● Sensing and Perceiving
 ○ Physical stimulus → sensory receptors → transduction → receptor potentials → sensory processing → perceiving

○ Physical stimulus
 ■ Photons and the electromagnetic spectrum.
 ● Light is a ‘radiation’
 ○ A sine wave
 ■ Frequency
 ■ Altitude
 ■ Length

 ○ Light is characterized by 3 parameters:
 ○ Hue (wavelength)
 ■ Related to the ‘frequency’ of the sine wave
 ○ Saturation (purity)
 ■ Purity of the sine wave
 ○ Brightness (intensity)
 ■ Amplitude of sine wave

○ The Eye
• Not all eyes are the same
 • Species to species variations
 • Visual field
 o Part of space that you see if your head doesn’t move
 • Monocular
 o Seen by one eye
 • Binocular
 o Seen by both eyes

• The Human Eye
 • Conjunctiva
 o Merges with inside of the eyelids
 • Cornea
 o Outer layer of iris
 • Iris
 o Responsible for eye color
 • Pupil
 o Opening in iris
 • Lens (Accommodation)
 o Helps you focus
 o Retracts or contracts to take in less or more light
 • Sclera
 o Oculomotor
 o Trochlear
 o Abducens
 o Control eye movements
 o Responsible for saccadic eye movements
 • 4 times a second
 o Can be controlled during ‘pursuit’ movements
 • Layers of retina
 o At least 5 types of cells, organized in 3 layers
 o 1st layer: photoreceptor layer
 • Rods and cones
 • Rods
 o 120 millions
 o Periphery
 o Not color sensitive
 o Poor spatial acuity
 o Good in dark
 o Good for motion
 • Cones
 o 6 million
 o Fovea
 o Color sensitive
 o High spatial acuity
 o Poor in dark
 o Poor for motion
 • Have lamellae (on the very tip of these cells) → cell body → dendrite → bipolar cells
- Innermost layer in eye
- Lamellae has photopigment
 - Photopigment + light → opsin (rhodopsin) + retinal (from Vitamin A) → release neurotransmitter on bipolar neurons
- 2nd layer: bipolar cell layer
 - Full of bipolar cells
 - Horizontal cells connects to 1st layer
 - Amacrine cell connects to 3rd layer
- 3rd layer: Ganglion Cell Layer
 - Receptive fields
 - ON/OFF or OFF/ON receptive fields
 - ON center, OFF surround cells are active when they are presented with bright light in the center, or dark spot on surround
 - Sensitive to contrast
 - Color perception
 - Trichromatic photoreceptors
 - 3 types of cones
 - Red
 - Blue
 - Green
 - Much less blue cones
 - Genetic disorders
 - Protanopia
 - Red cones filled with green opsin
 - Male prevalence - 7%
 - Deuteranopia
 - Green cones filled with red opsin
 - X chromosome
 - Male prevalence - 7%
 - Tritanopia
 - No blue cones
 - Color sensitive
 - 3 types of photoreceptors but only 2 types of color sensitive ganglion cells
 - red/green and yellow/blue
 - Opponent processing
 - Red ←→ green
 - Yellow ←→ blue
 - Yellow sensitivity is due to simultaneous red and green cones inputs
 - ON/OFF receptive fields are color specific
 - All have intact visual acuity
• Visual acuity
 • Central (fovea) vs peripheral vision
 • Ganglion cell gets information from 1 photoreceptor in the central (fovea)
 • More accurate
 • Ganglion cell gets info from more than 1 photoreceptor, never know which one from the peripheral
 • Less accurate
 • Cells have receptive fields that cover a small part of the visual field
 • Ganglion cells in the fovea are more accurate than ganglion cells in the periphery

• Vitreous humor
• Optic nerve
• Blood vessels
• Fovea
 o Straight behind the lens in back of eye
 o Objects are inverted
• Blind spot
 o Where everything exits the eye
 o Hole in retina
 o Cannot perceive
• Visual pathway
 • Each eye receives information from the right and left visual fields
• Lateralization
 o Left visual field → right hemisphere
 o Right visual field → left hemisphere
• Mapping
 o Two nearby cells in the visual cortex have two nearby receptive fields

