The Synapses

Conduction of a Depolarization
- In dendrites: ‘passive propagation’: There is attenuation of signal transmission
 - Further away they are, they lose signal & strength
- In axons: ‘active propagation’: The signal is regenerated. No attenuation.
 - From no matter where they are, there is no loss in signal or strength like in passive propagation
 - All or none conduction law for action potential (meaning that if the stimulus exceeds the threshold potential, the nerve will give either a complete response or no response at all).

Saltatory Conduction In An Axon (2.21)
- Saltatory Conduction = jumping conduction from node → node; this increases the conduction velocity of action potentials
- Regeneration of action potential at Nodes of Ranvier (gap in the myelin sheath of a nerve).
- Up to 260 miles/hour
- From soma → synapse

Rate Law (2.20)
- The greater the stimulus, the greater the # of action potentials (per second)
- Stronger stimulus on = more action potentials
- Spontaneous vs. Elicited
 - Elicited = done by stimulus
Source: http://animatlab.com/portals/0/Images/AnimatLab/NB_RateLaw.gif

Sample Quiz
- Sodium ions are more numerous outside the cell, and depolarize the neurons when they enter: True or False?
 - TRUE
- There are 5 times more neurons than glial cells: True or False?
 - FALSE; it is the opposite
- In a multipolar neuron information arrives at the _______, is summed at the _______, and sent out at the _______.
 - Dendrites, soma, axon

The Synapses
- Neurons are ‘simple’ computing devices
 - If you go in & kill a single one, it would not make a difference
 - Brain functions (including cognitive functions) rely on the activity of networks of interacting neurons; not just one single neuron
- These interactions = synapses
- Synaptic Morphology
 - Pre/post synaptic sites
 - Types of synapses
 - Synaptic vesicles
 - Neurotransmitter

Axonal Transport
- ‘Stuff’ moves along the axon microtubules (axoplasmic transport)
A Synapse: The Parts (2.23)

- Synaptic vesicles are filled with neurotransmitter molecules
- Synaptic cleft: gap

3 Kinds of Synapse Locations (2.22)

- **Axo-Dendritic**
 - Axon onto dendrite
- **Axo-Somatic**
 - Axon directly on soma
- **Axo-Axonic**
 - Axon connects to another axon
The Synapses

- **Synaptic Physiology**
 - Place where two neurons ‘talk’ to each other

Neurotransmitter Release (2.24)

- Synapse need action potential
- As soon as action potential arrives, vesicles fuse to membrane, open up and integrate membrane & release neurotransmitter
- Action potential → vesicle fusion → neurotransmitters released in cleft (this happens in microseconds)
- The action potential of A triggers fusion at synapse
- Neurotransmitters are released into synaptic cleft (area between two neurons at a synapse).

Ionotrophic Receptors (2.25)

- Molecule in membrane waiting for neurotransmitters
- Transmitter binds → activates receptors → opens ion channels
- Very fast & local
- **Ligand**
 - Molecule of neurotransmitter attached to binding site

Metabotropic Receptors (2.26)

- Mediate the influence of hormones & drugs, state-dependent info processing
- Talk to other molecules
- Slow and diffuse action
- Second messengers: molecules that link receptors to ion channels
- Transmitter binds → activates receptors → activates ‘second messengers’ → open ion channels & intracellular effects

IPSPs and EPSPs (2.27)

- **EPSP** = Excitatory Post Synaptic Potential
- **IPSP** = Inhibitory Post Synaptic Potential
- **Inhibitory**: more negative & hyperpolarization (change in a cell’s membrane potential that makes it more negative; opp. of depolarization).
Calcium more outside than inside

Excitatory: more positive & depolarization (change in the difference between the electric charge on the inside/outside of the cell membrane; cell becomes more positively charged).

One given neuron releases the same neurotransmitter at all of its synapses

All synapse = excitatory

Regulation of Release: Re-Uptake

- Recycling of molecules/extra neurotransmitters
- Helps w/ fast, efficient neurotransmission (low signal-to-noise)
- Re-uptake: clean up for next action potential
 - Transporter does this on pre-synaptic side

Regulation of Release: Autoreceptors, Enzymatic Deactivation

- Autoreceptors
 - On pre-synaptic membrane (AKA presynaptic receptors)
 - Tells all vesicles to slow down
 - Regulate synthesis & release of neurotransmitter (No ion flow)
 - Mostly metabotropic
 - If molecules linger, enzymes destroy them

- Enzymatic Deactivation
 - Acetylcholine (Ach): excitatory neurotransmitter
 - VS.
 - Acetylcholine esterase (AchE): destroys molecules (little Pacmen)

Regulation of Release: Axo-Axonic Synapses

- Presynaptic inhibition/facilitation
- The AB synapse helps (or interferes with) the BC synapse (Look at 2.30 in text book)
- The AB synapse exerts a presynaptic facilitation or inhibition of the BC synapse

Fun Facts

- Some neurotransmitters are released diffusely (leak out): Neuromodulators
- They have slow & diffuse actions (peptides). Influence many postsynaptic targets
- Involved in attention, emotions, pain sensitivity
- Most hormones are produced by endocrine glands in the body (adrenal glands, stomach, liver)
- Some neurons produce hormones rather than neurotransmitters
- Some neurons have hormone receptors (target cells)
 - Brain talks to body this way
- Communication between nervous system & body
 - Ex: sex hormones, aggression, stress

Synaptic Physiology
- Action potential \rightarrow vesicle fusion \rightarrow neurotransmitter release \rightarrow receptor opening \rightarrow ion flow \rightarrow postsynaptic potentials

Spatial Summation (Space)
- Post synaptic potentials from different synapses sum up at the soma
- ATC cancels out

Temporal Summation (Time)
- Post synaptic potentials from the same synapse (but different action potentials) sum up
- Too fast = they add onto each other which shows the double humps