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Abstract—Brain electroencephalography (EEG), the complex,
weak, multivariate, nonlinear, and nonstationary time series,
has been recently widely applied in neurocognitive disorder
diagnoses and brain–machine interface developments. With its
specific features, unlabeled EEG is not well addressed by conven-
tional unsupervised time-series learning methods. In this article,
we handle the problem of unlabeled EEG time-series cluster-
ing and propose a novel EEG clustering algorithm, that we
call mwcEEGc. The idea is to map the EEG clustering to
the maximum-weight clique (MWC) searching in an improved
Fréchet similarity-weighted EEG graph. The mwcEEGc consid-
ers the weights of both vertices and edges in the constructed
EEG graph and clusters EEG based on their similarity weights
instead of calculating the cluster centroids. To the best of our
knowledge, it is the first attempt to cluster unlabeled EEG tri-
als using MWC searching. The mwcEEGc achieves high-quality
clusters with respect to intracluster compactness as well as inter-
cluster scatter. We demonstrate the superiority of mwcEEGc over
ten state-of-the-art unsupervised learning/clustering approaches
by conducting detailed experimentations with the standard clus-
tering validity criteria on 14 real-world brain EEG datasets. We
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also present that mwcEEGc satisfies the theoretical properties of
clustering, such as richness, consistency, and order independence.

Index Terms—Clustering, electroencephalography (EEG) time
series, Fréchet distance (FD), maximum-weight clique (MWC),
weighted EEG graph.

I. INTRODUCTION

BRAIN electroencephalography (EEG), the electrical tem-
poral signal generated by the cerebral cortex, is one

specific type of time series, with features of high complexity,
multivariate, nonlinearity, nonstationarity, and a low signal-to-
noise ratio. It is reported that EEG throughout the entire life of
a human reflects not only the particular brain functions but also
the states of the entire body [1]. From the early 20th century,
EEG, as a noninvasive technique, has been widely stud-
ied and used to research neurocognitive disorders, including
Alzheimer’s disease (AD) [2], [3]; epileptic seizures [4], [5];
stroke [6], [7]; etc. Meanwhile, it is also applied in brain–
machine interface (BMI) [8] (or brain–computer interface
(BCI) [9], [10]), including motor imagery detection classifi-
cation [11], [12]; robotic arm control [13], [14]; wheelchair
navigation [15], [16]; etc. As is known to us, the existing
methods in the two most popular applications require labels
of EEG signals. However, EEG signals that lack labels in these
fields are increasing mainly due to: 1) the uncontrolled cerebral
activities of subjects with unidentified EEG patterns, espe-
cially for those patients suffering from cerebral diseases; 2) the
uncertainty of cerebral disease patterns in different stages for
disease diagnosis; 3) the newly activating EEG with uniden-
tified control commands to enrich multitask BCI applications
close to real life; and 4) the label incompleteness or misla-
beling of EEG signals when recording. As a result, manually
labeling EEG becomes a time-consuming task and the absence
of labels also precludes the conventional methods, for exam-
ple, classification, from availably analyzing unlabeled EEG
signals. Therefore, novel unsupervised techniques, for exam-
ple, clustering, are required to solve the problems caused by
ever-increasing unlabeled EEG.

To handle the challenging but valuable task, this article
proposes a novel EEG clustering (i.e., mwcEEGc) inspired
by maximum-weight clique (MWC), whose idea is to map
unlabeled EEG clustering to repeating MWC searching in
a complete-undirected Fréchet distance (FD)-weighted EEG
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Fig. 1. Framework of the method, which mainly contains three parts: 1) EEG
similarity measure; 2) EEG graph construction; and 3) EEG clustering.

graph. This method simultaneously considers vertex weights
and edge weights of the FD-weighted EEG graph, and it
concentrates on the compactness between any two EEG tri-
als in the same cluster and the scatter in different clusters.
Furthermore, unlike most conventional clustering methods,
the proposed method is not required to calculate cluster cen-
ters. Consequently, the proposed method produces consistent
and order-independent EEG clustering results. In detail, the
contributions are highlighted as follows.

1) We formulate the problem of EEG clustering as MWC
searching in a similarity-weighted EEG graph. To the
best of our knowledge, it is the first attempt to cluster
unlabeled EEG using MWC.

2) We propose a novel algorithm, mwcEEGc, simulta-
neously considering edge weight and vertex weight
when using MWC to cluster EEG trials. The mwcEEGc
provides high-quality EEG clustering with respect to
intracluster compactness and intercluster scatter.

3) We present the efficacy of mwcEEGc with detailed
experiments in a way that mwcEEGc is compared to
ten state-of-the-art clustering approaches on 14 EEG
datasets. The experimental results clearly demonstrate
that mwcEEGc yields the best quality of unlabeled EEG
clusters.

4) We also summarize the satisfiability of mwcEEGc with
four theoretical clustering properties, and mwcEEG sat-
isfies three: a) richness; b) consistency; and c) order
independence.

The remainder of this article is organized as follows. An
overall framework of our method is briefly introduced in
Section II. The related works are reviewed in Section III.
Preliminaries of the Fréchet similarity and MWC that we used
in our method are introduced in Section IV. The proposed
algorithm mwcEEGc for EEG clustering is presented in
Section V. Then, detailed experimentation is carried out in
Section VI. Subsequently, the satisfiability of four theoretical
clustering properties, that is: 1) scale invariance; 2) richness;
3) consistency; and 4) order independence, for mwcEEGc is
discussed in Section VII. Finally, we summarize this article
and orientate future work in Section VIII.

II. OVERALL FRAMEWORK OF MWCEEGC

Fig. 1 presents the overall framework of the proposed
MWC-based EEG clustering method, which includes the
contents as follows.

1) EEG Similarity: Measures the correlations of pairwise
EEG trials. Intuitively, EEG trials grouped into the same
clusters are similar to each other, while those partitioned
in different clusters have lower similarities. Moreover,
the similarities weigh the correlations among EEG trials
and construct the weighted graph. They also contribute
to the importance of vertices (EEG trials) to clusters.

2) EEG Graph Construction: Forms a weighted undirected
complete EEG graph, including vertex weight and edge
weight, where EEG trials are transformed as vertices and
any two of them are connected by an edge. Furthermore,
a modified weight function is proposed based on vertex
weight and edge weight simultaneously. Edge weight
and vertex weight are two important parts for EEG
clustering in this content, which will be introduced later.

3) EEG Clustering: Searches cliques from the weighted
EEG graph with respect to similarity thresholds such
that the total weight of all cliques is maximized. A ver-
tex whose edge similarities to all the other vertices in
the clique satisfy the similarity threshold is likely to join
the clique based on whether the total weight of the new
clique is larger or smaller than the former one. Then,
this process is repeated until all the vertices are clustered
while the total weight of all cliques is maximized. This
step in the process leads to our algorithm, mwcEEGc,
based on MWC.

