Acetylcholine (ACh)

1. **Synthesis**
 - \(\text{CoA} + \text{Acetate} \rightarrow \text{Acetyl-CoA} \) (mitochondria) (food, vinegar)
 - + Choline \(\rightarrow \text{ChAT} \rightarrow \text{CoA} + \text{ACh} \) (lipids, foods)
 - Destroyed by ACh-E

2. **Location**
 - Pons: REM sleep
 - Basal forebrain: learning cortex and long-term memory
 - Medial septum: brain rhythms and short-term memory (hippocampus)
 - PNS: muscle contraction

3. **Receptors:** Mostly Excitatory
 - Nicotinic: Ionotropic (\(\text{Na}^+ \))
 - Stimulated by nicotine and blocked by curare
 - Muscarinic: Metabotropic (intracellular effects)
 - Stimulated by muscarine and blocked by atropine

4. **Psychopharmacology**
 - First neurotransmitters discovered
- Involved in muscle contraction
- In PNS: ACh is responsible for digestion and lowering the heart rate
- Botulinum Toxin (BOTOX)
 i. Blocks ACh release
 ii. Antagonist
- Black widow venom
 i. Promotes ACh release
 ii. Agonist
- Neostigmine
 i. ACh-E inhibitor; reduces myasthenia gravis symptoms
 ii. Agonist
- Atropine
 i. Blocks muscarinic receptors; response to nerve gas
 ii. Antagonist
- Curare
 i. Blocks nicotinic receptors
 ii. Antagonist

Monoamines: Catecholamine: Dopamine (DA)
*localized production, diffused projections

1. Synthesis
 - Tyrosine \rightarrow \text{L-Dopa} \rightarrow \text{Dopamine}
 (high protein foods) (+ enzyme)

https://www.slideshare.net/siddharthadutta8/dopamine-dopaminergic-system-pharmacotherapy-and-modulation-70950944
2. **Location**
 - Midbrain
 i. Substantia nigra
 - Projects to basal ganglial nigrostratial pathway
 ii. Ventral tegmental area
 - Projects to limbic cortex and prefrontal cortex

3. **Receptors: Excitatory and Inhibitory**
 - D1, D2, D3, D4, D5

4. **Psychopharmacology**
 - “Pleasure” system, positive reinforcement and drug addiction
 - Parkinson’s disease: due to low levels of DA
 i. Damage connects to substantia nigra → caudate
 ii. Dopamine does not cross the BBB but **L-Dopa (agonist)** does
 iii. Deep brain stimulation, Prevents tremors
 - Schizophrenia: due to high levels of DA
 i. **Chlorpromazine (antagonist)** blocks dopamine D_{2/4} receptors
 - **AMPT**
 i. Blocks the enzyme that helps tyrosine turn into L-Dopa
 ii. **Antagonist**
 - **Reserpine**
 i. Prevents storage of DA monoamines in vesicles
 ii. **Antagonist**
 - **Amphetamines and Cocaine**
 i. DA re-uptake inhibitors: Addiction
 - I.E. methamphetamine and methylphenidate (Ritalin)
 ii. **Agonists**
 - Monoamine oxidase destroys (oxidizes) excessive monoamines
 i. Found naturally in blood, cheese and chocolate. Excess MAO is linked to depression.
 ii. **Deprenyl (agonist)** destroys MAO and increases vesicle content of DA
 iii. Inactivates “free-floating” dopamine

Monoamines: Catecholamine: Nor/Epinephrine (NE/E)
*very localized production, diffuse projections

1. **Synthesis**
 - Tyrosine → L-Dopa → Dopamine → Norepinephrine
2. **Location**
 - NE: locus coeruleus (dorsal pons)
 - E (hormone): produced in adrenal medulla (gland above the kidney)
 - Wide projections throughout the brain
 - Released at the axonal varicosities

3. **Receptors: Excitatory and Inhibitory**
 - Metabotropic: α-adrenergic and β-adrenergic

4. **Psychopharmacology**
 - Vigilance and attention
 - **Fusaric acid**
 - i. Blocks NE synthesis from dopamine
 - ii. **Antagonist**
 - **Reserpine**
 - i. Prevents storage of NE monoamines in vesicles; hypertension
 - ii. **Antagonist**
 - **Idazoxam**
 - i. Blocks the autoreceptors
 - ii. **Agonist**

