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Imagine a game of chess. As the players think about their next moves, 
they consider the outcome each action would have on the board, as 
well as the opponent’s likely reply. The players’ knowledge of the 
board and the rules constitutes an internal model of chess, a knowl-
edge structure that links actions to their likely outcomes. The proc-
ess of using such an ‘action–outcome’ model to inform behavior is 
defined within reinforcement learning theory as the act of planning1. 
Planning, so defined, has been an object of scientific investigation for 
many decades, and this research has generated important insights into 
the planning abilities of both humans and other animals2–5.

Despite this progress, the neural mechanisms that underlie plan-
ning remain frustratingly obscure. One important reason for this 
continuing uncertainty lies in the behavioral assays that have tra-
ditionally been employed. Until recently, research on planning has 
largely employed behavioral tests (for example, outcome devaluation) 
in which the subject is put through a sequence of training stages, 
then makes just one decision to demonstrate planning (or an absence 
thereof)2,6,7. While the same animal can be tested multiple times8, 
at most one behavioral measure is obtained per session. Seminal 
studies using these assays have established the relevance of several 
neural structures3,4, and they continue to be fundamental for many 
experimental purposes, but these assays are constrained by the small 
number of planned decisions they elicit. In an important recent break-
through, new tasks have been developed that lift this constraint9–12, 
allowing the collection of many repeated trials of planned behavior. 
These tasks provide an important complement to existing behavioral 
assays, promising to allow both a detailed evaluation of competing 
models as well as new opportunities for experiments investigating 
the neural mechanisms of planning. They have, however, so far been 
applied only to human subjects, limiting the range of experimental 
techniques available.

Here we have adapted one of these tasks (the ‘two-step’ task9) for 
rats, combining for the first time a multitrial decision task with the 
experimental toolkit available for rodents. First, we conducted a 
set of detailed computational analyses on a large behavioral data-
set and confirmed that rats, like humans, employ model-based  
planning to solve the task. In a second experiment, we employed 
causal neural techniques not available in humans to address an impor-
tant open question in the neuroscience of planning: the role of the 
dorsal hippocampus.

A long-standing theory of hippocampal function holds that it repre-
sents a ‘cognitive map’ of physical space used in support of navigational 
decision-making13. Classic experiments demonstrate hippocampal 
involvement in navigation tasks14,15, as well as the existence of ‘place 
cells’, which both encode current location16 and ‘sweep out’ potential 
future paths at multiple timescales17,18. These findings have given rise 
to computational accounts of hippocampal function that posit a key 
role for the region in model-based planning19–21. However, support 
for these theories from experiments employing causal manipulations 
has been equivocal. Studies of both spatial navigation and instru-
mental conditioning have shown intact action–outcome behaviors 
following hippocampal damage22–27. At the same time, tasks requir-
ing relational memory do show intriguing impairments following 
hippocampal damage28–30. The latter tasks assay whether behavior 
is guided by knowledge of relationships between stimuli (stimulus– 
stimulus associations), which plausibly involves representations  
and structures similar to those for the action–outcome associations 
that underlie planning, but they do not focus on action–outcome 
associations. Here with the two-step task, we isolate these action– 
outcome associations specifically.

Using rats performing the two-step task, we performed reversible 
inactivation experiments in both dorsal hippocampus (dH) and in  
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orbitofrontal cortex (OFC), a brain region widely implicated in model-
based control (i.e., planning) in traditional assays31–33. The repeated-trials  
nature of the task allowed us to use computational modeling to 
identify a set of separable behavioral patterns that jointly explained 
observed behavior and to quantify the relative strength of each pat-
tern. We found that the behavior of our animals was dominated by a 
pattern consistent with model-based planning, with important influ-
ences of novelty aversion, perseveration and bias. The model-based 
pattern was selectively impaired by inactivation of OFC or dH, while 
other patterns were unaffected.

Notably, model-based planning depends on a number of com-
putations; behaviorally observed planning impairments might be 
caused by impairments to the planning process itself or instead 
by impairments to learning and memory processes upon which 
planning depends. Computational modeling analysis indicates 
that our effects are not well-described as an impairment in learn-
ing or memory in general but as a specific attenuation of planned 
behavior. We therefore conclude that these regions either perform 
computations integral to the planning process itself (i.e., use the  
action–outcome model to inform choice) or represent inputs used 
specifically by the planning process. This provides what is, to our 
knowledge, the first causal evidence that dH contributes to model-
based planning.

RESULTS
We trained rats to perform a multitrial decision making task9, adapted 
from the human literature, designed to distinguish model-based ver-
sus model-free behavioral strategies (the two-step task; Fig. 1). In the 
first step of the task, the rat chooses between two choice ports, each 
of which leads to one of two reward ports becoming available with 
probability 80% (common transition) and to the other reward port 
becoming available with probability 20% (uncommon transition). In 
the second step, the rat does not have a choice but is instead instructed 
as to which reward port has become available, enters it and either 
receives (reward) or does not receive (omission) a bolus of water. 
Reward ports differ in the probability with which they deliver reward, 
and reward probability changes at unpredictable intervals (Online 
Methods). Optimal performance requires learning which reward port 
currently has the higher reward probability and selecting the choice 
port more likely to lead to that port. This requires using knowledge 
of the likely outcomes that follow each possible chosen action—that 
is, it requires planning.

Rats performed the two-step task in a behavioral chamber out-
fitted with six nose ports arranged in two rows of three (Fig. 1b). 
Choice ports were the left and right side ports in the top row, and 
reward ports were the left and right side ports in the bottom row. 
Rats initiated each trial by entering the center port on the top 
row, and then indicated their choice by entering one of the choice 
ports. An auditory stimulus then indicated which of the two 
reward ports was about to become available. Before entering the 
reward port, however, the rat was required to enter the center port 
on the bottom row. This kept motor acts relatively uniform across  
common and uncommon trial types. For some animals, the com-
mon transition from each choice port led to the reward port on the 
same side (Fig. 1a; ‘common-congruent’ condition), while for others 
it led to the reward port on the opposite side (‘common-incongru-
ent’). These transition probabilities constituted stable relationships 
between actions (choice ports) and their likely outcomes (reward 
ports). Subjects therefore had the opportunity to incorporate  
these action–outcome relationships into an internal model and to use 
them in order to plan.

Two analysis methods to characterize behavior and quantify 
planning
We trained 21 rats to perform the two-step task in daily behavioral 
sessions (n = 1,959 total sessions), using a semiautomated training 
pipeline that enabled us to run large numbers of animals in paral-
lel with minimal human intervention (Online Methods). Although 
optimal performance in the two-step task requires planning, good 
performance can be achieved by both planning and model-free strate-
gies (Supplementary Fig. 1). Critically, however, each type of strategy 
gives rise to different patterns of choices9. Model-free strategies tend 
to repeat choices that resulted in reward and avoid choices that led to 
omission, regardless of whether the transition after the choice was a 
common or an uncommon one. Planning strategies, in contrast, are 
by definition aware of these action–outcome probabilities. Thus, after 
an uncommon transition, planning strategies tend to avoid choices 
that led to a reward, because the best way to reach the rewarding port 
again is through the common transition that follows the opposite 
choice. Similarly, after an uncommon transition, planning strategies 
tend to repeat choices that led to a reward omission, because the best 
way to avoid the unrewarding port is through the common transition 
likely to occur after repeating the choice. Following this logic, Daw 
et al.9 examined how humans’ choices in a given trial depend on the 
immediately previous trial and concluded that humans appear to use 
a mixture of model-free strategies and model-based planning.

