Method in Brain Research
1. Non-Invasive (Human)
 - Imaging
 - Computerized (Axial) Tomography (X-rays). Static pictures and high spatial resolution. Horizontal plane only. CT
 - Brain in action (e.g. movement of fingers)
 - Brain areas that function differently (e.g. depression)
 - Brain areas that ‘absorb’ a particular drug (e.g. L-Dopa in Parkinson’s)

- Functional MRI (fMRI). Modified MRI. Higher temporal resolution (~6-8 secs), low spatial resolution. (~5.25)
- Method from Bottom to Top: High to Low Spatial resolution
- Method from Top to Bottom: Low to High Temporal resolution

- 2-DG Autoradiogram 5.22
 - invasive: brain sliced after 2-DG absorption. Image obtained after ‘photographic-development’ like

- Diffusion Tensor Imaging 5.18
 - Use of MRI data to compute the movement of water molecules (along the axon). Efferent projections.

- Electrical: EEG
 - Electro Encephalon Gaphy. Recording surface electrical signals with ‘macro-electrodes’. High temporal resolution, low spatial resolution. Sleep studies, seizure detection.
 - Note: Electrical and imaging
 - Optical recordings (invasive): Open skull, imaging electrical activity. Used for research.
 - EEG Signals: Often used in Sleep Studies
Magnetic: MEG
- Transcranial Magnetic Stimulation: create a magnetic field to induce an electrical current (stimulation). Mostly superficial brain (cortex)
 - Stimulate in Motor Cortex -> Motor Evoked Potentials
 - Stimulate in Occipital Cortex -> phosphenes
- Variant: Repetitive TMS. Effects outlast the period of stimulation. Research tool.

Genetic
- In human: twin and adoption studies – Nature vs. Nurture
 - Monozygotic (identical twins): same chromosomes, genes.
 - Dizygotic (fraternal twins): Different chromosomes.
- Concordance for traits (e.g. schizophrenia, obesity, alcoholism), assess the influence of the environment.

2. Invasive (Most on Animal)
- In Vivo (alive) – Behaving
 - Ablation/Lesion: Mapping brain area to functions, and functions to behaviors.
 - Suction (mechanical), Radio Frequency (heat), Excitotoxic lesions (spare axons.)
 - Requires surgery. Small damage due to insertion of electrode. Use of ‘sham’ lesions for controls.
 - Variant: Reversible lesions (use of Specific chemicals, or cooling).
 - Cannula implantation (injecting a chemical substance). Target particular receptors in a specific brain area.
 - E.g. Injecting drug (block receptors)
 - Microdialysis: measuring the concentration of a specific chemical substance (e.g. neurotransmitter)
 - Optogenetic (relative new tech)
 - Inject a virus in a brain area. The virus carries genes that will produce light sensitive proteins.
 - ChR2: sensitive to blue, depolarizes the cell
 - NpHR: sensitive to yellow, hyperpolarize the cell
 - Implant an optical fiber that shines blue/yellow light with a laser.
 - Manipulate the activity of specific cell types in specific brain area.
 - High temporal resolution
 - High spatial resolution
 - Cell specific
• Single-unit recordings. Behavior: Conditioning, learning and memory (maze)
 • E.g. learning, memory, drug addiction, decision making, perception…
• In Vivo – Anesthetized
 • Stereotaxic surgery. Use of an atlas and skull landmarks (e.g. Bregma). Recording/Stimulation. Also done in human (local anesthesia). (Use skull landmarks to target a brain area) (5.5)
 • (Microdialysis.)
 • e.g. Study brain connectivity, single cell activity (intracellular, single unit), sleep.
• In Virto – Not alive [Study of brain tissue (extracted from the animal)]
 • Acute: Brain slices. Study of live single cell and small network properties. Calcium Imaging.
 • Culture: Study of live single cells, and intracellular mechanisms.
 • Histology (non-living tissue)
 • Staining
 • Fixative: Formaline.
 • Cut into slices (10-50 um), on a microtome.
 • Chemically treated (e.g. staining)
 • Mounted on slides.
 • Observed under a microscope.
 • Regular light
 • Fluorescent light
 • Electron microscope.
 • Scanning Electron Microscope (3D infos).
• Histology: Tracing (Anterograde, retrograde)
 • Example of the use of tracing:
 • General Question: what regions in the brain are involved in sexual behavior?
 • Anterograde: PHA-L (5.11, 5.12)
 • PHA-L
 • Staining: Immunocytochemistry (staining with an antibody
 • Retrograde and Anterograde Tracing
 • Retrograde Tracing: inject fluorogold in VMH, then see axons and terminals in PAG
 • Anterograde Tracing: inject PHA-L in VMH, then see cell bodies in medial amygdala
3. Non Invasive, Non Animal
• Computational Neuroscience/Neural Modeling
 • Using a computer to stimulate single neurons and synapses -> Computational Model.
 • Putting models together to build artificial neural networks
 • Stimulating neural activity
 • Brain-Machine Interface: Restore function through the use of a brain-controlled machine.