Sensing and Perceiving

- Physical stimulus --- sensory receptors --transduction--> receptor potentials--- sensory processing---perceiving
 - sensory
- Physical stimulus: Light
 - Photons and the electromagnetic spectrum
 - Light is a 'radiation' (a sine wave)
 - Light is characterized by 3 parameters
 - Hue (wave length)
 - Related to the 'frequency' of the sine wave
 - Wavelength = 1/frequency
 - Saturation (purity)
 - Decreasing saturation <-------'purity' of sine wave<--------> increasing saturation
 - Brightness (intensity)
 - Increasing brightness <------ 'amplitude of sine wave' <------ decreasing brightness

Vision: Sensing

- The eye
 - Not all eyes are the same
 - Species to species variations
 - Visual field = the 'visual space' that you sense
 - Monocular (seen by 1 eye) vs. Binocular (seen with both eyes)
 - The Human eye (figure 6.3)
 - Conjunctiva (merges with inside of eyelids)
 - Cornea
 - Iris
 - Pupil (opening in iris)
 - Accommodation ('focus')
 - Sclera
 - Muscles
 - Responsible for saccadic eye movements (~4 times/second)
 - Can be controlled during 'pursuit' movements
 - Oculomotor
 - Trochlear
 - Abducens
- Vitreous humor (upper half has been removed)
- Layers of retina
- Optic nerve (2)
- Blood vessels
 - Fovea vs. Blind Spot
 - Fovea: just behind the pupil--objects inverted
 - Blind spot: where all axons/blood vessels exit the eye
 - ***6.3 is incorrect: optic disk/blind spot is not the same as the fovea
- The retina
 - At least 5 types of cells organized in 3 layers
 - 1st layer: rods and cones
 - Visual acuity: central (fovea) vs. peripheral vision

<table>
<thead>
<tr>
<th>Rods</th>
<th>Cones</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 millions</td>
<td>6 millions</td>
</tr>
<tr>
<td>Periphery</td>
<td>Fovea</td>
</tr>
<tr>
<td>Not color sensitive</td>
<td>Color sensitive</td>
</tr>
<tr>
<td>Poor spatial acuity</td>
<td>High spatial acuity</td>
</tr>
<tr>
<td>Good in dark</td>
<td>Poor in dark</td>
</tr>
<tr>
<td>Good for motion</td>
<td>Poor for motion</td>
</tr>
</tbody>
</table>

Central and peripheral acuity
- Cells have receptive fields that cover a small part of the visual field
- Ganglion cells in the fovea are more accurate than ganglion cells in the periphery
- First layer
 - Photoreceptors
- Second layer
 - Bipolar cells
- Third layer
 - Ganglion cells
- Fourth 'layer'
 - Optic nerve (to brain)
- Photoreceptors: rods and cones
 - Photo-pigment + light --> opsin (e.g. rhodopsin) + retinal (from Vitamin A)--> release neurotransmitter on bipolar neurons
- Transduction
- Ganglion Cell Responses
 - Receptive fields
 - ON/OFF or OFF/ON receptive fields
 - Sensitive to contrast
 - ON center, OFF surround cells are active when they are presented with bright light in the center, or dark spot on surround
○ Color perception
 • Trichromatic photoreceptors: 3 types of cones (R (red), G (green), B (blue))
 ▪ much less blue cones
 • Genetic disorders
 ▪ Protanopia (red cones filled with green opsin)
 • Confuse red and green
 • X chromosome (male prevalence 7%)
 ▪ Deuteranopia (green cones filled with red opsin)
 • Confuse red and green
 • X chromosome (male prevalence 7%)
 ▪ Tritanopia (no blue cones)
 ▪ All: intact visual acuity
 ▪ Ishihara color test
 • See a color # against contrast colors
○ Color sensitive ganglion cells
 • 3 types of photoreceptors but only 2 types of color sensitive ganglion cells
 ▪ RG an YB
 • Ganglion cells: opponent processing
 ▪ R <---> G
 ▪ Y<--->B
 • Yellow sensitivity is due to simultaneous red and green cones inputs
 • ON/OFF receptive fields are color specific
○ Visual pathway
 • Each eye receives information from the R and L visual fields (binocular area)
 • Lateralization
 ▪ Left visual field --> right hemisphere
 ▪ Right visual field --> left hemisphere
 • Mapping
 ▪ 2 near by cells in the visual cortex have 2 nearby receptive fields
 • Steps
 ▪ Region of overlap of 2 visual fields or visual field of right eye goes into optic nerve
 ▪ Optic chiasm
 ▪ Later geniculate nucleus (LGN)
 ▪ Information from left half of visual field; information from right half of visual field
 ▪ Primary visual cortex
 • Eyes --> LGN-->V1 (visual perception)
 • LGN
 ▪ Hypothalamus (circadian rhythms)
 ▪ Tectum- superior colliculus (e.g. eye movements accommodation)
 • Lateral Geniculate Nucleus
 • 6 layers of neurons in 3 layers
 ▪ Parvocellular (3, 4, 5, 6): red + green cones, high resolution, slow
 ▪ Magnocellular (1, 2): low spatial resolution, fast
- Koniocellular groups (in between): blue cones, low resolution