Figure 1 Two-step decision task for rats. (a) Structure of a single trial of 
the two-step task. (i) Top center port illuminates to indicate trial is ready, 
and the rat enters it to initiate the trial. (ii) Choice ports illuminate, and 
the rat indicates its decision by entering one of them. (iii) Probabilistic 
transition takes place, with probability depending on the choice of the 
rat. Sound begins to play, indicating the outcome of the transition. (iv) 
Center port in the bottom row illuminates, and the rat enters it. (v) The 
appropriate reward port illuminates, and the rat enters it. (vi) Reward is 
delivered with the appropriate probability. PL, probability that the left  
port will provide a reward; PR, probability that the right port will provide  
a reward. (b) Photograph of behavioral apparatus, consisting of six  
nose-ports with LEDs and infrared beams, as well as a speaker mounted 
in the rear wall. (c) Example behavioral session. Rightward choices are 
smoothed with a 10-trial boxcar filter. At unpredictable intervals, reward 
probabilities at the two ports flip synchronously between high and low. 
Rats adapt their choice behavior accordingly. (d) Choice data for all rats 
(n = 21). The fraction of trials on which the rat selected the choice port 
whose common (80%) transition led to the reward port with currently 
higher reward probability, as a function of the number of trials that have 
elapsed since the last reward probability flip.
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To assess the extent to which rat subjects were using a planning 
strategy, we extended the analysis of Daw et al., which considered the 
influence of the immediately preceding trial on present-trial behavior9, 
to use information from multiple trials in the past (Supplementary 
Fig. 2). We have shown separately that this many-trials-back approach 
is robust to some potential artifacts (for example, due to slow learning 
rates34). The many-trials-back approach consists of a logistic regres-
sion model that predicts the choice of the rat on each trial, given 
the history of recent trials and their outcomes. A trial that occurred  
τ trials ago can be one of four types: common-rewarded (CR), uncom-
mon-rewarded (UR), common-omission (CO) and uncommon- 
omission (UO). For each τ, each of these trial types is assigned a weight 
(βCR(τ), βUR(τ), βCO(τ) and βUO(τ) respectively). Positive weights  
correspond to a greater likelihood that the rat will make the same 
choice that was made on a trial of that type that happened τ trials in 
the past, while negative weights correspond to a greater likelihood 
that the rat will make the other choice. The weighted sum of past 
trials’ influence then dictates choice probabilities (Online Methods). 
Notably, because model-free strategies do not distinguish between 
common and uncommon transitions, model-free strategies will tend 
to have βCR ≈ βUR and βCO ≈ βUO. In contrast, model-based strategies 
tend to change their behavior in different ways following common 
versus uncommon transitions and will therefore have βCR > βUR and 
βCO < βUO.

Applying this approach to synthetic data from artificial reinforce-
ment-learning agents using planning or model-free strategies (Online 
Methods) yields the expected patterns (Fig. 2a,b). For the planning 
agent (Fig. 2a), trials with common and uncommon transitions have 
opposite effects on the current choice. In contrast, for the model-free 
agent (Fig. 2b), common and uncommon transition trials have the 
same effect, and only reward versus omission is important. Figure 2c  
shows the result of fitting the regression model to data from an  
example rat. The behavioral patterns observed are broadly similar to 
those expected of a model-based agent (cf. Fig. 2a,c).

We next applied this approach to the behavior of each rat in our 
dataset (Supplementary Fig. 3) to reveal the nature of that animal’s 
choice strategy. To quantify the overall extent to which each rat showed 
evidence of planning versus a model-free strategy, we defined a ‘plan-
ning index’ and a ‘model-free index’ by summing over the regression 
weights consistent with each pattern (Fig. 2 and Online Methods). 
We have previously found that these measures provide a more reliable 
guide to behavioral strategy than standard measures, which consider 
only the immediately previous trial34. We found that trained rats over-
whelmingly showed large positive planning indices (Fig. 2; mean over 
rats, 4.2; standard error, 0.3) and small positive model-free indices 
(mean, 0.6; standard error, 0.1), consistent with their having adopted a 
planning strategy. Similarly, we found that movement times from the 
bottom center port to the reward port were faster for common versus 
uncommon transition trials (average median movement time, 700 ms 
for common and 820 ms for uncommon, P < 10−5; Supplementary 
Fig. 4), further indicating that rats used knowledge of the transi-
tion probabilities to inform their behavior. These results were similar 
between rats in the common-congruent condition (common outcome 
for each choice port is the reward port on the same side; Fig. 1a) and 
those in the common-incongruent condition (common outcome is 
the port on the opposite side; P > 0.2).

This regression analysis also revealed substantial rat-by-rat vari-
ability (Fig. 3a). Furthermore, there are noteworthy deviations from 
the predicted model-based pattern (Fig. 3a and Supplementary  
Fig. 4). For example, the rat in the top left panel of Figure 3a (same 
rat as in Fig. 2c) showed the overall pattern of regression weights 

expected for a model-based strategy, but in addition, for this rat all 
weights are shifted in the positive direction (i.e., the ‘repeat choice’ 
direction). This particular rat’s behavior can thus be succinctly 
described as a combination of a model-based strategy plus a ten-
dency to repeat choices; we refer to the latter behavioral component 
as ‘perseveration’. While the regression analysis’ rich and relatively 
theory-neutral description of each rat’s behavioral patterns is useful 
for identifying such deviations from a purely model-based strategy, 
it is limited in its ability to disentangle the extent to which each indi-
vidual deviation is present in a dataset. The regression analysis suffers 
from several other disadvantages as well; it requires a relatively large 
number of parameters, and it is implausible as a generative account of 
the computations used by the rats to carry out the behavior (requir-
ing an exact memory of the past five trials). We therefore turned to a 
complementary analytic approach: trial-by-trial model fitting using 
mixture-of-agents models.

