Pharmacokinetics
Pharmacology = Study of the effects of a drug on behavior
Pharmacokinetics = Study of the ‘fate’/‘movement’ of substances administered to the body

Other Routes of administration
- Intraperitoneal - Fast indirect access to brain
 - Intrarectal - Slow, bypass the stomach
 - Nasal, eye
 - Intracerebral - Bypass the BBB
 - Intra(cerebro) ventricular - Bypass the BBB, global effect, emergency
- FDA considers 111 routes of administrations as valid

Kinetics of absorption = Study of the effects on some specific brain areas
- Movement through the BBB
- Lipid-soluble (heroin) substances pass the BBB
- Water-soluble (morphine) substances do not
- Rush vs. sustained
- Inactivation vs. excretion

Effectiveness: Dose-response curve
- If the effect was proportional to the amount of drugs: linear curve
 - Most drugs: non-linear curve
- At some point dosage effectiveness curve flat lines and has a max effect
 - Can’t take more to increase the effect
Effectiveness: Affinity

- Drugs may have the same end-results, but may vary in effectiveness
- Different sites of action:
 - Morphine:
 - Analgesic
 - Inhibits pain-perception neurons
 - Aspirin
 - Analgesic
 - Suppress 'chemical signal' from damaged cells to the nervous system
- Different affinity
 - Drug binds to receptors
- **Affinity** = strength of binding

Margin of safety
- Drugs have multiple effects at different concentrations
- 'good effect' - pain goes away
- 'bad' effect - heart rate and breathing decrease and the more you take the more it decreases
- Want a large margin of safety

Therapeutic Index
- TI measure of drug safety
- Ratio between lethal dose and effective dose for 50% of animals
- Therapeutic Index = LD$_{50}$/ED$_{50}$
- Want lethal dose to be large and effective dose to be small
- Want a large therapeutic index
 - Valium (tranquilizer, anxiety reducer): TI=\sim100
 - 100 will kill you
 - Barbiturate (anesthesia, anticonvulsants): TI=\sim3
 - Requires measurements in blood and monitoring
 - 3 will kill you

► **Dose-Response Curves for the Analgesic and Depressant Effects of Morphine**
Drug misuse/abuse

- What kinds of long term effects do drugs have?
 - Effect decreases with repeated (prolonged) use
 - **Tolerance**: need more drugs. Compensatory mechanism counteracting the effect of a drug
 - E.g. decrease in affinity, decrease in receptor numbers
 - **Withdrawal** symptoms: compensatory mechanisms alone, does the opposite of what the drug is supposed to do (behavioral/emotional effects)
 - Effect increases with repeated (prolonged) use
 - **Sensitization**
 - Antidepressants: need time to be effective
 - Effect can be psychological: **Placebo effect**
 - Used mainly in research
 - E.g. control for anxiety (human)
 - E.g. control for the effect of drug administration (animals)
 - Drug reinforcing effect depends on environment
 - Nicotine and cues
 - Cue (stress)

- How do drugs work? Agonists, antagonists
 - An **agonist** has the same postsynaptic effects as a particular neurotransmitter (i.e. it opens receptors)
 - An **antagonist** has different postsynaptic effects than a particular neurotransmitter (i.e. it closes receptors)
 - Direct agonist/antagonist (competitive binding)
 - Competes with neurotransmitter molecules
 - Indirect agonist/antagonist (noncompetitive binding)
 - Does not compete with neurotransmitter molecules
 - Drugs can interfere with reuptake and degradation

Agonists and Antagonists

- **Agonists**: Drugs that occupy receptors and activate them.
- **Antagonists**: Drugs that occupy receptors but do not activate them. Antagonists block receptor activation by agonists.