III. RELATED WORKS

The early work using the graph theory is on the EEG com-
munity (electrode) clustering. Mammone et al. [17] proposed
a hierarchical EEG electrode grouping method for graph con-
nectivity density comparison, which applied the permutation
Jaccard distance to measure the coupling strength between
EEG signals from different electrodes and then provided a dis-
similarity matrix of electrodes for partitioning EEG electrodes.
Ozdemir et al. [18] also proposed a hierarchical consensus
clustering method for partitioning EEG community structure,
which constructed the connectivity matrices as the weighted
undirected graphs on each subject and then partitioned EEG
electrodes based on the spectral graph theory. These methods
mainly focused on the relationships among EEG electrodes
rather than the EEG trials combined with multichannel EEG
signals, and they also ignored the correlations among EEG sig-
nals from the same electrode. Dai et al. [19] exploited MWC to
select the valid EEG for classification. It conducted a different
problem with our current work in this article. The work [19]
was on EEG instance selection for EEG classification in a
supervised way, where EEG labels are required and it is a
common task. The present work in the article conducted EEG
clustering in an unsupervised way that is seldom addressed
and is a more challenging task because of its aim at unlabeled
EEG. In detail, our work in this article focuses on EEG trial
clustering through mapping it to searching MWCs such that
the total weight is also maximized in a complete undirected
similarity-weighted EEG graph, in a way that similar EEG
trials are assigned into same clusters while dissimilar ones
are separated into different clusters. In this section, we review
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related works on EEG time-series clustering and similarity
measures.

A. EEG Time-Series Clustering

With the continuous increase of unlabeled EEG signals,
EEG clustering is becoming an important new technique for
neurocognitive diagnoses and BCI applications. Unfortunately,
there are few studies on clustering unlabeled EEG time series,
such as k-means [20], [21] and the newest MTEEGC [22]
which exploited an optimal objective function to search clus-
ter centroid and then clustered EEG trials based on the
cross-correlations between candidate EEG trials to the clus-
ter centroid. But both of the two methods are influenced
by the center/centroid initialization and they just consider
the distance/similarity of EEG signals to the center/centroid,
ignoring the correlations between other EEG signals in
the same clusters. As a promising unsupervised analysis
technique, time-series clustering is currently emerged out,
such as 1) feature selection-based UDFS [23], NDFS [24],
RUFS [25], and RSFS [26]: first extract/select features and
then embed k-means strategy to cluster; 2) distance-based
k-means++ [27], dynamic time warping (DTW) [28], k-
DBA [29], and K-SC [30]: first randomly initialize or calculate
cluster centers/centroid, and then cluster time series mainly
based on their distances between candidates and the cen-
ters/centroid; 3) shape-based SCTS [31] and k-Shape [32]: first
search time-series shapes and then cluster time series based
on their shape similarities; and 4) shapelet-based USLM [34]
and u-shapelet [33]: first calculate shapelets of time series
and transform original time series to shapelet space, and then
cluster time series with the shapelets. These methods have
achieved good clustering results for conventional time-series
data, but they are probably not applicable to cluster unlabeled
EEG since compared to traditional time series, EEG has such
characteristics as higher weakness, higher complexity, stronger
oscillation, higher instability, higher dimension/multivariate,
and lower signal-to-noise ratio. With the characteristics of
EEG, it is probably: 1) difficult to learn optimal parameters
to extract/select distinct features for feature selection-based
methods; 2) hard to apply appropriate lengths to learn EEG
shapes/shapelets for shape-/shapelet-based methods; and 3) not
easy to exploit suitable distance measures to evaluate flexible
similarities among EEG signals for distance-based methods.
Furthermore, these methods need to calculate cluster centers
based on an optimization function and they critically depend
on the selection of initial cluster centers or the initial set
of amount of clusters and selected features. Therefore, these
conventional time-series clustering methods do not satisfy
the following clustering properties: richness, consistency [35],
and order independence [36], which will be discussed in
Section VII. Besides, the experiments on 14 EEG datasets
in Section VI also indicate that these conventional methods
cannot achieve as good EEG clusters as our method.

B. Similarity Measures

Similarity weights contribute to representing the correlations
among EEG signals in the EEG graph. Which similarity mea-
sure is the most appropriate for EEG? Several widely applied

TABLE I
SIMILARITY MEASURES

similarity measures are discussed in this section, including
the Euclidean metric (ED) [37], [38]; DTW [29], [39]; the
Hausdorff distance (HD) [40]; and FD [41]. ED does not
correspond to the common notion of time series and it can-
not capture flexible similarities of EEG time series since it
requires the same length of sequences. DTW evaluates the
similarity between time series by warping them in the time
dimension, which outperforms ED [42], but it concentrates too
much on minimizing the accumulation of all local distances
among adjacent points while the FD emphasizes the overall
distinction between series [43]. Meanwhile, FD is inherently
independent of the sampling of curves, DTW does not work
well when one of two curves is sampled less frequently [44].
Moreover, DTW does not satisfy the triangle inequality but
the discrete FD does [45]. HD is sensitive to outliers [46], and
it considers EEG as arbitrary point sets, which ignores point
orders of EEG. Namely, HD measures distances just accord-
ing to the nearest neighbor distances among points along the
curves. It is likely to obtain a small HD but a large FD for two
EEG signals [40], [41]. FD demands continuous and order-
preserving assignments of points along the curves. It not only
takes into account the location and points orders along the
curves but also satisfies the triangle inequality, which theoret-
ically makes it outperform ED, DTW, and HD in measuring
EEG similarities, with respect to their intrinsic structure [19],
[49]. Table I in detail shows their advantages and disadvan-
tages, respectively, and Fig. 2 also illustrates their performance
on EEG clustering. According to the suitability and superior-
ity, we, therefore, applied FD as the similarity measure for
EEG clustering in this article.

IV. PRELIMINARIES

This section introduces the FD-based similarity measure and
MWC, respectively, which are applied in the proposed EEG
clustering approach.