Mixture-of-agents models provide both more parsimonious 
descriptions of each rat’s dataset (involving fewer parameters) and 
more plausible hypotheses about the underlying generative mecha-
nism. Each model comprises a set of agents, each deploying a different 
choice strategy. Rats’ observed choices are modeled as reflecting the 
weighted influence of these agents, and fitting the model to the data 
means setting these weights, along with other parameters internal to 
the agents, so as to best match the observed behavior. We found that 
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a good qualitative match to rats’ behavior could be achieved with a 
mixture of only four simple agents, representing four patterns. We 
call these patterns planning, choice perseveration, novelty preference 
and choice bias (Fig. 3a and Supplementary Fig. 3). The four agents 
implementing these four patterns were a model-based reinforcement 
learning agent (planning), an agent that repeated the previous trial’s 
choice (perseveration), an agent that repeated or avoided choices that 
led to a common versus an uncommon transition (novelty prefer-
ence) and an agent that preferred the left or the right choice port on 
each trial (choice bias; Online Methods). In all, this model contained 
five free parameters: four mixing weights, βplan, βnp, βpersev and βbias, 
each associated with one of the four agents, and a learning rate, αplan, 
internal to the planning agent. We arrived at these four particular pat-
terns as the necessary components because removing any of the four 
agents from the mixture resulted in a large decrease in quality of fit 
(assessed by cross-validated likelihood; Fig. 3b and Online Methods) 
and because adding a variety of other additional patterns (model-free 
reinforcement learning, model-based and model-free win–stay versus 
lose–switch, transition learning or all of the above; Online Methods) 
resulted in only negligible improvements (Fig. 3b), as did substituting 
an alternate learning mechanism based on hidden Markov models 

into the planning agent (Fig. 3b and Online Methods). We found that 
the mixture model performed similarly in terms of quality of fit to the 
regression-based model, for all but a minority of rats (Fig. 3b). The 
planning agent earned, on average, the largest mixing weights of any 
agent, indicating that model-based planning is the dominant compo-
nent of behavior on our task (Fig. 3c). Taken together, these findings 
indicate that this mixture model is an effective tool for quantifying 
patterns present in our behavioral data and that well-trained rats on 
the two-step task exhibit perseveration, novelty preference and bias 
but predominantly exhibit model-based planning.

Pharmacological inactivation of hippocampus or OFC impairs 
planning
In the next phase of this work, we took advantage of both the regres-
sion analysis and the mixture-of-agents model to investigate the causal 
contribution of OFC and dH to planning behavior. We implanted six 
well-trained rats with infusion cannulae targeting each region bilat-
erally (Supplementary Fig. 5) and used these cannulae to perform 
reversible inactivation experiments. In these experiments, we infused 
the GABAA agonist muscimol into a target brain region bilaterally, then 
allowed the animals to recover for a short time before placing them in 
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the behavioral chamber to perform the task (Online Methods). We 
compared behavior during muscimol sessions to behavior during con-
trol sessions performed the day before and the day after inactivation, 
as well as to sessions before which we infused saline into the target 
region (Supplementary Figs. 6–8). We found that inactivation of either 
region substantially reduced the magnitude of the planning index rela-
tive to both each region’s control sessions (Fig. 4; OFC, P = 0.001; dH,  
P = 0.01; Online Methods) and to pooled saline sessions (OFC,  
P = 0.004; dH, P = 0.04). We found no effect of inactivation on the model-
free index (all P > 0.5). We also found that inactivation of dH resulted 
in decreases in task performance as measured by the fraction of times 
the rat chose choice ports whose common transition led to the reward 
port with larger reward probability (P = 0.003; Supplementary Fig. 9).  
For completeness, we also present results of the traditional one-trial-back 
analysis on the inactivation dataset (Supplementary Figs. 10 and 11).  
The impact of inactivation on model-based behavioral patterns was not 
simply due to an overall reduction in the modulation of current trial 
choices by past trials: we computed the aggregate main effect of past 
choices on future choices (βCR + βUR + βCO + βUO; Online Methods) 
for each rat for each type of session and found that this measure was 
insensitive to inactivation of either region (Fig. 4b; OFC, P = 0.4; dH, 
P = 0.7). Together, these results suggest that inactivation of OFC or dH 
reduced the extent to which behavior showed evidence of planning but 
did not affect evidence for perseveration or model-free patterns.

To determine the extent to which these muscimol-induced behav-
ioral changes were specific to planning, we applied our mixture-
of-agents model to the inactivation datasets (Fig. 5a and Online 
Methods). To make the most efficient use of our data, we adopted a 
hierarchical modeling approach, simultaneously estimating param-
eters for both each rat individually as well as for the population of 
rats as a whole. For each rat, we estimated the mixture-of-agents 
model parameters (βplan, αplan, βnp, βpersev and βbias) for control and 
inactivation sessions. For the population, we estimated the distri-
bution of each of the rat-level parameters across animals, as well as 

the effect of inactivation on each parameter. To perform Bayesian 
inference with this model, we conditioned it on the observed data-
sets and used Hamiltonian Markov chain Monte Carlo to estimate 
the posterior distribution jointly over all model parameters (Online 
Methods and Supplementary Figs. 12 and 13). We summarize this 
distribution by reporting the median over each parameter, taking 
this as our estimate for that parameter. Estimates for parameters 
governing behavior on control sessions were similar to those pro-
duced by fitting the model to unimplanted rats (compare Fig. 5b  
and Table 1). Estimates for parameters governing the effect of  
inactivation on performance suggested large and consistent effects 
on the planning parameter βplan, with weak and/or inconsistent 
effects on other parameters. To test whether inactivation affected 
behavior at the population level, we computed for each population-
level parameter the fraction of the posterior in which that parameter 
has the opposite sign as its median: the Bayesian analog of a P value. 
We found that this value was small only for the parameter corre-
sponding to the planning weight (βplan; OFC, P = 0.01; dH, P = 0.01) 
and large for all other parameters (all P > 0.1). To determine whether 
this was robust to tradeoff in parameter estimates between βplan 
and other parameters, we inspected plots of the density of posterior 
samples as a function of several parameters at once. Figure 5c shows 
a projection of this multidimensional density onto axes that repre-
sent the change in βplan (planning agent’s weight) and the change in 
αplan (planning agent’s learning rate) due to the infusion. We found 
that no infusion-induced change in αplan would allow a good fit 
to the data without a substantial reduction in the βplan parameter  
(all of the significant density is below the ‘effect on βplan = 0’ axis).  
We found similar robustness with respect to the other population-level  
parameters (Supplementary Fig. 14).

To test the hypothesis that the effects of inactivation were specific 
to planning, we constructed several variants of our model and com-
pared them to one another using cross-validation. The first of these 
was designed to simulate a global effect of inactivation on memory 
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and constrained any effect on βplan, βnp and βpersev to be equal across 
all three weights. The second was designed to simulate an effect  
specifically on memory for more remote past events and allowed 
inactivation to affect only the influence of outcomes that occurred 
two or more trials in the past. The third was a combination of these 
two, allowing inactivation to have different effects on the recent 
and the remote past but constraining it to affect all agents equally. 
We found that in all cases, model comparison strongly dispreferred 
these alternative models, favoring a model in which inactivation has 
different effects on different components of behavior (log posterior 
predictive ratios of 42, 56 and 47 for OFC in the first, second and 
third alternative models, respectively, and log posterior predictive 
ratios of 26, 43 and 26 for dH; Online Methods). Taken together, 
these findings indicate that both OFC and dH play particular roles 
in supporting particular behavioral patterns and that both play a 
specific role in model-based planning behavior. We find no evidence 
that either region plays a consistent role in supporting any behavioral 
component other than planning.

DISCUSSION
We report the first successful adaptation of the two-step task—a 
repeated-trial, multistep decision task widely used in human 
research—to rats. This development, along with parallel efforts in 
other labs (Supplementary Discussion) provides a broadly applica-
ble tool for investigating the neural mechanisms of planning. While 
existing planning tasks for rodents are well-suited to identifying the 
neural structures involved and expose the process of model learn-
ing for study, the two-step task provides important complementary 
advantages. By eliciting many planned decisions in each behavio-
ral session, it opens the door to a wide variety of new experimental 
designs, including those employing neural recordings to characterize 

the neural correlates of planning, as well as those, like ours, employing 
trial-by-trial analysis to quantify the relative influence of planning 
versus other behavioral strategies.

