Chapter 5: Methods and Strategies Research

- Methods in Brain Research
 - Non-invasive (human):
 - Imaging:
 - CT Scan: computerized (Axial) Tomography (x-rays). Static pictures and high spatial resolution. Horizontal plane only.
 o Detailed 2-D pictures of the brain.
 o All planes
 o More sensitive than CT scan
 o Dynamic picture of the brain in action
 o Variant: Autoradiography (brain slices)
 - Functional MRI (fMRI): Modified MRI. Higher temporal resolution (~6-8 seconds), low spatial resolution.
 - DTI: Diffusion Tensor Imaging: Modified MRI. Image of bundles of axons and projection pathways.
 - MRI/fMRI
 - Imaging the brain 'in action'
 - Normal (research) and abnormal (clinical) functions
 - 2-DG
 - autoradiogram: invasive: brain sliced after 2-DG absorption
 - PET scan
 - Brain in action (e.g. movement)
 o Red= most active
 o Violet = least active
 - Brain areas that function differently (e.g. depression)
 - Brain areas that 'absorb' a particular drug (e.g. L-Dopa in Parkinson’s disease)
 - Diffusion Tensor Imaging (DTI)
 - Use of MRI data to compute the movement of water molecules (along the axon). Efferent projections.
 - Non-Invasive (human)
 - Electrical
 - Electroencephalography (EEG): recording surface electrical signals with macro-electrodes. High temporal resolution, low spatial resolution.
 - Sleep studies; seizure detection
 - Note: electrical and imaging:
- Optical recordings open skull, imaging electrical activity—used for research.

- **Magnetic**
 - Magnetoencephalography: detect small magnetic field generated by neurons.
 - More temporally precise than fMRI.
 - Need special equipment/room
 - Patients are seated
 - Seizure foci
 - Transcranial Magnetic Stimulation (TMS): create a magnetic field to induce an electrical current (stimulation). Mostly superficial brain (cortex).
 - Motor cortex → motor evoked potentials
 - Occipital cortex → phosphenes
 - Variant: repetitive TMS. Effects outlaw the period of stimulation. Research tool. Clinical tool (treat depression, mania, PTSD)

- **Genetic**
 - In humans: twin and adoption studies—Nature vs. Nurture
 - Monozygotic (identical): same chromosomes and genes
 - Dizygotic (fraternal): different chromosomes
 - Concordance for traits (e.g. schizophrenia, obesity, alcoholism), assess the influence of environment.
 - In Animals: Targeted gene mutation: changing or deleting a specific gene.

- **In vivo: behaving**
 - Ablation/ Lesion: Mapping brain areas to functions and functions to behaviors
 - Suction (mechanical), radio frequency (heat), excitotoxic lesions (spare axons)
 - Requires surgery. Small damage to insertion of electrode. Use of sham lesions for controls.
 - Variant: reversible lesions (use of specific chemicals, or colling).
 - Anesthesia: shut neurons off for a while
 - Lesions: knife cuts
 - E.g. split brains, epilepsy
 - Neurosurgeon: lesion of corpus callosum
 - Ultimate goal is the map the brain
 - Electrode implementation: wires lowered into particular area of interest of the brain

- **Invasive (Animals)**
- In vivo: behaving
 - Cannula implementation (injecting a chemical substance). Target particular receptors in specific brain areas.
 - Micro-dialysis: measuring the concentration of a specific chemical substance (e.g. neurotransmitter)
 - Optogenetics: Inject a virus in a brain area. The virus carries genes that will produce light sensitive proteins.
 - ChR2: sensitive to blue, depolarized the cell
 - NpHR: sensitive to yellow, hyperpolarize the cell
 - Implant an optical fiber that sines blue and/or yellow light with a laser
 - Manipulate the activity of specific cell types in specific brain area.
 - High temporal resolution
 - High spatial resolution
 - Cell specific
 - Single-unit recordings. Behavior: conditioning, learning and memory (maze)
 - E.g. learning, memory, drug addiction, decision-making, perception, etc.

- Animal – Anesthetized:
 - Stereotaxic surgery: use of an atlas and skull landmark (e.g. Bregma). Recording/stimulation. Also done in humans (local anesthesia).
 - Micro dialysis
 - E.g. study brain connectivity, single cell activity