A. Similarity Based on the Fréchet Distance

Originally, FD [50] is defined as the minimum length of a
leash that a handler requires to walk a dog, where the dog
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Fig. 2. EEG clustering with different distance measures (complete linkage
and z-normalized). The blue and red colors, respectively, denote two-class
EEG signals activated by two corresponding cerebral stimulations: moving a
cursor up and moving a cursor down. Every class contains four trials with
length of 5376.

walks monotonically along φ according to θ and the handler
walks monotonically along ψ according to π . In this anal-
ogy, FD is the shortest possible leash admitting such a walk.
Mathematically, given two reparameterizations θ and π such
that θ, π : [0, 1] → [0, 1] and θ(0) = 0, θ(1) = 1; π(0) = 0,
π(1) = 1 for two curves (EEG signals) φ and ψ , respectively,
define the width between φ and ψ as follows:

widthθ,π (φ,ψ) = max
q∈[0,1]

‖φ(θ(q))− ψ(π(q))‖ (1)

where || · || is the underlying norm.
Formally, two curves (EEG trials) φ and ψ in R

d, the FD
between φ and ψ is defined as

δF (φ,ψ) = inf
θ,π∈[0,1]

widthθ,π (φ,ψ) (2)

where θ and π are two orientation preserving reparameteriza-
tions of two curves φ and ψ .

B. Maximum-Weight Clique

The maximum-weight clique problem (MWCP) [51], with-
out loss of generality, is a technique that searches the clique
(i.e., a subgraph whose vertices are pairwise connected by
a weighted edge) in a weighted graph, such that the weight
of vertices and edges is maximized. In practice, MWCP is
applied to search instances with specifically similar/same prop-
erties or structures, such as searching communities, networks,
or protein structure analysis, etc. Given an undirected weighted
graph G = (V,E, η, μ), where V and E define the ver-
tex set and edge set, respectively; η : V → {0} ∪ R

+ and
μ : E → {0}∪R

+ denote correspondingly vertex weights and
edge weights.

∑
v∈V ηv + ∑

e∈E μe is the weight of G.
Define Nn = {1, . . . , n}, n = |V|, and eij = {i, j} ∈ E, then

MWCP aims to find a maximum-weight clique C in the given
graph G [see (3)]. When the vertex vi or edge eij (i and j of eij

denotes vertex vi and vj, respectively) is selected into a clique,
vi = 1, vj = 1, and eij = 1. Otherwise, vi = 0, vj = 0, and

eij = 0. Therefore, vi, vj, eij ∈ {0, 1}, see the right of indicator

n∑

i=1

ηivi +
∑

1≤i<j≤n

μijeij → max
vi,eij∈{0,1} . (3)

In existing methods for solving MWCP [52], either the
weight of vertex [53] or the weight of edge [54] is considered,
but not both. Especially, when only considering the weights
of vertices or the edge weights are transformed into vertex
weights, the MWCP is correspondingly transformed to the
maximum-clique problem (MCP) which searches a complete
subgraph with maximum cardinality. In the case, the MWCP
can be equivalently interpreted by a binary model which is
formulated as (4) shows based on [55]

max f (x) =
n∑

i=1

wixi

s.t. xi + xj ≤ 1 ∀{
vi, vj

} ∈ E

xi ∈ {0, 1}, i ∈ Nn (4)

where Nn = {1, . . . , n}, n = |V|, wi is the weight of vi; xi

denotes the binary variable associated to vertex vi; and E
defines the edge set of complementary graph G.

V. MWCEEGC FOR EEG CLUSTERING

The proposed method mwcEEGc clusters EEG trials via
searching MWCs in an improved Fréchet similarity-weighted
EEG graph. More important, mwcEEGc considers the weights
of both vertices and edges to search MWCs.

A. Fundamental Support

Intuitively, the contour shapes of EEGs stimulated by the
same specific cerebral activity are assumed to be highly simi-
lar to each other and different from those activated by different
cerebral activities, which provides the fundamental support for
mwcEEGc to cluster EEGs. According to the basic knowl-
edge, the proposed method mwcEEGc clusters highly similar
EEGs into a clique with tight intracluster compactness and
large intercluster scatter, by searching MWCs in an improved
Fréchet similarity-weighted EEG graph.

In detail, for activating a specific cerebral activity, the major-
ity of EEG signals are similar to each other, only a few ones
(invalid ones generated by nonspecific cerebral activities) are
not. Namely, for stimulating a specific cerebral activity, the
probability of getting the majority of similar EEG signals is
larger than that of getting the majority of dissimilar ones (i.e.,
minority of similar ones).

Theorem 1: Stimulating a cerebral activity A, the probability
of getting similar EEG is p, correspondingly getting dissimilar
one is 1 − p. When 0 ≤ 1 − p ≤ p, activating A for n≥2 times,
let P(Ek≥(n/2)) be the probability of getting equal or more
than k≥(n/2) similar EEG signals and P(Ek≤(n/2)) be the prob-
ability of getting equal or less than k≤(n/2) similar ones, then
P(Ek≥(n/2)) ≥ P(Ek≤(n/2)). (The proof is shown in Section S-I
of the supplementary file.)
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B. Edge Weight of EEG Graph

The edge weight of EEG graph G = (V,E, η, μ) repre-
sented by EEG similarities determines to cut edges that do not
satisfy threshold when partitioning EEG graph (i.e., EEG clus-
tering). As a promising similarity measure, the FD is utilized
in the work. In fact, the conventional FD (CFD) mainly mea-
sures the global trends but neglects the local structure [56]. In
order to improve the similarity measure and balance the sensi-
tivity of global similarity, we use local tendency to improve the
CFD. Mathematically, let tri = (a1, . . . , ah), trj = (b1, . . . , bl)

be two EEG signals in Tri (i.e., set of EEG trials), the local
tendency of tri, trj is computed by

LocT
(
tri, trj

) =
∑o−r

p=1

(
ap+r − ap

)(
bp+r − bp

)

√∑o−r
p=1

(
ap+r − ap

)2 ∑o−r
p=1

(
bp+r − bp

)2

(5)

where r such that 1 ≤ r < o(o = min{h, l}) defines the length
of the EEG subsequence. With ap+r − ap in (5), r points are
selected to measure the local tendency and commonly r = 1,
since a larger r ≥ 2 probably results in that more local tenden-
cies of smaller EEG segments with lengths ≤ r are ignored.
Besides, LocT(tri, trj) ∈ [−1, 1], where the positive values
indicate two EEG have more similar local tendencies and
the larger the value is, more similar local tendencies the two
EEG have, otherwise the two EEG have more opposite local
tendencies. Then, the improved similarity is calculated by

sij = λ · δF
(
tri, trj

) + (1 − λ)
1 − LocT

(
tri, trj

)

2
(6)

where δF(tri, trj) is the CFD similarity and λ ∈ [0, 1].
Commonly, λ = 0.5, to balance the global similarity and local
tendency.

With the local and global trends, the normalized similari-
ties of n EEG trials build the diagonal similarity matrix Sn×n,
named edge weight matrix μ, as shown in

μ = Sn×n =
⎛

⎜
⎝

1 . . . s1n
...

. . .
...

sn1 . . . 1

⎞

⎟
⎠ (7)

where sji = sij, and i, j denote EEG tri, trj ∈ Tri.
Additionally, Fig. 3 establishes the superiority of the

improved FD (IFD) over the conventional one (CFD) for
measuring EEG similarities.