Analysis of choice behavior on our task reveals a dominant role for 
model-based planning. Notably, our analysis reveals little or no role 
for model-free reinforcement learning, in contrast with the perform-
ance of human subjects on the same task9. One possible reason for this 
is the extensive experience our rat subjects have with the task; human 
subjects given several sessions of training tend, like our rats, to adopt 
a predominantly model-based strategy35. These data stand in tension 
with theoretical accounts suggesting that model-based control is a 
slower, more costly or less reliable alternative to model-free control 
and should be avoided when it does not lead to a meaningful increase 
in reward rates5,36. However, they are in accord with data showing 
that human subjects adopt model-based strategies even when this 
does not result in an increase in reward rate37. Together, these data 
suggest that model-based control may be a default decision-making 
strategy adopted in the face of complex environments. Notably, rats 
also revealed knowledge of action–outcome contingencies in their 
movement times (Supplementary Fig. 3), making it unlikely that 
they were using any model-free strategy, including one that might use 
an alternative state space to allow it to mimic model-based choice38 
(Supplementary Discussion).

We found that reversible inactivation of OFC selectively impaired 
model-based choice, consistent with previous work indicating causal 
roles for this region in model-based control31–33, as well as theoretical 
accounts positing a role for this structure in model-based processing 
and economic choice39–41. That we observed similar effects in the rat 
two-step task is an important validation of this behavior as an assay 
of planning in the rat. Not all accounts of OFC’s role in model-based 
processing are consistent with a causal role in instrumental choice42. 
Our findings here are therefore not merely confirmatory but also help 
adjudicate between competing accounts of OFC function.

Inactivation of dH also selectively impaired model-based control, 
leaving other behavioral patterns unchanged. This finding offers the 
first causal demonstration, using a well-controlled task in which plan-
ning can be clearly identified, of a long-hypothesized role in planning 
for hippocampus. Long-standing theories of hippocampal function13 
hold that it represents a cognitive map of physical space and that this 
map is used in navigational planning. Classic causal data indicate 
that hippocampus is necessary for tasks that require navigation14,15 
but do not speak to the question of its involvement specifically in  
planning. Such data are consistent with theoretical accounts in which 
hippocampus provides access to abstract spatial state information  
(i.e., location) as well as abstract spatial actions (for example, ‘run south’,  
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Figure 5 Effects of muscimol inactivation on mixture model fits.  
(a) Schematic showing hierarchical Bayesian framework for using the 
agent model for parameter estimation. Each rat is characterized by a set 
of control parameters governing performance in saline sessions, as well 
as a set of infusion effect parameters governing the change in behavior 
following infusion. The population of rats is characterized by the means 
and s.d. of each of the rat-level parameters. These population parameters 
are subject to weakly informative priors. (b) Posterior belief distributions 
produced by the model over the parameters governing the effect of 
inactivation on planning weight (βplan) and learning rate (αplan). 

Table 1 Parameter estimates produced by the hierarchical 
Bayesian model for population parameters

Saline OFC effects dH effects

Normalized 
planning (βplan)

0.73 –0.28* –0.19*

Normalized novelty 
preference (βnp)

0.09 –0.13 0.02

Normalized 
perseveration 
(βpersev)

0.21 –0.02 –0.04

Bias (βbias) 0.09 0.17 0.05
Logit learning rate 
(αplan)

–0.38 –0.39 –0.34

Column one shows parameters governing behavior on saline sessions. Columns two and 
three show parameters governing the change in performance due to OFC or dH inactiva-
tion. In columns two and three, asterisks indicate parameters for which 95% or more of 
the posterior distribution shares the same sign.
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independent of present orientation)43. This information might be 
used by a strategy based on either action–outcome associations 
(i.e., a planning strategy) or on stimulus–response associations  
(a model-free strategy). An example of this comes from experiments 
using the elevated plus maze14, in which a rat with an intact hippoc-
ampus might adopt a strategy of running south at the intersection, 
independent of starting location, either because it knows that this 
action will lead to a particular location in the maze (planning) or 
because it has learned a stimulus–response mapping between this 
location and this spatial action. A related literature argues that the 
hippocampus is important for working memory, citing hippocampal  
impairments in tasks such as delayed alternation and foraging in 
radial arm mazes44,45, in which decisions must be made on the basis of 
recent past events. Impairments on these tasks are consistent both with 
accounts in which information about the recent past is used in model-
free learning (i.e., generalized stimulus–response learning in which 
the ‘stimulus’ might be a memory) as well as with accounts in which 
it supports action–outcome planning in particular. We find that our 
data are less well explained by models in which inactivation impairs 
memory in general. This indicates that, if the role of the hippocampus  
in our task is to support memory, this is a particular type of memory 
that is specifically accessible for the purposes of planning.

Our results are in accord with theoretical accounts that posit a 
role for the hippocampus in planning19–21 but stand in tension with 
data from classic causal experiments. These experiments have dem-
onstrated intact action–outcome behaviors following hippocampal 
damage in a variety of spatial and nonspatial assays. One prominent 
example is latent learning, in which an animal that has previously been 
exposed to a maze learns to navigate a particular path through that 
maze more quickly than a naive animal, whether or not it has an intact 
hippocampus22,23,27. Hippocampal damage also has no impact on clas-
sic assays of an animal’s ability to infer causal structure in the world, 
including contingency degradation, outcome devaluation and sensory 
preconditioning24–26. A comparison of these assays to our behavior 
reveals one potentially key difference: only the two-step task requires 
the chaining together of multiple action–outcome associations. 
Outcome devaluation, for example, requires one action–outcome  
association (for example, lever–food), as well as the evaluation of 
an outcome (food–utility). Our task requires two action–outcome 
associations (for example, top-left poke–bottom-right port lights; 
bottom-right poke–water) as well an evaluation (water–utility). This 
difference suggests a possible resolution: perhaps the hippocampus is 
necessary specifically in cases where planning requires linking actions 
to outcomes over multiple steps. This function may be related to the 
known causal role of hippocampus in relational memory tasks28,29, 
which require chaining together multiple stimulus–stimulus associa-
tions. It may also be related to data indicating a role in second-order 
classical conditioning46, as well as in trace conditioning47. Future 
work should investigate whether it is indeed the multistep nature 
of the two-step task, rather than some other feature, that renders it 
hippocampus-dependent.

Another contentious question about the role of hippocampus 
regards the extent to which it is specialized for spatial navigation48, 
as opposed to playing some more general role in cognition49,50. While 
performing the two-step task does require moving through space, the 
key relationships necessary for planning on this task are nonspatial, 
namely the causal relationships linking the first-step choice to the 
second-step outcome. Once the first-step choice was made, lights in 
each subsequent port guided the animal through the remainder of the 
trial; apart from the single initial left–right choice, no navigation or 
knowledge of spatial relationships was necessary. Taken together with 

the literature, our results suggest that multistep planning specifically 
may depend on the hippocampus, in the service of both navigation 
and other behaviors.