Monoamines: Serotonin (5-HT)
*localized production, diffuse projections

1. **Synthesis**
 - Tryptophan \rightarrow 5-HP \rightarrow 5-HT
2. **Location**
 - Mainly in the raphe nuclei (midbrain)
 - Released at the axonal varicosities (diffuse release)

3. **Receptors:** *Excitatory and Inhibitory*
 - 9 different kinds; They are labeled 5-HT_x (i.e. 5-HT_{2A})

4. **Psychopharmacology**
 - Responsible for mood, eating (5-HT₃; vomiting), sleep and pain
 - **PCPA**
 i. Blocks tryptophan
 ii. *Antagonist*
 - **Fluoxetine (Prozac)**
 i. Inhibits re-uptake of 5-HT
 ii. *Agonist*
 - **Fenfluramine**
 i. Inhibits the re-uptake of 5-HT
 ii. stimulates release of 5-HT
 iii. Suppresses appetite
 iv. *Agonist*
 - **LSD (acid)**
 i. Stimulates 5-HT_{2A} receptors
 ii. *Agonist*
 - **MDMA (ecstasy)**
i. Inverts the re-uptake transporters direction
ii. Stimulates release of 5-HT
iii. Long-term memory deficits
iv. Agonist

(Neuro)peptides

1. Synthesis
 - In soma, from many amino acids; Axoplasmic transport is necessary
 - 100 different kinds (i.e. CCK, Substance P)
 - Transmitters: endogenous opioids (peptides released from brain that act like opiates)

2. Location
 - CNS and PNS
 - Released at synaptic boutons and through volume transmission (“leaking”)
 - Co-released with other neurotransmitters of the same vesicles
 - Reactivated by enzymes (re-uptake)

3. Receptors: Inhibitory
 - MANY!
 - Enkephalins: μ, δ, κ receptors
 - Opioid peptide: opiate receptors

4. Psychopharmacology
 - Opium, morphine, heroine
 i. Bind to and open the opiate receptors
 ii. Agonist
 - Codeine
 i. The liver converts it to morphine and it then binds opiate receptors
 ii. Agonist
 - Naloxone
 i. Competitive blocker of opiate receptors; Prevents overdose
 ii. Antagonist
 - Angiotensin
 i. PNS: constricts blood vessels
 ii. CNS: thirst

Lipids

1. Synthesis
 - Anandamide (endocannabinoids)

2. Location
 - ?
• Non-local
• Produced on demand
• Not stored in vesicles

3. Receptor: *Excitatory and Inhibitory*
 • Many metabotropic receptors
 • Named CB₁, CB₂… etc.

4. Psychopharmacology
 • Complex synaptic effects: THC is an agonist for CB₁ and CB₂
 • *THC*
 i. Sedative, appetite enhancer, reduces nausea, distorts time and perception, interferes with attention and impair learning and memory
 ii. Blocks the 5-HT₃ receptor
 iii. Stimulates CB₁ receptors
 iv. *Agonist*
 • *Acetaminophen*
 i. Acts on the CB₁ receptor
 ii. Stimulates release of DA
 iii. *Agonist*
 • *Rimonabant*
 i. Blocks the CB₁ receptor
 ii. *Antagonist*

Nucleosides

1. Synthesis
 • Sugar molecules bound to other compounds (i.e. adenosine)

2. Location
 • ?
 • Non-local
 • Adenosine is released by astrocytes

3. Receptors
 • MANY!
 • Adenosine: 3 types of receptors, Inhibitory through metabotropic K⁺

4. Psychopharmacology
 • Physiological
 i. Increases blood flow
 • Neural
 i. Decreases arousal
 • *Caffeine*
 i. Passes the BBB, fat soluble, passes through cell membranes
ii. Blocks adenosine receptors

iii. *Antagonist*

Soluble Gases

1. **Synthesis**
 - Nitric Oxide (NO): found within neurons and is not stored
 - Carbon Monoxide (CO)

2. **Location**
 - ?
 - Non-local

3. **Receptors**
 - NONE: diffuses directly
 - Triggers the second messenger cascades

4. **Psychopharmacology: For NO**
 - Modulates intestine function (relaxation)
 - Stimulates erection (vasodilator), NO is an inhibitor blocker (i.e. Viagra)
 - Learning and memory