C. Vertex Weight of EEG Graph

The vertex weight of the EEG graph G = (V,E, η, μ)
reflects the significance of vertices to MWC that are being
searched. Namely, together with edge weights, it determines
which vertices are assigned together into a same clique (clus-
ter). In other words, EEG vertices with higher ηi are potentially
clustered in a same clique. For n EEG trials in the EEG graph
G = (V,E, η, μ), the importance to the being-searched clique
is denoted by a partially ordered similarity matrix ηn×1 such
that < η,�η>= {< ηi, ηj >| ηi ≥ ηj; i 
= j; i, j ∈ Tri},

(a) (b)

Fig. 3. Comparison of IFD and CFD. According to CFD, the contours of
EEG B (red line) and C (green) are close to A (blue) in both (a) and (b)
whose similarities satisfy the threshold, so a 3-vertex clique is built. Whereas
with IFD, although B and C are, respectively, similar to A from the global
closeness, the local tendency between B and C is low, so with the local and
global measures, the IFD reveals that the similarity between B and C does
not satisfy the threshold (dotted line), hence only a 2-vertex clique of B and
A or C and A is formed, as (b) shows.

where ηi is defined as (8), which is also called vertex weight

ηi = 1

| Tri | −1

∑

j∈Tri\i

sij. (8)

In particular, when |Tri| = 1, then η = 0. ηi correspondingly
indicates the rankings of objective EEG trial tri to the rest of
EEG trials trj ∈ Tri\tri. In other words, when tri is selected
into clique C, a vertex trj ∈ {tr1, . . . , trk} with the highest rank
to tri, according to vertex weight η, is correspondingly highly
likely clustered into the same clique C.

D. Formulation of EEG Clustering

Unlike the methods that only have edge weight or vertex
weight, our method simultaneously considers edge weight and
vertex weight to cluster EEG since the two weights jointly
together: 1) measure the correlations between any two EEG
trials, which contributes to intracluster compactness and inter-
cluster scatter and 2) achieve same clusters without randomly
initializing cluster centers/centroid, which satisfies order inde-
pendence property [36]. Simultaneously considering the edge
weight matrix μn×n and vertex weight matrix ηn×1, the pair-
wise highly weighted EEG signals clustered into the same
clique C can be represented by (9). Based on (9), the ver-
tex with large value cvt ∈ C achieved by ηTμ is most likely
selected into the clique to construct a larger-weight clique,
see (10). With (9), the EEG clustering method can achieve
excellent results with high intracluster compactness and inter-
cluster scatter, without randomly initializing cluster centers or
calculating centroid

C = ηTμ. (9)

Correspondingly, the vertex vt with largest cvt ∈ C can be
chosen as the next potential candidate into the clique

vt = arg max
vt

{
cvt ∈ C

}
. (10)

E. mwcEEGc Algorithm

Given an improved Fréchet similarity-weighted EEG graph
GW = (V,E, η, μ), where η : V → {0} ∪ R

+ and μ : E →
{0} ∪ R

+ represent weights of the vertices (EEG trials) and
edges, respectively, the proposed mwcEEGc algorithm aims
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to find a family C = {C1, . . . ,Cm} of m(≥ 2) disjoint cliques
that maximizes

∑
Ck∈C wCk , whose cardinalities are denoted

by positive integers N1, . . . ,Nm satisfy
∑m

i=1 Ni ≤ n, n ≤ |V|.
For any edge (i, j) ∈ E(Ck), i, j ∈ V(Ck), k ∈ {1, . . . ,m}

and the weight of edge in Ck : μij ∈ μ,μ = {sij|sij ≥ δCk},
the weight function of the kth clique Ck simultaneously con-
sidering edge weight and vertex weight is modified as (11)
defines, where similarity threshold δCk determines the results
of EEG clustering (the kth clique Ck searching) since vertices
whose edge weights are larger than δCk are potentially parti-
tioned into Ck. The threshold δ selection for EEG clustering
will be discussed latter

wij =
{
ηi+ηj
Nk−1 + μij, if μij ≥ δCk , i 
= j

0, otherwise.
(11)

Proposition 1: The mwcEEGc for EEG clustering with
the modified weight function (11) as well as the descend-
ing thresholds δ = {δ0 = 1, δ1, . . . , δm−1, δm = 0} can be
equivalently written as follows:

F(C) =
m∑

k=1

F(Ck) =
m∑

k=1

∑

e∈E(Ck)
δk≤μe<δk−1

we → max
C∈C

or

F(C) = 1

2

m∑

k=1

∑

i∈Ck

∑

j∈Ck
δk≤μij<δk−1

wij → max
C∈C

where C = {C = {C1, . . . ,Cm} : Ci ∩ Cj = ∅; |Ci| =
Ni, |Cj| = Nj; {i, j} ∈ Nm}.

The proof of Proposition 1 is shown in Section S-II of
the supplementary file. δ0 = 1, δ1, . . . , δk, . . . , δm = 0 in a
descending order correspondingly denote the similarity thresh-
old of the default nonvertex clique (i.e., Cδ0 = ∅), 1st, . . . ,mth
clique, respectively, and especially δ0 = 1 to limit the other k
thresholds smaller than the upper bound of 1. With thresh-
olds δ = {δ0 = 1, δ1, . . . , δm−1, δm = 0}, highly similar
vertices, whose connected edges’ weights are all higher than
the corresponding δk, will be clustered into a same clique Ck.
Searching m clusters requires m−1 thresholds, since obviously
m−1 thresholds lead to m−1 cliques, and then the remaining
EEG vertices whose similarities satisfy 0 ≤ μv ≤ δm−1 are
spontaneously regarded as the mth clique.

A vertex vt joins the clique C when it satisfies two
conditions simultaneously: 1) ∀vj ∈ C, μtj ≥ δ and
2)

∑
vi,vj∈C∪{vt} wij ≥ ∑

vi,vj∈C wij. Actually, once δ is set,
adding vt to C is only required to satisfy condition 1).

Theorem 2: A vertex vt is selected into the clique C to obtain
the clique C∗ whose weight is larger than C, if and only if
∀vi ∈ C, μit ≥ δC, where δC denotes the similarity threshold
of clique C.

Based on Theorem 2 (see Section S-III of the supplemen-
tary file for the proof), once δk=1,...,m−1 is set, mwcEEGc
searching cliques with maxC∈C is eventually transformed
to (m − 1)-searching MWCs. In other words, perform-
ing (m≥1, δk=1,...,m)-mwcEEGc is equivalently transformed to
repeating (1, δk)-mwcEEGc for m − 1 times with δk, k =
1, . . . ,m, especially δ0 = 1 and δm = 0.