Model-based planning is a process that requires multiple compu-
tations. Notably, our results do not reveal the particular causal role 
within the model-based system that is played by either hippocampus 
or OFC. A remaining open question is whether these regions perform 
computations involved in the planning process per se (i.e., actively 
using an action–outcome model to inform choice) or instead perform 
computations that are specifically necessary to support planning (for 
example, planning-specific forms of learning or memory). It is our 
hope that future studies employing the rat two-step task, perhaps in 
concert with electrophysiology and/or optogenetics, will be able to 
shed light on these and other important questions about the neural 
mechanisms of planning.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Subjects. All subjects were adult male Long-Evans rats (Taconic Biosciences, 
NY), placed on a restricted water schedule to motivate them to work for water 
rewards. Some rats were housed on a reverse 12-h light cycle and others on a 
normal light cycle; in all cases, rats were trained during the dark phase of their 
cycle. Rats were pair-housed during behavioral training and then singly housed 
after being implanted with cannula. Animal use procedures were approved by 
the Princeton University Institutional Animal Care and Use Committee and car-
ried out in accordance with NIH standards. One infusion rat was removed from 
the study before completion due to health reasons; this rat did not complete any 
saline sessions.

The number of animals used in the inactivation experiment was determined 
informally by comparison to similar previous studies and by resources available. 
Particular animals were selected for inclusion informally: they were the first three 
in each transition probability condition to complete training on the present ver-
sion of the task, with high trial counts per session. Example animals (Figs. 2c, 
3a and 4c) were selected on the basis of cleanly demonstrating effects that were 
consistent in the population. Corresponding plots for all animals can be found 
in Supplementary Figures 4 and 6.

Behavioral apparatus. Rats performed the task in custom behavioral chambers 
(Island Motion, NY) located inside sound- and light-attenuated boxes (Coulborn 
Instruments, PA). Each chamber was outfitted with six nose ports, arranged in 
two rows of three, and with a pair of speakers for delivering auditory stimuli. 
Each nose port contained a white light emitting diode (LED) for delivering visual 
stimuli, as well as an infrared LED and infrared phototransistor for detecting rats’ 
entries into the port. The left and right ports in the bottom row also contained 
sipper tubes for delivering water rewards. Rats were placed into and removed 
from training chambers by technicians blind to the experiment being run.

Training pipeline. Here we outline a procedure suitable for efficiently train-
ing naive rats on the two-step task. Automated code for training rats using this 
pipeline via the bControl behavioral control system can be downloaded from 
the Brody lab website (http://brodylab.org/code/two-step-planning-task-code/). 
This formalization of our training procedure into a software pipeline should also 
facilitate efforts to replicate our task in other labs, as the pipeline can readily be 
downloaded and identically re-run.

Phase I: sipper tube familiarization. In this phase, rats become familiar with 
the experimental apparatus and learn to approach the reward ports when they 
illuminate. Trials begin with the illumination of the LED in one of the two reward 
ports, and reward is delivered upon port entry. Training in this phase continues 
until the rat is completing an average of 200 or more trials per day.

Phase II: trial structure familiarization. In this phase, rats must complete 
all four actions of the complete task, with rewards delivered on each trial. Trials 
begin with the illumination of the LED in the top center port, which the rat must 
enter. Upon entry, one of the side ports (chosen randomly by the computer) will 
illuminate, and the rat must enter it. Once the rat does this, the LED in the bottom 
center port illuminates, and a sound begins to play indicating which of the bottom 
side ports will ultimately be illuminated (according to the 80%/20% transition 
probabilities for that rat). The rat must enter the lit bottom center port, which 
causes the appropriate bottom side port to illuminate. Upon entry into this side 
port, the rat receives a reward on every trial. For rats in the congruent condition, 
the reward port available will be on the same side as the choice port selected 80% 
of the time, while for rats in the incongruent condition, ports will match in this 
way 20% of the time. ‘Violation trials’ occur whenever the rat enters a port that is 
not illuminated, which results in a 5-s timeout and an aversive white noise sound. 
Training in this phase continues until the rat is completing an average of 200 or 
more trials per day with a rate of violation trials less than 5%.

Phase IIIa: performance-triggered flips. In this phase, probabilistic dynamic 
rewards are introduced, and rats must learn to choose the choice port that is 
associated with the reward port that currently has higher reward probability. 
Trial structure is as in phase II, except that in 90% of trials both choice ports 
illuminate after the rat enters the top center port, and the rat must decide which 
choice port to enter. The rat then receives an auditory cue and LED instructions 
to enter the bottom center port and one of the reward ports, as above. This phase 
consists of blocks, and in each block, one of the reward ports is ‘good’ and the 
other is ‘bad’. If the good reward port is illuminated, the rat will receive a water 

reward for entering it 100% of the time. If the bad reward port is illuminated, 
the rat must enter it to move on to the next trial, but no water will be delivered. 
Which reward port is good and which is bad changes in blocks, and the change 
in blocks is enabled by the rat’s performance. Each block lasts a minimum of 50 
trials, after which the block switch is ‘enabled’ if the rat has selected the choice 
port that leads most often to the good reward port on 80% of free choices in the 
last 50 trials. On each trial after the end is enabled, there is a 10% chance per trial 
that the block will actually switch, and the reward ports will flip their roles. Phase 
IIIa lasts until rats achieve an average of three to four block switches per session 
for several sessions in a row. Rats that show a decrease in trial count during this 
phase can often be remotivated by using small rewards (~10% of the usual reward 
volume) in place of reward omissions at the bad port.

Phases IIIb and IIIc. These phases are the same as phase IIIa, except that the 
good and bad reward ports are rewarded 90% and 10% of the time, respectively, in 
phase IIIb and 80% and 20% of the time in phase IIIc. Block flips are triggered by 
the rat’s performance, as above. Each of these phases lasts until the rat achieves an 
average of two to three block changes per session for several sessions in a row.

Phase IV: final task. The final task is the same as phase IIIc, except that 
changes in block are no longer triggered by the performance of the rat but occur 
stochastically. Each block has a minimum length of 10 trials, after which the block 
has a 2% chance of switching on each trial. In our experience, approximately 90% 
of rats succeed in reaching the final task.

Behavioral analysis. We quantified the effect of past trials and their outcomes on 
future decisions using a logistic regression analysis based on previous trials and 
their outcomes51. We define vectors for each of the four possible trial outcomes: 
common-reward (CR), common-omission (CO), uncommon-reward (UR) and 
uncommon-omission (UO), each taking on a value of +1 for trials of their type 
in which the rat selected the left choice port, a value of −1 for trials of their type 
in which the rat selected the right choice port and a value of 0 for trials of other 
types. We define the following regression model: 
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where βCR, βCO, βUR and βUO are vectors of regression weights that quantify 
the tendency to repeat on the next trial a choice that was made τ trials ago and 
resulted in the outcome of their type, and T is a hyperparameter governing the 
number of past trials used by the model to predict upcoming choice. Unless oth-
erwise specified, T was set to 5 for all analyses (Supplementary Fig. 15).

