Lecture 6

-Acetylcholine
 -Synthesis:

 CoA (mitochondria) → Acetyl-CoA → Ach (destroyed by AchE)
 Acetate (vinegar, food) → Choline (lipids, food) → CoA

-Found:
 -Pons (REM sleep)
 -Basal forebrain (learning in cortex, long term memory)
 -Medial septum (brain rhythms, short term memory in hippocampus)
 -Peripheral nervous system (muscle contraction)

-Receptors: Mostly excitatory
 -Nicotinic: ionotropic (Na+), stimulated by nicotine
 -Muscarinic: metabotropic

-Psychopharmacology
 -First neurotransmitter discovered
 -ACh is involved in muscle contractions
 -Parasympathetic system: digestion, sexual arousal, decrease in heart rate
 -Botulinum toxin blocks ACh release (paralysis, death, wrinkles), produced by bacteria, poisonous, naturally occurring substance, used medically
 -Black widow spider promotes ACh release (agonist), convulsion, death.
 -Neostigmine (AChE inhibitor, does not cross BBB, PNS only), agonist. Reduces myasthenia gravis symptoms.
 -Atropine blocks muscarinic receptors (antagonist) response to nerve gas
 -Curare blocks nicotinic receptors (paralysis, surgical procedures to prevent muscle contractions)

-Mono amine: Catecholamines: Dopamine
 -Synthesis:

 Tyrosine (high protein foods) → L-Dopa → Dopamine

-Found: Midbrain
 -Substantia nigra: projects to basal ganglia (movement): nigro striatal
 -Ventral tegmental area: projects to limbic cortex (reinforcement, desire, emotions), Mesolimbic
 -projects to prefrontal cortex (planning, problem solving, Mesocortical)

-Receptors: Excitatory or inhibitory
 D1, D2, D3, D4, D5
Psychopharmacology
- Pleasure system: positive reinforcement, drug addiction
- Parkinson's disease (low levels of DA)
 - damage of connections: subnigra → caudate
 - dopamine doesn't cross BBB. (L-Dopa does)
- deep brain stimulation (prevent tumors)
- Schizophrenia (high levels of DA)
 - Chlorpromazine blocks dopamine D2/4 receptors
 - AMPT blocks enzyme (tyrosine -> L-Dopa)
 - Reserpine prevents storage of monoamines in vessels
 - Amphetamines and cocaine = DA reuptake inhibitors. Addiction.
 - Methamphetamines: crystal meth (also affects levels of NE)
 - Methylphenidate: (Ritalin), treats ADD
- Monoamine oxidase destroys (oxidizes) excessive monoamines. Found naturally in blood.
 - (Cheese, chocolate control) - too much MAO is linked with depression. Deprenyl destroys MAO and increases vesicle content of DA.
- MAO inactivates free floating dopamine molecules

Mono amine: Nor/epinephrine (NE/E) aka adrenalin
- Synthesis: tyrosine → L Dopa → dopamine → norepinephrine
- Found:
 - Norepinephrine: locus coeruleus (dorsal pons)
 - Epinephrine: (hormone) produced in adrenal medulla.
- wide projections throughout brain
- Release at axonal varicosities (diffuse release)
- Receptors: Excitatory or inhibitory
- Psychopharmacology:
 - Vigilance and attention
 - Fusaric acid blocks synthesis of NE from dopamine
 - Reserpine prevents storage of monoamines in vesicles.
- Idazoxan blocks autoreceptors (stops regulation of release)
- Norepinephrine: localized production, diffuse projections.

Mono amine: Serotonin (5-HT)
- Synthesis: tryptophan -> 5-HT -> 5-hydroxytryptamine
- Found:
 - Mainly: Raphe nuclei (midbrain)
 - Released at axonal varicosities (diffuse release)
- Receptors: Excitatory or inhibitory. 9 kinds
- Psychopharmacology:
 - Mood, eating, vomiting. Sleep (dreaming), pain
 - PCPA blocks tryptophan -> 5-HTP reaction
 - Fluoxetine (Prozac) inhibits 5-HT reuptake
 - Fenfluramine inhibits 5-HT reuptake, stimulate release, appetite suppressing
 - LSD (acid) is hallucinogenic. Multiple sites of action on 5-HT. Agonist for 5-HT2A
Serotonin: localized production, diffuse projections.
Neuro peptides:
- Synthesis:
 - In soma, from many amino acids. Need axoplasmic transport
 - 100 kinds
 - Transmitters: endogenous opioids (enkephalins, endorphins)
- Found:
 - Many regions of CNS and PNS
 - Released at synaptic boutons, and by volume transmission
 - Co-released with other neurotransmitters (same vesicles)
 - Deactivated by enzymes
- Receptors: usually inhibitory
 - Many!
 - For enkephalins: δ-receptor, μ-receptor, and κ-receptor
 - For opioid peptides: opiate receptors
- Psychopharmacology:
 - Opium, morphine, heroine (opiates): bind to/open opiate receptors
 - Codeine: cough suppressant. Converted in liver to morphine
 - Naloxone: blocks opiate receptors (prevents overdose)
 - Angiotensin: PNS constrict blood vessels. CNS: thirst

Lipids:
- Synthesis: Anandamide (endo-cannabinoids)
- Found: (non local). Produced on demand, not stored in vesicles.
- Receptors: Excitatory or inhibitory
 - Many metabotropic: CB1, CB2
- Psychopharmacology:
 - Complex synaptic effects. THC is agonist
 - THC (marijuana): Analgesic, sedative, appetite enhancer.
 - Chemotherapy. Blocks 5-HT3 (anti-vomiting)
 - THC interferes with attention, distort perception (time and space). Impairs learning and memory. May be addictive at high doses.
 - Synthetic THC prescribed for chemo and multiple sclerosis
 - Acetaminophen (Tylenol): acts on CB1 receptors (agonist)
 - Rimonabant: blocks CB1 receptors (antagonist)

Nucleosides:
- Synthesis: sugar molecule bound to other compounds (adenosine)
- Found: Non local, adenosine: released by astrocytes
- Receptors: Many! For adenosine, 3 types of receptors. Inhibitory through a metabotropic K+ channel. Triggered by low energy and low oxygen signals.
- Psychopharmacology:
 - Physiological: increase in blood flow
 - Neural: decrease in arousal (involved in sleep)
 - Caffeine is an adenosine receptor blocker. Addictive (withdrawal), crosses placenta
 - Caffeine passes through BBB, is a fat-soluble. Passes through cell membranes.
Soluble gases

- Synthesis:
 - Nitric oxide (NO) within neurons, no storage
 - Carbon monoxide (CO)
- Found: Non local
- Receptors:
 - None. Diffuse directly into neighboring neurons
 - Triggers second messenger cascades
- Psychopharmacology:
 - Modulates intestine function (relaxation)
 - Stimulate erection (vasodilator). Viagra is NO inhibitor blocker
 - Involved in learning and memory