Algorithm 1 mwcEEGc
Input:

δ: Similarity threshold set, δ = {δk|0 ≤ δk < δk−1; δ0 = 1,
δm = 0, k = 1, . . . ,m≥1};

Output:
C: Clique set such that max

C∈C
F(C);

1: Initialize G = (V,E, η,μ) with (7) and (8), k = 1,
C1 = ηT

1 μ1 = ηTμ, C = ∅;
2: repeat
3: δk ∈ δ;
4: Ck = ηT

k μk;
5: Ck = {v1|(v1 with the maximum value in Ck) ∈ V};
6: V = V\{v1};
7: for V 
= ∅ do
8: {vt|vt with the tth≥2 largest value in Ck}∈ V;
9: if ∀{vn} ∈ VCk , δk ≤ μvtvn < δk−1 then

10: VCk = VCk ∪ {vt};
11: Nk = |VCk | + 1;
12: Update wij with (11);
13: WCk∪{vt} = ∑

i,j∈VCk ∪{vt}
wij;

14: end if
15: if WCk∪{vt} ≥ WCk then
16: Ck = VCk ;
17: V = V\{vt};
18: WCk = WCk∪{vt};
19: end if
20: t = t + 1;
21: end for
22: C = C ∪ Ck;
23: k = k + 1;
24: ηk = {ηi|vi /∈ VCk−1};
25: μk = {μij|vi, vj /∈ VCk−1};
26: until δ\{δ0} = ∅;

Proposition 2: With Theorem 2, (m≥1, δk=1,...,m)-mwcEEGc
is equivalently transformed to (m − 1)-time repeating per-
forming (1, δk)-mwcEEGc with 0 ≤ δk < δk−1, δ0 = 1 and
δm = 0.

The proof of Proposition 2 is elaborated in Section S-IV of
the supplementary file. Based on Proposition 2, the mwcEEGc
is shown in Algorithm 1, which clusters EEG without ran-
domly selecting cluster centers or computing cluster centroids.
Ck = ηkμk in Algorithm 1 also shows the importance of
remaining vertices v ∈ V\VCk after the kth clique is identi-
fied, and it is also used to assign the next potential vertex
with the largest value into the clique. With C = ημ, the
ranking ηi ∈ η also reduces the time consumption mainly
because cliques can be achieved without computing cluster
centers/centroids. Besides, Fig. 4 also briefly illustrates the
process of Algorithm 1.

F. Complexity Analysis of mwcEEGc

The mwcEEGc approach mainly contains two phases:
1) weighted EEG graph construction and 2) EEG cluster-
ing, both of which contribute to the time consumption of
mwcEEGc.
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(a) (b) (c) (d)

Fig. 4. Illustration of mwcEEGc to search three maximum weighted
EEG cliques (δ{1,2}-mwcEEGc). (a) Original undirected weighted complete
graph constructed by EEG signals and their similarities: G = (V,E, η, μ).
(b) ① search the vertices and edges (solid black line) whose edge weights
satisfy δ1 ≤ μij < 1, ② run mwcEEGc with δ1 and search the
first maximum weighted clique (red) (C1 = (V1,E1, η, μ)) such that
max

∑
i,j∈C1

wij according to ① and construct its difference graph (black):
G = (VD,ED, η, μ) : VD = {x, y|x, y /∈ V1; x, y ∈ V},ED = {(x, y)|x, y ∈
VD}. (c) ① similarly, search the edges and their adjacent vertices such that
δ2 ≤ μxy < δ1 from the GD, ② repeat running the mwcEEGc with δ2 to search
the second maximum weighted clique C2 (green) such that max

∑
x,y∈C2

wxy.
(d) Final three maximum weighted cliques with largest total weights satisfying
δc, c = {1, 2} and max

∑
c={1,2}

∑
i,j∈Cc

wij. Clearly, two similarity thresh-
olds δ1, δ2 result in three EEG cliques, with the third clique being a single
vertex (black) which is formed by the remaining EEG signals after green and
red cliques are found.

In weighted EEG graph construction, the time cost is pri-
marily determined by the Fréchet-based similarity computation
of EEG trials. The conventional algorithm proposed in [57] to
compute the Fréchet similarity of n EEGs with length of l has
a runtime of O([(n(n − 1))/2] · l2 log l2) = O(n(n−1) · l2 log l)
based on the symmetry of the Fréchet similarity of pairwise
EEG trials, where n 
 l commonly. With the development
in recent decades, the computation for the Fréchet similarity
is improved in a subquadratic time O(l2[(log log l)/(log l)]) as
introduced in [41], which is used to compute the FD of EEGs
in this article to measure EEG similarities and construct the
weighted EEG graph. Hence, the real runtime for computing
the Fréchet similarity for n EEG trials is O([(n(n − 1))/2] ·
l2[(log log l)/(log l)]) ≈ O(n2 · l2[(log log l)/(log l)]).

In Algorithm 1, with the Fréchet-based EEG similarities,
the mwcEEGc aims to group n EEG trials from the con-
structed weighted EEG graph into m clusters with respect
to similarity thresholds δ = {δ1, . . . , δm−1}, such that the
total weight of m clusters is maximized. In each iteration,
computing Ck and seeking the vertex with the largest value
in Ck requires O((n − nk)

2) < O(n2) as lines 4 and 5
show, where nk is the number of vertices of clique Ck with
constraint of

∑m
k=1 = n. Then, searching clique mainly

requires checking the edge weights with respect to δ, updat-
ing the modified weights, and summarizing the total weight
of clique Ck ∪ {vt} together cost O((n − nk + 1)(n − nk)) <

O(n2) (see lines 7–21). Finally, to update the edge weight
matrix and vertex weight matrix in lines 24 and 25 requires
O([(n − nk)(n − nk − 1)]/2) < O(n2/2). In a result, the time
complexity of mwcEEGc is O(

∑m
k=1((n − nk)

2 + (n − nk)(n −
nk + 1)(n − nk) + [((n − nk)(n − nk − 1))/2])) < O(mn2 +
mn3) ≈ O(mn3 log n). Thus, the time complexity of mwcEEGc

TABLE II
EEG DATASET DETAILS

to cluster EEG trials is bounded from above by the polynomial
time O(mn3).

In overall, considering the computation of the
improved Fréchet-based similarities and EEG clus-
tering, the total time consumption of mwcEEGc is
O(max{n2 · l2[(log log l)/(log l)],mn3}).

VI. EXPERIMENTS

We first introduce the details of the EEG datasets, evaluation
methodology, and baseline methods in the section. Then, we
conduct the experiments and discuss the impact of key factors
on mwcEEGc.