We expect model-free agents to show a pattern of repeating choices that lead 
to reward and switching away from those that lead to omissions, so we define 
a model-free index for a dataset as the sum of the appropriate weights from a 
regression model fit to that dataset: 

Model-free Index = ( ) + ( )[ ]− ( ) + ( )[ ]
= =

∑ ∑
t t

b t b t b t b t
1 1

T T
CR UR UO CO (( )2

We expect that planning agents will show the opposite pattern after uncom-
mon transition trials, since the uncommon transition from one choice is the 
common transition from the other choice. We define a planning index: 

Planning Index = ( ) − ( )[ ]+ ( ) − ( )[ ]
= =

∑ ∑
t t

b t b t b t b t
1 1

3
T T

CR UR UO CO ( )

We test for significant model-free and planning indices using a one-sample  
t test across rats. We test for significant differences between rats in the common-
congruent and the common-incongruent conditions using a two-sample t test.

Behavior models. We model our rats’ behavior using a mixture-of-agents 
approach, in which each rat’s behavior is described as resulting from the influ-
ence of a weighted average of several different ‘agents’ implementing different 
behavioral strategies to solve the task. On each trial, each agent A computes a 
value, QA(a), for each of the two available actions a, and the combined model 
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makes a decision according to a weighted average of the various strategies’ values, 
Qtotal(a): 

Q a Q a a e

eA
A A

Q a

a
Qtotal ( )= ( ) ( )=

∈ { }

( )

′
∑

∑  agents
and

total

total
b p ′′( )a ( )4

where each β is a weighting parameter determining the influence of each agent, 
and Q(a) is the probability that the mixture-of-agents will select action a on that 
trial. We considered models consisting of subsets of the seven following agents: 
model-based temporal difference learning, model-free temporal difference 
learning, model-based win–stay/lose–switch, model-free win–stay/lose–switch,  
common–stay/uncommon–switch, perseveration and bias. The ‘full model’ consists  
of all of these agents, while the ‘reduced model’ consists of four agents, which 
were found to be sufficient to provide a good match to rat behavior. These four 
were model-based temporal difference learning (without transition updating), 
novelty preference, perseveration and bias.

Model-based temporal difference learning. Model-based temporal difference 
learning is a planning strategy that maintains separate estimates of the probability 
with which each action (selecting the left or the right choice port) will lead to 
each outcome (the left or the right reward port becoming available), T(a,o), as 
well as the probability, Rplan(o), with which each outcome will lead to reward. 
This strategy assigns values to the actions by combining these probabilities to 
compute the expected probability with which selection of each action will ulti-
mately lead to reward: 

Q a R o T a o
o

plan plan *( )= ( ) ( )∑ , ( )5

At the beginning of each session, the reward estimate Rplan(o) is initialized 
to 0.5 for both outcomes, and the transition estimate T(a,o) is initialized to the 
true transition function for the rat being modeled (0.8 for common and 0.2 for 
uncommon transitions). After each trial, the reward estimate for both outcomes 
is updated according to 
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where ot is the outcome that was observed on that trial, rt is a binary variable 
indicating reward delivery, and αplan is a learning-rate parameter. The full model 
(but not the reduced model) also included transition learning, in which the func-
tion T(a,o) is updated after each outcome according to 
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T a o T a o o o

T a o T a o o
t

t T t t

t T t
,

, , ,

, , ,
( )←

( ) + − ( )( ) =

( ) + − ( )( ) ≠

a

a

1

0 oot
( )7







where at is the action taken, and αT is a learning rate parameter.
Model-free temporal difference learning. Model-free temporal difference learn-

ing is a nonplanning reward-based strategy. It maintains an estimate of the value 
of the choice ports, Qmf(a), as well as an estimate of the values of the reward ports, 
Rmf(o). After each trial, these quantities are updated according to 

Q a Q a R o Q a r R ot t t t t tmf mf mf mf mf mf mf( ) ← ( ) + ( ) − ( )( ) + − ( )( )a a l
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 ot
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where αmf and λ are learning-rate and eligibility-trace parameters affecting the 
update process.

Model-free win–stay/lose–switch. Win–stay/lose–switch is a pattern that tends 
to repeat choices that led to rewards on the previous trial and switch away from 
choices that led to omissions. It calculates its values on each trial according to 
the following: 

Q a r Q a a rt t t twsls mf wsls mfand− −( ) ← ≠( ) ← −1 9( )

Model-based win–stay/lose–switch. Model-based win–stay/lose–switch follows 
the win–stay/lose–switch pattern after common transition trials but inverts it 
after uncommon transition trials. 

Q a
r
rt
t

t
wsls-mb

common transition trials
uncommon transit( ) ←

−
,
,1 iion trials





Q a a Q at twsls-mb wsls-mb≠( ) ← − ( )1 10( )

Novelty preference. The novelty preference agent follows an uncommon–stay/
common–switch pattern, which tends to repeat choices when they lead to uncom-
mon transitions on the previous trial and to switch away from them when they 
lead to common transitions. Note that some rats have positive values of the βnp 
parameter weighting this agent (novelty preferring) while others have negative 
values (novelty averse; Fig. 3c): 

Q atnp
 common transition trials

uncommon transition trial( )←
1

0
,

, ss




Q a a Q at np tnp ≠( )← − ( )1 11( )

Perseveration. Perseveration is a pattern that tends to repeat the choice that 
was made on the previous trial, regardless of whether it led to a common or an 
uncommon transition and regardless of whether or not it led to reward. 

Q atpersev ( ) ← 1

Q a atpersev ≠( ) ← 0 12( )

Bias. Bias is a pattern that tends to select the same choice port on every trial. 
Its value function is therefore static, with the extent and direction of the bias 
being governed by the magnitude and sign of this strategy’s weighting param-
eter, βbias. 

Qbias left( ) ← 1

Qbias right( ) ← −1 13( )

model comparison and parameter estimation: unimplanted rats. We imple-
mented the model described above using the probabilistic programming language 
Stan52,53 and performed maximum a posteriori fits using weakly informative 
priors on all parameters54. The prior over the weighting parameters β was normal, 
with mean 0 and sd 0.5, and the prior over αmf, αmb and λ was a beta distribution 
with a = b = 3.

To perform model comparisons, we used two-fold cross-validation, dividing 
our dataset for each rat into even- and odd-numbered sessions and computing the 
log-likelihood of each partial dataset using parameters fit to the other. For each 
model for each rat, we computed the normalized cross-validated likelihood by 
summing the log-likelihoods for the even- and odd-numbered sessions, dividing 
by the total number of trials and exponentiating. This value can be interpreted 
as the average per-trial likelihood with which the model would have selected 
the action that the rat actually selected. We define the reduced model as the full 
model defined above, with the parameters βmf, βwsls – mf, βwsls – mb and αT all set 
to zero, leaving as free parameters βplan, αplan, βnp, βpersev and βbias (note that αmf 
and λ become undefined when βmf = 0). We compared this reduced model to nine 
alternative models: four in which we allowed one of the fixed parameters to vary 
freely, four in which we fixed one of the free parameters βplan, βnp, βpersev or βbias 
to zero, and the full model, in which all parameters are allowed to vary.

