Human Sexual Behavior
What makes sexual behaviors different between adult males and females?

- Hypothesis:
 - There is an activational effect of hormones during development

- Females:
 - Rats: hormones (estradiol and progesterone) control the behavior (e.g. lordosis) and the motivation
 - Primates: hormones don’t control the behavior but perhaps the motivation
 - Female motivation and initiation is highest when estradiol is high. In primates this corresponds to period of high male selectivity. Females select males.

- Males:
 - Key hormone: testosterone
 - Testosterone controls both physiology (sperm production, erection) and motivation (initiation, overall interest)
 - GnRH blocker in men leads to loose sperm/erection and loose sexual interest
 - GnRH loss in monkeys depends on rank (i.e. previous experience, low ranking have the largest loss)
 - Testosterone levels increase with psychological anticipation
 - Testosterone involved in other male behaviors like aggression
 - Testosterone levels decrease with age
 - Explains why there is a decrease in libido

Sexual Orientation
Sexual orientation: gender of preferred sexual partner, homosexuality vs. heterosexuality

- Other dimension of sexual preferences: monogamy, polygamy, age...etc.

Is there a dependence of sexual orientation on developmental vs. genetic factors?

- Developmental factors like education
- Genetic factors like physiological factors
- No single evidence to this...but evidence prenatal exposure to androgens and genetic factors

Genetic Females:
- Disorder called Congenital adrenal hyperplasia (CAH): too much androgens prenatally
 - Mild physical effects (e.g. enlarged clitoris)
 - Increased likelihood for homosexual preference
 - Increased likelihood for male “behaviors” (e.g. liking boy toys)
 - Sexually dimorphic behaviors
 - In video:
 - Women predisposed to more nurturing behaviors than men
 - CAH girls’ adrenal glands are overactive and produce testosterone in the womb (evidence that testosterone before birth affects behavior)
Genetic Males:

- **Androgen Insensitivity Syndrome: failure of androgenization**
 - XY looking female
 - Internal testes that produce testosterone, but there aren’t receptors
 - Produce estrogen in small amounts and that produces feminization
 - Normal female sex lives and behaviors
 - **XY genes not sufficient for heterosexual behaviors. Lack of androgens sufficient for homosexual behaviors (but not necessary)**

Genetic Factors:

- **Twin studies:**
 - Significantly more monozygotic (identical) twins that are both homosexual than dizygotic (fraternal) twins
 - There is a **genetic component** for both female and male homosexual orientation
 - **There are sexual dimorphisms in the brain, but they (as of today) don’t explain sexual orientation**

Brain differences:

- **Men vs. women:**
 - The **corpus callosum** and a few other areas are different (including the hypothalamus which is responsible for hormone production)
 - Women have more fibers in the corpus callosum than men
- **Heterosexual vs. homosexual:**
 - **Inconclusive** (or to the very least, indirect) differences

Are there more genetic differences?

- May be able to look at just finger length
 - **Genes that control the development of the fingers are the same genes that control the development of the ovaries and testes**
 - Males have longer ring fingers relative to their index fingers than women do
 - Long ring finger for women is a sign of protection against breast cancer
 - Men may have better sense of space due to testosterone
 - Testosterone for men is protective against early heart attack (betrers the cardiovascular system but may lead to dyslexia/autism)
 - Estrogen is a promoter of breast cancer

Do animals show homosexual behaviors? (homosexual behaviors vs. “being” homosexual):

- Yes
- About 500-1500 species
- Show homosexual behavior for dominance and for bonding

Neural control of sexual behavior

Males:

- Medial Preoptic Area: evidence for control from recordings, stimulation and lesion studies
 - Sexually dimorphic nucleus of MPA: androgen-induced enlargement in males
- Circuitry: 2 routes
 - Sensory inputs: come from the spinal cord, vomeronasal organ, and medial amygdala
- Sensory stimuli go to the MPA then goes to inhibit the ParaGigantoCellularis (PGi) or the PeriAqueductal Gray (PAG)
 - If inhibit the PGi will excite the spinal cord which leads to erection/ejaculation
 - If inhibit the PAG will excite PGi and then inhibit spinal cord and inhibit sexual behavior
- **Mostly inhibitory pathway**
 - For normal behavior the PGi needs to be constantly inhibited
 - PAG (in the midbrain): leads to erection
 - Nucleus of the PGi (in the medulla): leads to ejaculation
- SSRIs are antidepressants and decrease male sexual behaviors
- Amygdala sends its outputs to the MPA (“emotional” control of sexual behavior)

Male sexual behavior
Amygdala receives sensory inputs, and inputs are indicative of sexual behavior
- Information about stimuli is indicative of the performance of sexual behavior
Amygdala sends its outputs to the MPA (this is the “emotional” control of sexual behavior)

Neural control of sexual behaviors
Females:
- VentroMedial nucleus of the hypothalamus: lesion and stimulation studies show neural control of the ventromedial nucleus of the hypothalamus
 - Estradiol and progesterone (in rats) act in VMH
- Circuitry:
 - Sensory inputs: same as males (spinal cord, vomeronasal organ, medial amygdala)
 - Sensory inputs lead to VMH
 - VMH excites PAG or PGi
 - PAG or PGi excites the spinal cord
 - Spinal cord excites lordosis/vaginal secretions
- **Mostly excitatory pathway**
 - For normal behavior, the PGi needs to be excited
 - PAG active in female sexual behavior (orgasms in scanner)

Female sexual behavior
As in males, sensory inputs converge in the amygdala

Neural control of bonding
About 5-7% of mammalian species are monogamous (possibly “serially monogamous”)
- For example: prairie voles are monogamous and meadow voles are polygamous
 - In voles, monogamous when there are high levels of oxytocin in females and high levels of vasopressin in males
- In humans: oxytocin increases trust and is involved in empathy
- In video:
 - Oxytocin designed to help mothers nourish their offspring (produced through childbirth)
Believed that language developed through women as a way to educate offspring, etc.
 ▪ Don’t need language to hunt so developed through women
 ▪ May explain women’s better verbal ability (have denser corpus callosum)

Parenting Bonding
Parturition: set of behavior at and immediately after giving birth (nesting, hiding, cleaning, nursing, etc…)
 ● Example:
 ○ Rat milk production equivalent to 2 gallons of milk a day
 ○ Urine recycling and fluid exchange between mother and pups
 ○ Chemical signals from pups to mothers

Hormones and and maternal behaviors:
 ● Rats: prolactin (involved in maternal behavior) and oxytocin (involved in maternal bonding)
 ● Humans: postpartum depression affects about 13% of women, problems with the bonding part

Neural structures and parenting behaviors:
 ● MPA: lesion studies show it affects maternal but not sexual behaviors
 ● MPA, oxytocin, and prolactin also involved in paternal behaviors

Quiz
Estradiol is an androgen.
 ● False, it’s an estrogen

The vomeronasal organ is involved in vomiting.
 ● False, it’s involved in communication through pheromones

In order to develop normal male internal organs, the testes produce an anti-______ hormone which has a ______ (defeminizing/masculinizing) effect, and a pro-______ which has a ______ (defeminizing/masculinizing) effect.
 ● Anti-**Mullerian** hormone, defeminizing, pro-**Wolfian** hormone, masculinizing

MPA is involved in…
 ● Male sexual behavior, maternal and paternal behaviors