A. EEG Datasets

Fourteen EEG datasets shown in Table II are used to evalu-
ate the efficacy of mwcEEGc, which includes the slow cortical
potentials (SCPs), mental imagery EEG, motor imagery EEG,
and hand movement EEG. Besides, all the original EEG
data and their detailed descriptions are publicly available
as online archives at https://github.com/Jackie-Day/EEG-data-
and-descriptions. Importantly, as an essential preprocessing
technique that assists data mining algorithms to concentrate
on the structural similarities or dissimilarities rather than the
amplitude-driven ones, z-normalization is first used to pre-
process the EEG data before they are used to cluster in the
paper. Moreover, we selected the specific target EEGs record-
ings activated by the specific cerebral activities by deleting
such nontarget and unspecific EEGs in relaxing or in idle or
in preparing period. Moreover, as these original EEG data
were labeled, we first removed their labels for mwcEEGc,
and then they are also adopted to evaluate the performance
of mwcEEGc.

B. Evaluation Methodology

Six evaluation criteria of intracluster compactness (SIn),
intercluster scatter (SBe), integrated ratio (r), rand index (RI),
Fleiss’s kappa (κ), and F-score are utilized to measure the
performance of EEG clustering algorithms.
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1) Intracluster Compactness (SIn):

SIn = 1

| C |
∑

Ct∈C

(
1√| Ct |

∥
∥wt − μt

∥
∥

2

)

(12)

where Ct ∈ C denotes the t-th cluster, μt denotes the
mean weight of Ct, and wt indicates the weight matrix
of Ct. SIn measures the similarities of pairwise EEG in
the same cluster. A smaller SIn indicates higher holis-
tic compactness within all the EEG trials in the same
cluster.

2) Intercluster Scatter (SBe):

SBe = 1

| C |
∑

Ct,Cs∈C

⎛

⎝ 1√| Ct || Cs |
∑

t 
=s

× (
wts−μt

)(
wts − μs

)T

⎞

⎠

1
2

(13)

where Ct,Cs ∈ C denotes two clusters such that Ct ∩
Cs = ∅; and wts denotes the weight matrix between Ct

and Cs. SBe measures the scatter among clusters, that
is, it evaluates the separation degree of clusters. Further,
the larger the SBe is, the higher is the scatter between
clusters.

3) Integrated Ratio (r): An integrated evaluation ratio γ

simultaneously considering SIn and SBe is proposed.
Mathematically, γ = ([SBe]/[SIn]). A higher γ reflects
a qualitatively better clustering performance.

4) Rand index (RI) [58] Evaluates clustering quality based
on the number of correct classes that the method
clusters. Namely, it denotes the percentage of correct
assignments achieved by methods. In detail, RI =
[(TP + TN)/(TP + TN + FP + FN)], where TP stands
for the amount of true positives; false positives (FPs);
TN, true negatives; and FN defines the amount of false
negatives.

5) F-Score [59] is a modified measure of RI that regards
unequally FP and false negative (FN) by setting a scale
factor β ≥ 0 on recall, generally β = 1. In the end, F-
score= [((1 + β2)pr)/(β2p + r)], where precision: p =
[TP/(TP + FP)] and recall: r = [TP/(TP + FN)].

6) Fleiss’ kappa (κ) [60] measures the coherence
of decision ratings among different classes. κ =
[(P − Pe)/(1 − Pe)], where P − Pe reflects the agree-
ment degree of actually achieved over chance; 1 − Pe

means the agreement degree of attainable above chance.
In addition, P = [1/(Nn(n − 1))](

∑N
i=1

∑k
j=1 n2

ij − Nn),

Pe = ∑k
j=1([1/Nn]

∑N
i=1 nij)

2, where N, n, and k define
the amount of subjects, the amount of ratings per subject,
and the amount of classes, respectively.

In a word, the higher the RI, κ , and F-score are, the better
the quality of clustering methods achieve.

C. Baseline Methods

Aim to verify the efficacy of mwcEEGc on unlabeled
EEG clustering, we compare it to ten state-of-the-art EEG
or time-series clustering algorithms. These baselines can be

mainly categorized into four types: 1) Classic Clustering: k-
means++; 2) Feature Selection-Based Clustering Embedded
With k-Means: UDFS, NDFS, RUFS, and RSFS; 3) Distance-
Based Clustering: K-SC and k-DBA; and 4) Shape/Shapelet-
Based Clustering: k-Shape, USLM, and MTEEGC.

k-Means++ [27]: It specifies a procedure with the prob-
ability to initialize cluster centers and then it performs the
standard k-means to cluster EEG.

UDFS [23]: Unsupervised discriminative time-series clus-
tering that simultaneously explores local discriminative
information and the manifold structure to cluster time series.

NDFS [24]: Non-negative discriminative time-series cluster-
ing that combines non-negative spectral analysis and l2,1-norm
minimization regularization as an integrated structure to select
unsupervised time-series features and cluster.

RUFS [25]: Robust unsupervised time-series clustering that
utilizes locally learning regularized robust orthogonal non-
negative matrix factorization to perform robust label learning
and l2,1-norms minimization to jointly cluster time series.

RSFS [26]: Robust spectral learning for unsupervised time-
series clustering that combines sparse spectral regression and
the robustness of graph embedding.

k-DBA [29]: It defines clusters using k-means and DTW and
then uses an averaging strategy: DTW barycenter averaging
(DBA) for centroid computation.

K-SC [30]: Similar to k-means, it uses a scale-and-shift-
invariance measure to compute similarities of time series and
extract cluster centroid according to the spectral norm of the
similarity matrix.

k-Shape [32]: It clusters time series by seeking time-series
shapes with a normalized version of cross-correlation, and it
also relies on a scalable iterative refinement procedure.

USLM [34]: Unsupervised shapelet learning model effi-
ciently learns shapelets to cluster time series, which integrates
pseudoclass label learning, spectral analysis, shapelet regular-
ization, and regularized least-squares minimization.

MTEEGC [22]: Multitrial EEG clustering is recently
proposed by Dai et al., which utilizes an improved cross-
correlation-based feature extraction function to seek EEG
shapes as cluster centroid and then clusters EEG trials with
the shape centroid.

D. Experimental Results and Discussion

We analyzed mwcEEGc by comparing it to ten state-of-the-
art clustering algorithms introduced above. All algorithms are
operated with MATLAB R2014b, on a Windows 10 machine
with 4×3.30-GHz CPUs and 16-GB memory. The parameters
for ten algorithms are set, respectively, as same as in their cor-
responding references. Besides, all the algorithms are operated
ten times and the reported results are the mean of these ten
runs.