We estimated parameters by fitting the reduced model to the entire dataset 
generated by each rat (as opposed to the even/odd split used for model com-
parison), using maximum a posteriori fits under the same priors. For ease of 
comparison, we normalize the weighting parameters βplan, βnp and βpersev, divid-
ing each by the s.d. of its agent’s associated values (Qplan, Qnp and Qpersev) taken 
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across trials. Since each weighting parameter affects behavior only by scaling the 
value output by its agent, this technique brings the weights into a common scale 
and facilitates interpretation of their relative magnitudes, analogous to the use 
of standardized coefficients in regression models.

Synthetic behavioral datasets: unimplanted rats. To generate synthetic behav-
ioral datasets, we took the maximum a posteriori estimates parameter estimates 
for each rat and used the reduced model in generative mode. The model matched 
to each rat received the same number of trials as that rat, as well as the same 
sequence of reward probabilities. We used these synthetic datasets for qualita-
tive model-checking: if the reduced model does a good job capturing patterns 
in behavior, applying the regression analysis to both real and synthetic datasets 
should yield similar results.

Surgery. We implanted 6 rats with infusion cannula targeting dH, OFC and pre-
limbic cortex (PL), using standard stereotaxic techniques (data from PL are not 
reported in this paper). Anesthesia was induced using isoflurane, along with 
injections of ketamine and buprenorphine. The head was shaved, and the rat was 
placed in a stereotaxic frame (Kopf Instruments) using nonpuncture ear bars. 
Lidocaine was injected subcutaneously under the scalp for local anesthesia and to 
reduce bleeding. An incision was made in the scalp, the skull was cleaned of tissue 
and bleeding was stopped. Injection cannula were mounted into guide cannula 
held in stereotaxic arms (dH and OFC: 22-gauge guide, 28-gauge injector; PL: 
26-gauge guide, 28-gauge injector; Plastics One, VA), while a separate arm held 
a fresh sharp needle. The locations of bregma and interaural zero were measured 
with the tip of each injector and with the needle tip. Craniotomies were performed 
at each target site, and a small durotomy was made by piercing the dura with the 
needle. The skull was covered with a thin layer of C&B Metabond (Parkell Inc., 
NY), and the cannula were lowered into position one at a time. Target locations 
relative to bregma were AP −3.8, ML ±2.5 and DV −3.1 for dH; AP +3.2, ML ±0.7 
and DV −3.2 for PL; and AP +3.5, ML ±2.5 and DV −5 for OFC. Orbitofrontal 
cannula were implanted at a 10° lateral angle to make room for the prelimbic 
implant. Cannula were fixed to the skull using Absolute Dentin (Parkell Inc., 
NY), and each craniotomy was sealed with Kwik-Sil elastomer (World Precision 
Instruments, FL). Once all cannula were in place, Duralay dental acrylic (Reliance 
Dental, IL) was applied to secure the implant. The injector was removed from 
each guide cannula and replaced with a dummy cannula. Rats were treated with 
Ketofen 24 and 48 h postoperative and allowed to recover for at least 7 d before 
returning to water restriction and behavioral training.

Inactivation experiments. Each day of infusions, an injection system was pre-
pared with the injection cannula for one brain region. The injection cannula was 
attached to a silicone tube, and both were filled with light mineral oil. A small 
amount of distilled water was injected into the other end of the tube to create 
a visible water–oil interface, and this end was attached to a Hamilton syringe 
(Hamilton Company, NV) filled with distilled water. This system was used to 
draw up and let out small volumes of muscimol solution, and we inspected it to 
ensure that it was free of air bubbles.

Rats were placed under light isoflurane anesthesia, and the dummy cannula 
were removed from the appropriate guide cannula. The injector was placed into 
the guide and used to deliver 0.3 µL of 0.25 mg/mL muscimol55,56 solution over 
the course of 90 s. The injector was left in place for 4 min for the solution to dif-
fuse, and then the procedure was repeated in the other hemisphere. For saline 
control sessions, the same procedure was used, but sterile saline was infused in 
place of muscimol solution. The experimenter was not blind to the region (OFC, 
dH or PL) or substance (muscimol or saline) being infused. After the completion 
of the bilateral infusion, rats were taken off of isoflurane, placed back in their 
home cages and allowed to recover for 30–60 min before being placed in the 
behavioral chamber to perform the task.

Analysis of inactivation data. For each rat, we considered five types of sessions: 
OFC muscimol, dH muscimol, OFC control, dH control and saline. Control ses-
sions were performed the day before and the day after each infusion session, and 
saline sessions were pooled across OFC saline infusions and dH saline infusions 
(OFC muscimol, 18 sessions; OFC control, 36 sessions; OFC saline, 6 sessions; 
dH muscimol, 33 sessions; dH control, 64 sessions; dH saline, 10 sessions). Our 
dataset for each session consisted of up to the first 400 trials of each session in 

which at least 50 trials were performed. We performed regression analysis (equa-
tion (1)) and computed the model-free index and planning index (equations 
(2) and (3)) for each dataset. To compute P values, we performed a paired t test 
across rats on the difference between muscimol and control datasets for each 
region and on the difference between muscimol infusion in each region and the 
pooled saline infusion datasets.

modeling inactivation data. We constructed a hierarchical Bayesian version of 
our reduced model, using the probabilistic programming language Stan52,53,57,58. 
This model considered two datasets from each rat simultaneously: an inactiva-
tion and a control dataset. Each of these datasets is modeled as the output of the 
reduced model (see the “Behavioral models” section, above), which takes the 
five parameters βplan, αplan, βnp, βpersev and βbias, giving each rat ten parameters: 
five for the control dataset and five for the infusion dataset. For the hierarchical 
model, we reparameterize these, characterizing each rat R by ten parameters 
organized into two vectors, q q qR = R R

1 5...  and ∆ ∆ ∆R = R R
1 5... , according to the 

following mapping:

•  For rat R dataset:

°  Norm plan( )b q= R
1

°  Logit plan( )a q= R
2

°  Norm np( )b q= R
3

°  Norm persev( )b q= R
4

°  b qbias = R
5

•   For rat R infusion dataset:

°  Norm plan( )b q= +R R
1 1∆

°  Logit )plan(a q= +R R
2 2∆

°  Norm( )b qnp R R= +3 3∆

°  Norm persev( )b q= +R R
4 4∆

°  b qbias = +R R
5 5∆

where ‘norm’ indicates normalization of the weight (see the “Parameter estima-
tion” section, above), and ‘logit’ indicates the inverse-sigmoid logit function, 
which transforms a parameter bounded at 0 and 1 into a parameter with support 
over all real numbers.