• Eyes → LGN → V1 (visual perception)
• Eyes → LGN → Hypothalamus
 o Circadian rhythms
• Eyes → LGN → Tectum - superior colliculus
 o Eye movements accommodation
 ▪ Lateral Geniculate Nucleus (LGN)
 • 6 layers of neurons in 3 groups
 o Parvocellular (3,4,5,6)
 ▪ Red & green cones
 ▪ High resolution
 ▪ Slow
 o Magnocellular (1,2)
 ▪ Low spatial resolution
 ▪ Fast
 o Koniocellular groups (in between)
 ▪ Blue cones
 ▪ Low resolution
- **V1**
 - Primary Visual Cortex (V1)
 - “Striate Cortex”
 - Has 6 layers as well
 - At least 3 types of cells
 - Simple
 - Complex
 - Hypercomplex
 - Orientation selectivity
 - Spatial frequency and disparity
 - V1 module: blobs and interblobs
 - Striate Cortex
 - Visual cortex has 6 parallel layers of neurons running along the brain surface
 - Most of the visual information enters through layer 4, is processed across all layers and leaves from layers 1-2
 - Response of V1 cells
 - Orientation selectivity: simple cells
 - Sensitive to the orientation of bars of lights
 - If environment is very rich, your neurons become sensitive. If not, your neurons adapt to only be sensitive to those colors.
 - Edge detectors
 - Elongated receptive field
 - Inhibitory surround
 - In center: simple cell is excited
 - Off center: simple cell is inhibited
 - Motion detector
 - Elongated receptive field
 - No inhibitory surround
 - Complex cell is excited by all 3 stimuli and by motion in a particular direction
 - Line-end detectors
 - Elongated receptive field
 - Inhibitory flank
 - No stimulus if bar is outside of the receptive field
 - Strong response if the bar is inside the receptive field
 - Once it crosses there is a weak/no response
 - Visual Angle, Spatial Frequency
 - Most cells in V1 are also sensitive to ‘spatial frequency’
 - High spatial frequency – more details
• Low spatial frequency – low details
 • Used for the perception of textures
 • Retinal disparity: Perception of Depth
 • ‘Far’ cells and ‘near’ cells are maximally active when stimuli are on on-corresponding parts of the retina (retinal disparity)
 • We use many other cues to perceive depth (shape, angles)
 • Putting it all together
 • Blobs
 • Low spatial frequencies
 • Color
 • Binocular
 • Interblobs
 • Orientation
 • High spatial frequency
 • Motion
 • Disparity (depth)
 • Binocular
 • Beyond V1
 • Extra-striate cortex
 • The visual system is complicated!
 • The 2 visual pathways
 • 2 streams of information leave V1 (into V2)
 • Dorsal pathway
 • Where?
 • Location of objects in space
 • Posterior parietal lobe
 • LOCATION INFORMATION
 • Ventral pathway
 • What?
 • Identity of object
 • Inferior temporal cortex
 • SHAPE INFORMATION
 • The further the information goes along the ventral pathway (temporal lobes), the more selective the cells for specific objects or visual features
 • Ventral: Perception of color
 • CO blobs → V4...V8
 • V4: color constancy
 • Perception of color depends on ‘context’
 • Cerebral achromatopsia (damage to V8)
 • Loss of color vision with no loss of acuity
 • Some patients can recognize colors, but not shapes
 • Ventral: Perception of faces
 • Face cells
 • Cells selective to faces, emotional expressions, identity
 • In humans, face cells are located in the ‘fusiform face area’
 • Ventral Stream
 • Respond to complex 3D objects, colors, and forms
- Large receptive fields
- Faces and bodies are special
 - Face
 - Fusiform Face Area
 - Bodies
 - Extrastriate Body Area
 - Objects
 - Lateral Occipital Complex
 - Scenes
 - Parahippocampal place area
- Damage to ventral stream: Visual agnosia
 - Deficit in perception of object
 - Good recognition
 - Deficit in associating a shape with a name
 - Good perception
 - Usually together with a language deficit
 - Prosopagnosia
 - Deficit in the perception of faces (fusiform face area)
- Dorsal Stream: Motion Information
 - Magnocellular \rightarrow Area MT (V5) + MST
 - Compute optic flow
 - Optic flow: When something is moving, you see it move in a particular direction
 - Center of expansion
 - One goal is to separate objects from each other and from the background
 - Inferring form from motion
 - Akinetopsia
 - Selective deficit in motion perception, not form
 - Blindsight
 - Seeing motion only
 - Collicular