1) Selection of Similarity Threshold δ: In mwcEEGc, δ

influences the quality and the balance of clusters. If δ is too
small, it is difficult for mwcEEGc to differentiate clusters.
If δ is too large, mwcEEGc partitions too unique EEG trials
into clusters. Furthermore, too small or too large δ seems to
result in unbalanced clusters. In our method, we set optimal δ
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(a)

(f)

(k) (l) (m) (n)

(g) (h) (i) (j)

(b) (c) (d) (e)

Fig. 5. Impact of δ on mwcEEGc with 14 EEG datasets. Several groups of δ are used to evaluate the clustering performance of mwcEEGc. (a) II_Ia. (b) II_Ib.
(c) II_Ia_Ib. (d) III_V_s1. (e) III_V_s2. (f) III_V_s3. (g) IV_2a_s1. (h) IV_2a_s2. (i) IV_2a_s3. (j) IV_2b_s1. (k) IV_2b_s2. (l) IV_2b_s3. (m) IV_3_s1.
(n) IV_3_s2.

according to the discrete probability distribution of EEG sim-
ilarities. In detail, the discrete probability distribution d(δ) of
EEG similarities is defined as follows:

d(δ) = ns∈[δi,δi+Interval]

N2
(14)

where N defines the amount of EEG trials in the Fréchet
similarity-weighted EEG graph G, and n indicates the amount
of similarities s ∈ S that stay in the interval [δi, δi + Interval].

With (14), δ can be chosen based on

δ = f −1(D) ∈

⎧
⎪⎪⎨

⎪⎪⎩
δ|f (δ):

1
Interval∑

i∈
[
0, 1

Interval −1
]

di(δ) = A

⎫
⎪⎪⎬

⎪⎪⎭
(15)

where A ∈ (0, 1). To achieve balanced clusters, �Ai = |Ai −
Aj|, i 
= j should be set in slight differences.

Figure S-1 in Section S-V of the supplementary file illus-
trates EEG similarity matrices of 14 EEG datasets and their
discrete probability distributions, respectively, which shows
that most EEG trials from the same class are similar to
each other and dissimilar with those from different classes.
Figure S-1 also indicates that the EEG trials stimulated by
the same cerebral activity from the same subject are highly
similar to each other while different cerebral activities or
different subjects seem to produce dissimilar EEG trials. In
addition, Fig. S-1 provides an illustration of the proof of
Theorem 1 and it also presents the percentages of EEG

amounts under different similarity thresholds δ, with which
mwcEEGc can set proper similarity thresholds δk=1,...,m,m≥1
to achieve high-quality EEG clusters.

Since the number of clusters of the EEG datasets is fixed,
we just analyzed mwcEEGc with respect to δ that controls
intracluster compactness, intercluster scatter, and the balance
of clusters. The impact of similarity thresholds δ on mwcEEGc
quantified with RI, F-score, and κ is shown in Fig. 5. We
can see that a moderate similarity threshold δ obtains a better
clustering result than a smaller or a larger one. In other words,
moderate δ that is set based on (15) achieves high-quality EEG
clusters.

2) EEG Clustering Performance Analysis: We compared
mwcEEGc to ten baselines for EEG clustering. Particularly,
we, based on Fig. 5, set the optimal δ for mwcEEGc.
The experimental results on 14 EEG datasets are shown in
Tables III–XVI, respectively. Accordingly, they clearly demon-
strate that mwcEEGc yields the best clusters according to RI,
F-score, and κ , indicating the superiority of mwcEEGc over
the ten baselines for EEG clustering.

We also compared mwcEEGc to the ten state-of-the-art
baselines with respect to intracluster compactness and inter-
cluster scatter on the 14 EEG datasets. The comparisons
are also presented in Tables III–XVI, which indicates that
mwcEEGc achieves the best clusters with respect to intraclus-
ter compactness and intercluster scatter. Although for all the
14 EEG datasets, mwcEEGc does not achieve the best SIn
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TABLE III
CLUSTERING RESULTS WITH THE EEG DATASET II_IA

TABLE IV
CLUSTERING RESULTS WITH THE EEG DATASET II_IB

TABLE V
CLUSTERING RESULTS WITH THE EEG DATASET II_IA_IB

TABLE VI
CLUSTERING RESULTS WITH THE EEG DATASET III_V_S1

TABLE VII
CLUSTERING RESULTS WITH THE EEG DATASET III_V_S2

TABLE VIII
CLUSTERING RESULTS WITH THE EEG DATASET III_V_S3

TABLE IX
CLUSTERING RESULTS WITH THE EEG DATASET IV_2A_S1

and SBe simultaneously, it at least produces either the best SIn

or SBe. Consequently, when evaluating with integrated ratio
r (r = [SBe/SIn]) that simultaneously considers intracluster
compactness and intercluster scatter of clusters, mwcEEGc
outperforms all the ten state-of-the-art baselines.

3) Impact Analysis of Similarity Measures: As we intro-
duced in Section V-B, we improved the conventional FD to
measure similarities of EEG trials via bringing in local ten-
dency. To demonstrate the improvement of the modified FD on

TABLE X
CLUSTERING RESULTS WITH THE EEG DATASET IV_2A_S2

TABLE XI
CLUSTERING RESULTS WITH THE EEG DATASET IV_2A_S3

TABLE XII
CLUSTERING RESULTS WITH THE EEG DATASET IV_2B_S1

TABLE XIII
CLUSTERING RESULTS WITH THE EEG DATASET IV_2B_S2

TABLE XIV
CLUSTERING RESULTS WITH THE EEG DATASET IV_2B_S3

TABLE XV
CLUSTERING RESULTS WITH THE EEG DATASET IV_3_S1

TABLE XVI
CLUSTERING RESULTS WITH THE EEG DATASET IV_3_S2

mwcEEGc for EEG clustering, we further compared the IFD
with the CFD, along with several other advanced and widely
used similarity measures, such as ED, HD, and DTW. The
clustering results of mwcEEGc with such similarity measures
under optimal δ (as illustrated in Fig. 5) are shown in Fig. 6.
It clearly indicates that the IFD-based mwcEEGc outper-
forms ED-based, HD-based, DTW-based, and even CFD-based
ones, since the IFD-based mwcEEGc achieves the highest RI,
F-score, and kappa (κ) on 14 EEG datasets.
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Fig. 6. Impact of distance (similarity) metrics on mwcEEGc with 14 EEG datasets. The results of all the distance metrics are achieved with the optimal
similarity threshold δ as shown in Fig. 5. (ED: Euclidean distance; HD: Hausdorff distance; DTW: dynamic time warping; CFD: conventional FrÂt’echet
distance without modification; and IFD: improved FrÂt’echet distance). (a) II_Ia. (b) II_Ib. (c) II_Ia_Ib. (d) III_V_s1. (e) III_V_s2. (f) III_V_s3. (g) IV_2a_s1.
(h) IV_2a_s2. (i) IV_2a_s3. (j) IV_2b_s1. (k) IV_2b_s2. (l) IV_2b_s3. (m) IV_3_s1. (n) IV_3_s2.