The values in uR and DR adopted by a particular rat are modeled as draws from 
a Gaussian distribution governed by population-level parameter vectors um, us, 
Dm and Ds, giving the mean and s.d. of the distribution of each of the rat-level 
parameters in the population: 

q q qR R
m m m m m m~ , ~ ,Normal and Normalm s m s( ) ( )∆ ∆ ∆

for each rat R, for each value of m indexing the various parameter vectors.
These population-level parameters are themselves modeled as draws from 

weakly informative prior distributions54 chosen to enforce reasonable scaling 
and ensure that all posteriors were proper: 

qm m~ , ~ ,Normal Normal0 1 0 1( ) ( )∆

q ss ~ , ~ ,Cauchy Cauchy0 1 0 1( ) ( )∆

Having established this generative model, we perform inference by condi-
tioning it on the observed datasets (control and inactivation) for each rat and 
approximating the joint posterior over all parameters by drawing samples using 
Hamiltonian Markov chain Monte Carlo (H-MCMC)54,59. To obtain estimated 
values for each parameter, we took the median of these samples with respect 
to that parameter. To test whether inactivation produced effects on behavior 
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that were consistent at the population level, we computed a ‘P value’ for each 
parameter in Dm given by the fraction of samples having the opposite sign as 
the median sample.

Inactivation model comparison. We performed a series of model compari-
sons between models like the above and alternative models in which inactiva-
tion affected memory in general, memory for distant past trials specifically, or a 
combination of these. In the first alternative model, inactivation was constrained 
to affect equally all of the agents that depend on the history of previous trials 
(planning, perseveration and novelty preference). This alternative model contains 
a new parameter, the ‘memory multiplier’, m, which scales the weights of these 
agents, in this revised version of equation (4): 

Q a Q m Q a
A

A Atotal bias bias
  plan, persev, np

( )= + ( )
∈ { }

∑b b

This memory multiplier is fixed to 1 for control sessions but allowed to vary 
freely for each rat in infusion sessions. It has its own population-level mean and 
variance parameters, which are given weakly informative priors (see “Modeling 
inactivation data” section, above). In the alternative version of the model, the βA 
parameters are fixed between control and inactivation sessions. Since bias does 
not require memory, βbias is allowed to vary. We implement this by fixing the 
parameters ∆R

1  through ∆R
4  to zero for each rat R (see above), and allowing the 

effects of inactivation to be described by ∆R
5  and the new parameter mR.

We compare this model to the model above using twofold cross validation 
of H-MCMC fits. To compare these models quantitatively, we compute the log 
posterior predictive ratio (lppr): 

log
( | , )
( | )

P M
P M

testdata traindata
testdata traindata

1
2

 

In the next model comparisons, we separate the influence of the most recent tri-
al’s outcome from the influence of all trials further back in time. We implement this 
by replacing the model-based reinforcement learning agent (equations (5) and (6)) 
with both a model-based win–stay/lose–switch agent (equation (10), and a new 
‘lagged model-based’ agent constructed by taking the value of Qplan from one trial 
in the past and using it to guide decision-making on the current trial, so that the 
value of Qlagged – mb used on each trial contains information about the outcomes 
of all past trials except the most recent one. Fits of this model therefore contain 
two parameters to quantify planning: βwsls – mb for the influence of the most recent 
outcome and βlagged – mb for the influence of all trials further into the past.

For the second model comparison, we limit the influence of inactivation to 
only affect βlagged – mb and βbias, that is, to affect the influence of distant past trials  
only on choice behavior and choice bias. For this model comparison, we also 
allow inactivation to affect the memory multiplier m, allowing it to have separate 

effects on memory for distant past trials and on memory for the immediately 
previous trial. We compare both of these models to a model in which inactiva-
tion can have separate effects on the each of the components of behavior. We 
compute the log posterior predictive ratio using leave-one-out cross-validation 
over sessions (i.e., we compute posteriors based on all of the dataset except for 
one session and compute the lppr for that session using those posteriors, then 
repeat for all sessions).

Synthetic behavioral datasets: inactivation data. To generate synthetic behavio-
ral datasets, we took the parameter estimates produced by the hierarchical model 
for each rat for orbitofrontal, hippocampus and saline infusions. Parameters used 
for synthetic saline datasets were the average of the saline parameters produced 
by fitting the model to saline/hippocampus data and to saline/orbitofrontal (note 
that rat #6 did not complete any saline sessions; parameter estimates for this rat 
are still possible in the hierarchical model since they can be filled in based on 
infusion data and data from other rats). We used the reduced model in genera-
tive mode with these parameters, applying each parameter set to a simulated 
behavioral session consisting of 10,000 trials. We then applied the trial-history 
regression analysis to these synthetic datasets and used the results for qualitative 
model checking, comparing them to the results of the same analysis run on the 
actual data.

code and data availability. All software used for behavioral training is  
available on the Brody lab website at http://brodylab.org/code/two-step-planning- 
task-code/. Software used for data analysis, as well as raw and processed data, 
are available from the authors upon reasonable request.

A life Sciences Reporting Summary for this article is available.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No formal power analysis was carried out. In all cases, we aimed for a sample size 
typical of similar studies in the field. In the case of behavior-only rats, we aimed for 
a sample size sufficient to characterize rat-by-rat variability in behavioral strategy. 
In the case of inactivation rats, we aimed for a sample size large enough to 
demonstrate the consistency of behavioral effects

2.   Data exclusions

Describe any data exclusions. We limited our analysis of inactivation data to the first 400 trials performed by the 
rat in each inactivation session. This criteria was consistent with previous practice 
in the lab.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Data were not divided formally into separate experiments for replication. We do 
report results for each subject separately in supplemental figures. For the major 
claims of our paper (rats show model-based index > 0; model-based index is 
decreased by hippocampus inactivation), the sign of the effect is the same in all 
subjects, and many of them are significant individually within-subject.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The relevant comparisons in our paper are all within-subject, so formal 
randomization of subjects was not necessary or employed. Rats were were divided 
into common-congruent and common-incongruent conditions upon the beginning 
of training with the aim of collecting roughly equal numbers of subjects in each 
group. All results were similar between these two conditions. Within-subject 
randomization of trial types comes from the structure of the task, and is described 
in Methods.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

During behavior experiments, the rat was placed into and removed from the box 
by technicians blind to the experiment being run. Methods, Behavioral Apparatus. 
During infusion experiments, the experimenter was not blind to the brain region 
(OFC, dH, PL) or substance (muscimol or saline) being infused. Methods, 
Inactivation Experiments

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Analysis was performed using custom scripts created using MATLAB 2015, Stan 
2.12, and R 3.3 . Software and data are available from the corresponding author 
upon request.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All materials used are commercially available, and vendors are listed in the relevant 
Methods sections

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this work

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used in this work

b.  Describe the method of cell line authentication used. No cell lines were used in this work

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used in this work

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used in this work
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

All subjects were adult male Long-Evans rats (Taconic Biosciences, NY), placed on a 
restricted water schedule to motivate them to work for water rewards. Some rats 
were housed on a reverse 12-hour light cycle, and others on a normal light cycle – 
in all cases, rats were trained during the dark phase of their cycle. Rats were pair 
housed during behavioral training and then single housed after being implanted 
with cannula. Animal use procedures were approved by the Princeton University 
Institutional Animal Care and Use Committee and carried out in accordance with 
NIH standards.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human subjects were used in this work

Nature Neuroscience: doi:10.1038/nn.4613


	41593_2017_26_OnlinePDF_3.pdf
	Author Correction: Dorsal hippocampus contributes to model-based planning


	Button 2: 
	Page 1: Off



