterministic or chaotic behaviour, but
may also result from poor knowledge of
parameters, or uncertainty about the modeling
assumptions.

Phenomenological model a model that aims
to reproduce the qualitative aspects of a
phenomenon with simplified elements.

Physiological (or biophysical) model a model
that attempts to accurately capture biological
details obtained with experiments. It is
sometimes used as a synonym of “data-driven
model”.
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Simulation a representation of the structure
and/or function of a (neurobiological) system
by means of the structure and/or function of
another (e.g., a digital or analog electronic
system), able to replicate some of the
properties and phenomena displayed by the
original system.

Synaptic potential similarly to the action
potential, a synaptic potential is the potential
difference across the postsynaptic membrane
resulting from the release of neurotransmitters
at a neuronal synapse.

Theory a scientific body of principles that is
broadly accepted in science as a coherent
explanation for many phenomena. As such, to

be distinguished from a hypothesis, which is
more speculative and less well established, or
more appropriate for a single phenomenon.

Transmembrane current the net current
crossing a specified region of the cellular
membrane, in response to for example
synaptic input, or the firing of an action
potential. The transmembrane currents include
both capacitive and ionic currents and are the
basis of the extracellular potential inside and
outside the brain.
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