![Diagram of drug action](image)
Neurotransmitters

- Goal of neurotransmitter release:
 - Postsynaptic potentials (EPSP/IPSPs)
- The main families of neurotransmitters
 - Amino acids
 - **Glutamate (Glu, Glutamic Acid)**
 - Synthesis
 - From proteins in food
 - Found where?
 - Everywhere in CNS
 - Receptors
 - Always excitatory
 - Ionotrophic for Na⁺ (AMPA, Kainate)
 - Ionotrophic for Na⁺ and Ca²⁺ (NMDA)
 - Metabotropic glutamate receptor
 - Psychopharmacology
 - NMDA involved in learning and memory
 - AP5 blocks the glutamate binding site on NMDA receptors
 - Alcohol blocks NMDA receptors
 - PCP (angel dust) blocks NMDA and blocks calcium entry in the cell
 - Hallucination and aggression
 - Also animal model for schizophrenia
 - Too much glutamate binding results in **excito-toxicity** (cell death)
 - **GABA**
 - Synthesis
 - From glutamate
 - Glu ----> GAD ----> GABA
 - Found where?
 - Everywhere in CNS
 - Receptors
 - Always inhibitory
 - Ionotrophic for Cl⁻ (GABA_A)
 - Metabotropic for K⁺ (GABA_B)
 - Exists presynaptically (**autoreceptor**)
 - Psychopharmacology
 - Controls spread of excitation (epilepsy, seizures)
 - Muscimol opens, and bicuculline blocks GABA_A
 - Benzodiazepines (anxiolytics, sleep promoters, seizure reducers) open GABA_A
 - Valium = diazepam, Librium
 - GABA_A is blocked by picrotoxin (convulsions)
 - Barbiturates (low doses = anesthesia, higher dose = respiratory arrest, low TI) open GABA_A
 - Gama-HydroxyButyrate (GHB, 'date-rape drug'): GABA agonist
 - **Glycine**
 - Synthesis
- Found in sugar cane
- Endogenous production unknown
 - Non essential (can be synthesized by body, no need for external source)
- Found where?
 - Mainly: spinal cord
- Receptors
 - Always inhibitory
 - Inotropic for Cl⁻
- Psychopharmacology
 - Prevents excessive muscle contraction
 - Tetanus: bacteria produces a chemical that blocks glycine release
 - Strychnine blocks the glycine receptor (convulsion and death)
 - Used for animal control

Properties of some major neurotransmitters

<table>
<thead>
<tr>
<th>Neurotransmitters</th>
<th>Postsynaptic cleft</th>
<th>Precursors</th>
<th>A. Small molecules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ach (Acetylcholine)</td>
<td>Excitatory</td>
<td>Choline + Acetyl CoA</td>
<td>Gasmic acid</td>
</tr>
<tr>
<td>Glutamate</td>
<td>Excitatory</td>
<td>Glutamine</td>
<td>Aescine</td>
</tr>
<tr>
<td>GABA</td>
<td>Inhibitory</td>
<td>Glutamate</td>
<td>Cocaine</td>
</tr>
<tr>
<td>Glycine</td>
<td>Inhibitory</td>
<td>Serine</td>
<td>Cocaine</td>
</tr>
<tr>
<td>Catecholamines</td>
<td>Both excitatory and inhibitory</td>
<td>Tyrosine</td>
<td>Cocaine</td>
</tr>
<tr>
<td>• Epinephrine</td>
<td></td>
<td></td>
<td>Cocaine</td>
</tr>
<tr>
<td>• Norepinephrine</td>
<td></td>
<td></td>
<td>Cocaine</td>
</tr>
<tr>
<td>• Dopamine</td>
<td></td>
<td></td>
<td>Cocaine</td>
</tr>
<tr>
<td>Serotonin (5-HT)</td>
<td>Inhibitory (mostly) excitatory</td>
<td>Tryptophan</td>
<td>Cocaine</td>
</tr>
<tr>
<td>Histamine</td>
<td>Excitatory</td>
<td>Histidine</td>
<td>Cocaine</td>
</tr>
<tr>
<td>ATP</td>
<td>Excitatory</td>
<td>ADP</td>
<td>Cocaine</td>
</tr>
<tr>
<td>Neuropeptides</td>
<td>Both excitatory and inhibitory</td>
<td>Amino acids</td>
<td>Cocaine</td>
</tr>
</tbody>
</table>

B. Large molecules

- Neuropeptides (Substance P, Endorphins, Insulin, Glucagon etc)