Pharmacokinetics

- Psychopharmacology:
 - Study of the effects of drugs on behavior
- Pharmacokinetics
 - Study of the 'fate'/movement' of substances administered to the body
 - Administered
 - Absorption
 - Entering the body or a body compartment (e.g. brain)
 - Distribution
 - Being carried to specific target organs
 - Metabolism
 - Being broken down by enzymes
 - Excretion

Routes of administration

- Intravenous
 - Fast, precise, direct access to the brain
 - Example: Drug abuse, adrenaline
- Interpretational: fast. Indirect access to the brain
 - Example: Chemotherapy (cancer)
- Intramuscular
 - Slower (capillaries) direct access
 - Vaccines, antibiotics
- Subcutaneous
 - Slow absorption (fat tissue) in direct
 - Insulin
- Oral
 - Easy, delayed (has to go through stomach/ intestines and the liver)
 - Aspirin
- Sublingual
 - Easy (for humans) by pass digestive system, capillaries of the tongue
 - Steroids, cardiovascular (hypertension, vasodilator)
- Intrarectal
 - Slow bypass the stomach
 - Suppositories
- Inhalation
 - Fast, easy requires volatile substance
 - Nasal decongestion, drug abuse (MJ) asthma
- Topical administration
 - Fast local (skin, mucous)
 - Nasal spray, eye drops, ear drops (herpes, glaucoma)
- Intracerebral
 - By passing the BBB, local (specific brain area) mostly research
- Intra(Cerebro)/ventricular
 - By [ass the BBB, global effect emergency
- FDA considered 111 routes of administrations valid
- Epidural, intracardiac, transdermal

- Kinetics of absorption
 - Study of the effect on some specific brain areas
 - Movement through the BBB
 - Lipid-soluble (e.g. heroine) substance pass the BBB
 - Water-soluble substances (e.g. morphine) do not
 - Chart 4.1 in the book

- Effectiveness: Does-Response curve
 - If the effect was proportional to the number of drugs: linear curve
 - Most drugs: non-linear curve
 - Chart 4.2 in the book

- Effectiveness: affinity
 - Affinity = strength of the binding
 - Drugs may have the same end-results, but may vary in effectiveness
 - Different sites of action
 - Morphine
 - Analgesic: Inhibits pain perception neurons
 - Aspirin
 - Analgesic: suppress chemical signal from damaged cells to the nervous system
 - Different affinity
 - Drug binds to receptors

- Margin of safety
 - Drugs have multiple effects at different concentrations: morphine
• Therapeutic index
 ○ TI: measure of drug safety
 ○ Therapeutic index = LD50 / ED50
 ○ LD = lethal dose for 50% of the animals
 ○ ED = effective dose for 50% of the animals
 ○ Valium (tranquilizer, anxiety reducer): TI = 100
 ○ Barbiturates (anesthesia, anticonvulsants): TI = 3 requires measurements in the blood and monitoring

• Drug misuse / abuse
 ○ What kind of long term effects do drugs have?
 ○ Effects decrease with repeated (prolonged) use
 • **Tolerance**: need more drugs: compensatory mechanisms counteracting the effect of the drug
 ▪ e.g. decrease in affinity, decrease in receptor numbers
 • **Withdrawal**: symptoms compensatory mechanism alone. Opposite behavioral/emotional effects
 ▪ e.g. euphoria to depression
 ○ Effect increases with repeated (prolonged) use: **sensitization**
 • e.g. antidepressants need time to be effective
 ○ Effects can be psychological: **placebo effect**
 • Used mainly in research
 ▪ e.g. control for anxiety (in humans)
 ▪ e.g. Control for the effect of drug administration (animals)
 ○ Drug reinforcing effect depends on environment
 • e.g. nicotine and cues

• How do drugs work? Agonists, antagonist
 ○ An **agonist** has the same postsynaptic effect as a neurotransmitter
 • e.g. it opens receptors
 • Chart 4.5 in the book

○ Direct agonist > competitive binding = competes with neurotransmitter molecules
○ Indirect agonist > noncompetitive binding > does not compete with neurotransmitter molecules

• Drugs can interfere with reuptake and degradation
 ○ Reuptake
- e.g. prevent reuptake (treating depression)

- **Neurotransmitters**
 - Goal of neurotransmitters release
 - Post synaptic potentials (EPSP/ IPSPS)
 - Transmitter ID card
 - Synthesis and deconstruction
 - Pathway of release
 - Receptors
 - Disease + action of prescription drugs

- **Amino acids**
 - **Glutamate (glu, glutamic acid)**
 - Synthesis: from protein in food
 - Found where: everywhere in the CNS
 - Receptors
 - Always excitatory
 - Ionotopic for NA (AMPA, Kainite)
 - Ionotopic for Na and CA (NMDA)
 - Metabotropic glutamate receptor
 - Psychopharmacology
 - NMDA involved in learning and memory
 - AP% blocks the glutamate binding site on NMDA receptor
 - Alcohol blocks NMDA receptor
 - PCP (angel dust) blocks NMDA and blocks calcium entry in the cell.
 - Hallucinations and aggression
 - Also, animals model for schizophrenia
 - Too much glutamate binding results in excito-toxicity (cell death)
 - **GABA**
 - Synthesis: from glutamate
- Found where: everywhere in CNS
- Receptors
 - Always inhibitory
 - Ionotropic from Cl (GABAa)
 - Metabotropic for K (GABAg) Exists presynaptic (Autoreceptors)
- Psychopharmacology
 - Controls spread if excitation (epilepsy, seizures)
 - opens and bicollinear blocks GABAa
 - Benzodiazepines (anxiolytic, sleep promoter’s seizure reducers) opens GABAa
 - GABAa is blocked by picrotoxin (convulsions)
 - Barbiturates (low doses = anesthesia higher does = respiratory arrest, low TI) opens GABAa
 - Gamma-hydroborate (GHB, date rape drug) GABA agonist
- **Glycine**
 - Synthesis: found in sugar cane
 - Endogenous productions unknown. Non-essential (can be synthesized by the body, no need for external source)
 - Found where: mainly in the spinal cord
 - Receptors
 - Always inhibitory
 - Ionotropic for Cl
 - Psychopharmacology
 - Prevents excessive muscle contraction
 - Tetanus: bacteria produces a chemical that blocks Glycine release
 - Strychnine blocks the Glycine receptor (convulsion and death) used by animal accordingly