Brain Mechanisms: Evidence

- Hunger and satiety signals arise from the periphery and reach the brain
- Eating and drinking are evolutionarily ancient (involve the brain stem)
- Control mechanisms do not require the cortex
- Decerebrated animals (lesion)
 - Cannot seek food
 - Can eat, can respond to hunger and thirst
 - Can differentiate different kinds of food
 - Can vomit/reject bad food: area postrema is intact

Lateral Hypothalamus

- Controls hunger
- Lesion -> decrease eating/drinking and body weight
- Stimulation -> increase eating/drinking
- Block glutamate transmission -> decrease food intake
- LH needs inputs -> hunger and thirst are active processes
- 2 types of neurons producing:
 - Melanin Concentrating Hormone (MCH)
 - Food deprivation increases MCH
 - Satiety decreases MCH
 - Orexin (aka hypocretin)
- Stimulation of MCH/orexin neurons
 - Increase appetite
 - Decreases metabolic rate
 - Increase motivation and movement
- MCH/orexin neurons project to areas involved in planning, motivation and movement

What triggers the LH MCH and Orexin neurons?

NeuroPeptide Y (NPY)

- NPY injections in the hypothalamus will trigger eating frenzies
- Rats will tolerate pain in order to eat -> NPY increases motivation to eat
- NPY from the Arcuate nucleus (in hypothalamus, near 3rd ventricle)
• NPY secretion is triggered by brain stem nuclei and controlled by stomach secretions (Ghrelin)
• Endocannabinoids act like NPY
 o Marijuana used to increase appetite in chemotherapy patients
• Stomach (Ghrelin)/Brain Stem (liver) -> Arcuate (NPY) -> Lateral Hypothalamus (MCH, orexin) -> increased eating, decreased metabolism

How do we stop eating?

Two parallel inhibitory pathways
• Leptin (from fat cells) inhibits NPY neurons in the Arcuate Nucleus
• Cocaine and Amphetamine Regulated Transcript (CART) neurons in the Arcuate Nucleus
 o CART neurons inhibit the MCH/Orexin neurons via the MC-4R receptor

Leptin
• Hereditary leptin deficiency (OB-like) in humans
 o Genetic deficit in production of leptin
• Leptin no longer used in weight loss diets; body becomes desensitized to leptin

Obesity
• Increasing problem: obesity -> diabetes
 o Obesity correlated with diabetes
 o Type 1 diabetes: deficiency in insulin production (required by injections)
 o Type 2 diabetes: deficiency in insulin receptors (treated with pills)
• Average energy consumption
 o 20% muscles
 o 20% brain
 o 60% heat + digestion
• Body weight = energy stored – energy spent
• Definition of obesity: more than 20% of normal weight
• Body Mass Index (BMI): body fat based on height and weight
 o 25-30: overweight
 o 30-40: obese
 o 40 and above: morbidly obese
• Why are people overweight?
 o On average: 2,500 kCal in and only 300 kCal out
 o Foods eaten are high in fat, sugar and calories
 o Not enough activity (1/3 of what is required)
Overwriting of physiological signals of satiety: encouraged to eat more, large portions

Availability of bad foods

• Biological causes of obesity
 o Metabolic disorder (more calories in than out)
 ▪ Due to fast metabolism
 ▪ High metabolic rates -> increase availability of calories -> spent if needed, stored if not
 ▪ Low metabolic rates -> no opportunity for fat storage
 ▪ In general not due to a deficiency in leptin production

 o Genetic factors: different metabolic rates
 ▪ Twin studies (high/low calorie diets)
 ▪ Epidemiological studies

 o Mice: due to leptin deficiency
 o Humans: no evidence for leptin deficits, but:
 ▪ Deficit in leptin transport through BBB
 ▪ Deficit in sensitivity of leptin receptors (MC4 receptors, age related)

 o In humans, high fat diets inherently decrease satiety signals
 o Night Eating Syndrome (NES): more Ghrelin and less leptin at night

• Treatment
 o Exercise (especially at a young age)
 o Wire In Jaw (close the mouth) and liquid diet
 o Gastroplasty: reshaping the stomach
 o Intestinal bypass: directly to the large intestine
 o Gastric bypass: 35% success in long-term decrease in weight, diminish secretion of Ghrelin (skip the stomach)
 o Gastric bubble
 o 5-HT promoters (relapse, cardiovascular side effects)
 o Uncoupling protein (UCP): convert nutrients to heat

• Conclusion
 o Eat slowly
 o Eat regularly
 o Exercise
 o Don’t eat at night

• Anorexia Nervosa
 o Definition
 ▪ Refusal to maintain weight over the lowest considered normal for age/height
- Intense fear of gaining weight or becoming fat (even when underweight)
- In women: three consecutive missed menstrual periods without pregnancy
 - 80% of cases are young women (aged 15-24)
 - 15% death rate
 - Can be due to too much exercise (too much exercise decrease hunger signals)
 - Restricting food results in increased physical activity (and weight loss) Respond physiologically correctly to food -> not a loss of interest in food
 - >6 months starvation has psychological consequences (OCD?)
- Genetic factors (twin studies)
- Brain imbalance of NE, 5-HT and NPY
 - No effective drug treatment
 - Treatment: psychotherapy