Vocabulary

● Pharmacokinetics
 ○ *The study of the movement of administered substances within the body*

● Psychopharmacology
 ○ *The study of how drugs affect behavior*
Pathway of Administered Substances/Neurotransmitters

1. Administration
 a. The FDA approves 111 valid routes of administration

2. Absorption
 a. Enters body or body compartment

3. Distribution
 a. Carried to a specific area/target organ

4. Metabolism
 a. Broken down by enzymes
The Routes of Administration (Fast)

- **Intravenous**
 - **Examples**
 - Fast, precise, *direct* access to brain
 - Adrenaline
 - Intraperitoneal
 - Fast, *indirect* access to brain
 - Chemotherapy
- **Inhalation**
 - Fast, easy, volatile substance required
 - Nasal Decongestant
The Routes of Administration (Slow)

- Intramuscular (capillaries)

 Examples

 - Slow, *direct* access

- Subcutaneous (fat tissue)

 - Slow, *indirect* access

- Intrarectal

 - Slow, *bypasses stomach*
The Routes of Administration (Easy)

- **Oral**
 - Examples
 - Easy, delayed
 - Aspirin

- **Sublingual**
 - Easy, bypasses digestive system, capillaries of tongues
 - Steroids

- **Inhalation**
 - Easy, requires volatile substance
 - Nasal decongestant
The Routes of Administration (Bypasses BBB)

- **Intracerebral**
 - Bypasses BBB, local
 - Straight to cerebrum*

- **Intracerebroventricular**
 - Bypasses BBB, global effect, emergency
 - Straight to ventricular system*

This type of administration allows for drugs to target specific area(s) of brain, while also limiting distribution of drug to parts of the brain that does not need the drug
Abosrption

- The study of effects of some specific brain areas
 - Movement through BBB
- Lipid soluble substances pass through BBB
- H$_2$O soluble substances do not pass through BBB

The next few slides will discuss the Dose Response Curve, Margin of Safety, and Therapeutic Index

Therapeutic Index

- Effective dose (ED$_{50}$) = dose at which 50% population shows response
- Lethal dose (LD$_{50}$) = dose at which 50% population dies
- $TI = \frac{LD_{50}}{ED_{50}}$, an indication of safety of a drug (higher is better)
Absorption (Dose Response Curve)

- A linear curve
 - Proportional effect to amount of drugs
- A non linear curve
 - A majority of drugs are non linear
- Drug Affinity
 - The strength of binding
 - Different sites of action, drugs bind to different receptors for different affinity levels

Therapeutic Index

- Effective dose (ED_{50}) = dose at which 50% population shows response
- Lethal dose (LD_{50}) = dose at which 50% population dies
- $TI = LD_{50}/ED_{50}$, an indication of safety of a drug (higher is better)
Absorption (Margin of Safety)

- Drugs have multiple effects at different concentrations
- Drugs may have same end result but vary in effectiveness
 - Analgesic drugs
 - Morphine
 - Inhibits pain reducing neuron
 - Aspirin
 - Suppresses chemical signal from damaged cells to nervous system
- Distance between curves is either good or bad
Absorption (Therapeutic Index)

- The TI explains the dosage of a drug and its toxicity at certain levels

- \(\text{TI} = \frac{\text{LD}_{50}}{\text{ED}_{50}} \)
 - \(\text{LD} \) is the lethal dose at which 50% of the population dies
 - \(\text{ED} \) is the effective dose at which 50% of the population responds

- A higher LD means that it takes a higher drug dosage to reach toxic levels
- A lower ED means that less dosage of a drug is needed to reach effectiveness
- A large TI is good
Drug Use and Misuse

- **Tolerance**
 - A compensatory mechanism counteracting the effect of the drug
 - Effects *decrease* after prolonged use

- **Sensitization**
 - The effect of the drug *increases* with prolonged use

- **Withdrawal and its symptoms**
 - Compensatory mechanism acts alone
 - Person’s behavior (emotional) is abnormal and opposite of usual behavior
Drug Physiology

● How do drugs work?

○ Agonist

■ Holds the same postsynaptic effects as the particular neurotransmitter

■ Aids in opening certain receptors in brain

○ Antagonist

■ Direct

● Competes with the neurotransmitter molecules

● Competitive binding
Specific Neurotransmitters

- **Amino Acids**
 - **Glutamate**
 - **GABA**
 - **Glycine**

- **Acetylcholine**

- **Monoamines**
 - **Catecholamines**
 - **Dopamine**
Glutamate

- **Synthesization**
 - *Proteins in food*

- **Location**
 - *Everywhere*

- **Receptors**
 - *Ionotropic for Na\(^+\) (AMPA, Kainate)*
 - *Ionotropic for Na\(^+\) and Ca\(^{2+}\) (NMDA)*
 - *Metabolic Glutamate receptors*
GABA

- **Synthesization**
 - From Glutamate

- **Location**
 - Central Nervous System

- **Receptors**
 - Ionotropic for Cl⁻ (GABAₐ)
 - Metabotropic for K⁺ (GABA₇)
 - Exists presynaptically
 - Always inhibitory
Glycine

- **Synthesization**
 - From sugar cane
 - Naturally synthesized from our body

- **Location**
 - Spinal cord

- **Receptors**
 - Ionotropic for Cl
 - Always inhibitory
Citations