The Neurons:

- **Functional Classes: Central Nervous System + Peripheral**
 - Sensory neurons
 - Motor Neurons
 - Other (interneurons)

- **Morphology**
 - Neurons fall into several morphological classes (shapes)
 - The study of neuron shapes is called Neuro-anatomy
 - In some cases, the shape of the neuron will tell you what it does

- **How Many Branches come out of cell body?**
 - Unipolar Neuron: 1 branch
 - Bipolar Neuron: 2 branches
 - Multipolar Neuron: Many branches

- **Multipolar Neuron:**
 - Information is ‘summed’ at the soma, from all the dendrites. It is then sent away on the axon.
 - Information travels from Spines to the Dendrites, to the Soma, to the axon, then to the terminal boutons.

- **Bipolar and Unipolar**
 - Sensory neurons: External or internal stimuli \rightarrow Brain
 - Motor neurons: Brain \rightarrow muscles, glands

- **Nerve = Bundles of axons**

- **Synapses**
 - Neurons ‘talk’ to each other through synapses
 - Postsynaptic (‘post’ = after)
 - Presynaptic (‘pre’ = before)
 - The synapse is a ‘place’ … not an ‘object’

Circuit Diagram: A \rightarrow B \rightarrow C

- **Inside a multipolar neuron**
 - Energy, ATP *symbiosis*
 - Chromosomes, DNA, genes, proteins, enzymes
- The Neurons
 - Neurons support many functions: Perception, action, thinking, emotion…
 - Neurons needs to be ‘taken care of’ throughout the nervous system.
 - The Glial (glue) cells: 5 times more than neurons
 - 3 basic types:
 - astrocytes, oligodendrocytes, and microglia cells

- Astrocytes: ‘star’ cells (City Workers)
 - Buffers for chemical substances
 - Structural support
 - Cleanup (phagocytosis)
 - Nourishment: e.g. lactate
 - Active interface between blood vessels and neurons

- Oligodendrocytes: Myelination
 - Destroyed in Multiple Sclerosis Patients
 - Schwann cell (PNS)
 - Oligodendroglia (CNS)

- Microglia
 - Smallest of glial cells
 - Phagocytes (motile)
 - Part of the immune system, in the brain (like macrophages in the blood)
 - Are activated during inflammatory reactions due to brain damage (Alzheimer’s).

- Blood-Brain Barrier
 - Has gaps that permit the free floe of substances into and out of the blood
 - Capillary in all of body except the brain
 - Selective permeability
 - Active Transport (e.g. glucose)
 - Area Postrema in the brain: control of vomiting
• The Neurons
 o NeuroAnatomy: How the neurons ‘look’
 o NeuroPhysiology: How the neurons ‘work’
 o Neurons are electrical devices
 o Electrons vs. Ions
 - Electron: ‘free flowing’ information (un-usable)
 - Ion: Atom/Molecule + Electrons

• Inside vs. Outside
 o Differences of electrical potential between the ‘inside’ of a neuron (cytoplasm),
 and the ‘outside’ (extracellular space)

• The Resting Membrane Potential
 o 2 Forces:
 - Diffusion: from high concentration To low concentration.
 - Electrostatic pressure: same charges repel.

• Keep The Sodium Out
 o Sodium-Potassium Pump (a.k.a. transport)
 o Keeps Sodium out, and gets potassium in
 o 3 sodium ions pumped out; 2 potassium ions pumped in

• Membrane Potential: Departure from rest
 o Hyperpolarization: Membrane potential goes more negative.
 o Depolarization: Membrane potential goes more positive

• Action Potential
 o Study membrane potential change: Need to stimulate

• Voltage-dependent Ion Channels
 o Fact 1: Ions move in/out of the cell through ion channels.
 o Fact 2: The ion channels open when the membrane depolarizes enough.
 o Fact 3: Potassium (K+) channels are a bit slower than the sodium (Na+) channels.

• Conduction of a Depolarization
 o In dendrites: ‘Passive Propagation’. The signal is regenerated. No attenuation.
 o All-or-none conduction Law

• Saltatory Conduction in Axon
 o Up to 260 miles/hour
 o Decremental conduction under myelin sheath
 o Action potential is regenerated at nodes of Ranvier

• Rate Law
 o The greater the stimulus, the greater the number of action potentials (per second)
• Sodium ions are more numerous outside of the cell, and depolarize the neurons when they enter T/F
• There are 5 times more neurons than glial cells T/F
• In a multipolar neuron, information arrives at the _**DENDRITES**_, is summed at the _**SOMA**_, and is sent out on the _**AXON**_.