The Neurons

- Functional classes (CNS and PNS)
 - Sensory (collect internal and external information)
 - Motor (controls muscles)
 - Interneurons

- Morphology (shape)
 - Study of neuron shape is called neuro-anatomy
 - In some cases, the shape of a neuron is indicative of function
 - 3 basic shapes
 - Multi-polar (2.1)
 - Dendrites have spines
 - Axons have myelin sheath
 - Neuron takes information from the dendrites to the soma to the axon to the terminal boutons in the form of neurotransmitters
 - Inside a multipolar neuron
 - Soma
 - Membrane (lipid bilayer (fat))
 - Cytoplasm
 - Nucleus (chromosomes, DNA, genes, protein, enzymes)
 - Microtubules (axoplasmic transport)
 - Mitochondria (energy and ATP symbiosis)
 - Cytoskeleton (assembly of microtubules and other proteins that together produce the shape of the neuron)
 - Unipolar
 - Spinal Chord
 - Brain to muscle or gland
 - Dendrite and axon
 - Bipolar (2.2)
 - Sensory
 - External/internal stimulus to the brain
 - One axon, one dendrite

- Nerve (axon bundle)
 - Synapses
 - How neurons communicate with each other
 - Space between terminal boutons and dendrites
 - Pre-synaptic: terminal bouton and prior
 - Post-synaptic dendrites and after

Neurons

- Neurons
 - Take care of by Glial Cells
 - 5x more glial cells than neurons
three types

- **Astrocytes**
 - Buffer for chemical substance (kill and absorb or secrete)
 - Structural support
 - Cleanup (phagocytosis)
 - Nourishment (e.g. lactate)
 - Active interface between blood vessels and neurons

- **Oligodendrocytes**
 - Extend arms to axon and wrap around axon
 - Schwann cells wrap themselves around an axon

- **Microglia**
 - Phagocytes (clean up)
 - Part of immune system
 - Active during inflammatory reaction due to brain damage

✓ Check your understanding
- Trace from spine to spine of communication between cells
- what are the three types of neurons?

Blood Brain Barrier
- selective permeability (only takes in what is needed)
- active transport (e.g. glucose)
- Area Postrema (controls vomiting)

How Neurons Work
- Neurons are electrical devices

<table>
<thead>
<tr>
<th>Electron</th>
<th>Ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry charge</td>
<td>Molecule that carries electron</td>
</tr>
<tr>
<td>Free-floating</td>
<td>Channeled information</td>
</tr>
</tbody>
</table>

- Example
 - Squid have giant axons
 - Axons generate a voltage (-70mV)

- Resting Membrane Potential
 - diffusion: high to low concentration
 - electrostatic pressure: same charges repel
 - Extracellular
 - Low concentration K+
 - High Concentration of Na+ and Cl-
 - Force of diffusion flows high to low into the cell
 - Electrostatic pressure based on cell repulsion pushes the ion back out
 - Intracellular
 - Anion
 - High concentration K+
 - Force of diffusion flows high to low out of the cell
 - Electrostatic pressure based on cell repulsion pushes the ion back in
• Low concentration of Na+ and Cl-
 • Sodium Potassium Pump (2.16)
 ▪ 3 sodium out 2 potassium in to establish equilibrium
• When there is a change in equilibrium
 • Hyperpolarization (voltage decreases)
 • Depolarization (membrane potential voltage increases)
• Action potential (2.14)
 • Neurons respond to this
 • All or None Conduction Law (in axon)
• In the membrane
 • Voltage dependent ion channels
 ▪ Ions move in/out of cells using ion channels
 ▪ Channels open when depolarized
 ▪ K+ channels are slower than Na+ channel (2.17)
 ▪ Na+ open and depolarize
 ▪ K+ open and hyperpolarize cell
• Conduction of a Depolarization
 • In Dendrites: passive propagation
 ● Lose power
 • In Axons: Active Propagation
 ● Myelin sheath isolate the axon and preserve voltage
 ● Regenerate the voltage at the nodes of Ranvier
• Rate Law
 • Greater the stimulant the greater the number of action potentials
 • Spontaneous (weak) vs. Elicited (strong)
✓ Check Your Understanding
 • True Sodium ions are more numerous outside the cell and depolarize the neurons when they enter
 • False There are 5X more neurons than glial cells
 • Trace information from spines to the terminal boutons
 ▪ Information arrives at the spines/ dendrites. It is than summed at the soma and than sent out on the axon to the terminal boutons