“Ingestive Behaviors”

Brain Mechanisms: Evidence

- Hunger and satiety signals arise from the periphery and reach the brain
- Eating and drinking are evolutionarily ancient (i.e. involve the brain stem)
- Control mechanisms do not require the cortex. Decerebrated animals
 - Cannot seek food
 - Can eat, can respond to hunger and thirst
 - Can differentiate different kinds of food
 - Can vomit/reject bad food: area postrema is intact

Hypothalamus:

- **Lateral Hypothalamus:**
 - Control Hunger
 - Lesion \Rightarrow decrease eating/drinking and body weight
 - Stimulation \Rightarrow increase eating/drinking
 - Block glutamate transmission \Rightarrow decrease food intake
 - LH needs input \Rightarrow Hunger and food intake are active process
 - AP-5 =NMDA blocker
 - Injections of AP-5 decreases body weight
 - Placebo slight decrease of body weight
 - 2 types of neurons producing:
 - Melanin Concentration Hormone (MCH)
 - Orexin (aka hypocretin)
 - Food deprivation increases MCH
 - Satiety decreases MCH
 - Stimulation of MCH/orexin neurons: appetite inducing, decrease metabolic rate, increase motivation and movement
 - MCH/orexin neurons project to areas involved in planning, motivation and movement
 - MCH \Rightarrow a ‘hunger’ variable?
 - What triggers the Lateral Hypothalamus MCH and Orexin neurons?
 - NeuroPeptide Y (NPY)
 - NPY injections in Hypothalamus: Eating frenzies.
 - Rats will tolerate pain in order to eat \Rightarrow MPY increases motivation to eat
 - NPY from the Arcuate nucleus (in hypothalamus, near 3rd ventricle)
 - NPY secretion is triggered by brain stem nuclei and controlled by stomach secretions (Ghrelin)
 - Endocannabinoids act like NPY
 - Marijuana used to increase appetite in chemotherapy patients
 - **Stomach (Ghrelin) \Rightarrow Arcuate (NPY) \Rightarrow Lateral (MCH, Orexin) \Rightarrow Increase Eating Brain Stem (liver) \Rightarrow Hypothalamus \Rightarrow Decrease Metabolism**
 - Ghrelin levels peak at meal times (breakfast, lunch, dinner, ‘night hunger’)

- **How do we stop eating? Two parallel inhibitory pathways**
 - Leptin (from fat cells) inhibits the NPY neurons in the Arcuate Nucleus
 - **Cocaine and Amphetamine Regulated Transcript (CART) neurons in the Arcuate Nucleus**
 - Cart (and a-MSH) neurons inhibit the MCH/Orexin neurons via the MC-4R receptors
 - Satiety:
 - Leptin \Rightarrow - NPY \Rightarrow + MCH/ORexin
 - Leptin \Rightarrow + CART \Rightarrow - MCH/ORexin
Leptin:
- Hereditary leptin deficiency (OB-like) in humans
 - Genetic deficit in the production of Leptin
- Leptin no longer used in weight loss diets: leptin resistance

Ingestive Behaviors: Obesity
- An increase problem: Obesity \rightarrow Diabetes
 - Type 1 diabetes: deficiency in insulin production (requires injections)
 - Type 2 diabetes: deficiency in insulin receptors (treated in pills)
 - More common
- Southern USA has higher obesity \rightarrow points to environmental factors
- Average energy consumption:
 - Muscles (20%), Brain (20%), Heat + Digestion (60%)
 - Bod weight \leftrightarrow Energy stored – Energy spent
- Definition of obesity: more than 20% of normal weight
- Body Mass Index (BMI): body fat based on height and weight
 - 25-30: overweight
 - 30-40: obese
 - 40 & above: Morbidly obese (can lead to death without interference)
- Why are people overweight?
 - On average: 2,500 kCal in, but only 300 kCal out…
 - Kind of foods eaten: high fat, high sugar, high calories
 - Not enough activity (1/3 of what would be required)
 - Overwriting of physiological signals for satiety: encouraged to eat more, large portions
 - Availability of (bad) foods
- Biological Causes of Obesity:
 - Metabolic disorder (more calories in than out)
 - Due to fast metabolism
 - In general, not due to a deficiency in Leptin production
 - Genetic factors: Different metabolic rates
 - Twin studies: tested with high/low calorie diets
 - Epidemiological studies: study of populations
 - E.g.: Pima Indians in the US vs. Mexico
 - High metabolic rates \rightarrow increase availability of calories \rightarrow spent if needed, stored if not (hence obesity)
 - Low metabolic rates \rightarrow no opportunity for fat storage (no obesity)
- Mouse: obesity is due to leptin deficit
- Human: no evidence for leptin production deficits, but:
 - Deficit in leptin transport through the BBB
 - Deficit in sensitivity of leptin receptors (MC4 Receptors, age related)
- In humans, high fat diets inherently decrease satiety signals
- Night Eating Syndrome (NES): more Ghrelin and less leptin at night
- Treatments:
 - Exercise (especially young age)
 - Wire in Jaw (close the mouth) and liquid diet
 - Gastroplasty: Reshaping the stomach
 - Intestinal bypass (directly to the large intestine)
 - Gastric bypass
 - 35% success in long-term decrease in weight
Diminish secretion of Ghrelin
- Gastric bubble
- 5-HT promoters (relapse, cardiovascular side effects)
- Uncoupling protein (USP)
 - Convert nutrient to hear

Conclusion:
- Eat slowly
- Eat regularly
- Exercise (but not too much)
- Don’t eat at night

Ingestive Behaviors: Anorexia Nervosa

Definition:
- Refusal to maintain weight over the lowest weight considered normal for age/height
- Intense fear of gaining weight or becoming fat (even when underweight)
- **In women:** three consecutive missed menstrual periods, without pregnancy

- 80% of cases are young women
 - age: 15-20
 - 15% death rate
- **Can be due to too much exercise:**
 - Too much exercise decrease hunger signals
 - Restricting food results in increase physical activity (and weight loss)
- Respond physiologically correctly to food ➔ Not a loss of interest in foods
- In normal, >6 months starvation has psychological consequences (OCD?)
- Genetic factors (evidenced by twin studies)
- Brain imbalance of NE, 5-HT and NPY.
 - No effective drug treatment
- **Treatment:** Psychotherapy