4) Execution Time: As introduced in
Section V-F, the time complexity of mwcEEGc is
O(max{(n2·l2[(log log l)/(log l)]),mn3}). But in practice,
the real time is mostly determined by the improved FD-based
similarity computation rather than by clique searching. The
reasons are: 1) the min–max searching strategy of the Fréchet
similarity requires lots of time, especially with a large amount
of EEG trials and 2) for clique searching in weighted EEG
graph, the similarity threshold δ reduces the number of EEG
trials whose similarities are smaller than δ and it likely
leads to a sparsely weighted EEG graph and lowering time
for searching clusters in the sparse EEG graph. We also
compared the time consumption of all clustering methods. For
14 EEG datasets, time consumption of clustering algorithms
is illustrated in Fig. 7. As the results indicated, although
mwcEEGc runs slower than k-means++, UDFS, RSFS, K-SC,
k-Shape, and MTEEGC, it is more efficient than k-DBA,
USLM on most EEG datasets as well as having competitive
efficiency to NDFS and RUFS. Furthermore, mwcEEGc is
not the most efficient algorithm for EEG clustering, but it
achieves the best clustering results of RI, F-score, and κ on
14 EEG datasets.

VII. PROPERTIES SATISFIED BY MWCEEGC

In Kleinberg’s work [35], it discussed three clustering prop-
erties, that is, scale invariance, richness, and consistency.
Kleinberg also proved that no clustering method satisfies the
three properties simultaneously. A similar consequence has
been proved on unification of clustering in [61]. Order inde-
pendence, similar to Ackerman’s isomorphism invariance [36],
is another desirable clustering property. A clustering algorithm
is order independent if it returns same clusters with differ-
ent runs, without being influenced by the input sequences of

(a)

(c)

(e)

(d)

(b)

Fig. 7. Time consumption comparisons of EEG time-series clustering
algorithms on 14 EEG datasets.

objects [62]. Here, we discuss the four theoretical clustering
properties for mwcEEGc: 1) scale invariance; 2) richness;
3) consistency; and 4) order independence.

A. Scale Invariance

Scale invariance requires that clustering algorithms do not
build in length scale. mwcEEGc partitions EEG trials based
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on similarity threshold δ, which builds in fundamental sim-
ilarity scales. Therefore, mwcEEGc does not satisfy scale
invariance. k-means++, UDFS, NDFS, RUFS, and RSFS
satisfy scale invariance since they all utilize k-means strat-
egy to clusters, relying on their relative distance to centers,
instead of the absolute distance. K-SC also uses this property
since it utilizes a scale-invariant distance measure d̂(x, y) =
minα,q [(‖x − αy(q)‖)/‖x‖] to cluster. k-DBA utilizes DBA
distance measure to find the centroid sequence while minimiz-
ing the sum of squared distance. The DBA is deterministic
once the initial average sequence (i.e., center) is selected,
which means that it is not sensitive to changes in units of
distance measurements. Namely, no “length scale” is built in,
so k-DBA satisfies scale invariance. k-Shape is a shape-based
clustering method with normalized cross-correlation based on
the input number of clusters k, rather than a built-in dis-
tance scale, so k-Shape satisfies scale invariance. The USLM
uses a joint optimization function of spectral regularization,
shapelet similarity regularization, and regularized least-squares
minimization to learn unsupervised shapelet and cluster, which
does not build in distance scales, thus USLM also satisfies
scale invariance. Similarly, MTEEGC is a shape centroid-
based method that clusters EEG trials also based on the
initialized number of clusters, rather than the built-in distance
scale, so it also satisfies scale invariance.

B. Richness

Richness imposes that all possible partitions (clusters) can
be produced. mwcEEGc clusters EEG trials according to δ,
so that the thresholds can be adjusted to make the similarities
of desired EEG trials satisfy the similarity thresholds, which
means that it can produce any desired partitions. Therefore,
mwcEEGc guarantees richness. k-means++, UDFS, NDFS,
RUFS, RSFS, K-SC, k-DBA, k-Shape, USLM, and MTEEGC
fail to guarantee richness since their k is a constant initial-
ization, which achieves only k clusters and precludes them
generating any desired partitions.

C. Consistency

Consistency demands no change in clusters when shrink-
ing intracluster distances and expanding intercluster distances.
The mwcEEGc aims to search a family of cliques C =
{C1, . . . ,Cm} such that maxCk∈C , which requires that any pair-
wise vertices (i, j) in the same clique are connected by an edge
while any two vertices from different cliques are disjointed.
Once δ is fixed, cliques such that maxCk∈C are correspondingly
fixed, otherwise the connections within cliques and separa-
tion between cliques would be broken, which would result in
the total weight not being maximized. Therefore, mwcEEGc
satisfies consistency. For k-means++, UDFS, NDFS, RUFS,
RSFS, K-SC, k-DBA, k-Shape, and MTEEGC, their clustering
process is similar to k-means that utilizes the (k, g)-centroid
function to cluster, that is, the objective function of these
algorithms can be presented as g(d) = d2 [35], [61]. As
Kleinberg concluded in [35] that “for a fairly general class
of centroid-based clustering functions, including k-means and

k-median, none of the functions in the class satisfies the consis-
tency property,” therefore k-means++, UDFS, NDFS, RUFS,
RSFS, K-SC, k-DBA, k-Shape, and MTEEGC do not satisfy
consistency. Similarly, the USLM clusters EEG using a joint
optimization objective function, and it probably returns local
optima. When shrinking intracluster distances and expanding
intercluster distances, the probability of EEG belonging to
the cluster may change and the solution of the optimization
function correspondingly changes. That is, the clusters change
along with the change of distances. Therefore, USLM does
not satisfy consistency.

D. Order Independence

Order independence requires no changes in clusters with
the presentation order of objects. The mwcEEGc chooses
first vertex v0 with largest value based on C = ηTμ into
the potential clique C. Furthermore, adding a new vertex
vt with C−vi = ηT−vi

μ−vi
such that ∀vi ∈ C, μti ≥ δC

into the clique C to construct a new clique C+1, according
to Theorem 2, the weight of C+1 satisfies

∑
e∈E(C+1)

we =∑
e∈E(C) we + ηt + ∑

i∈C μti, and after checking all the ver-
tices and their similarities, the final clique C∗ is obtained with
weight

∑
e∈E(C∗) we = ∑

i∈C∗ ηi + ∑
e∈E(C∗) μe. It indicates

that the order of vertices that are added into the clique just
affects the temporary weight of the cluster, rather than the
final one. Therefore, the mwcEEGc satisfies order indepen-
dence. For k-means++, UDFS, NDFS, RUFS, and RSFS,
their cluster centers are randomly initialized, which results
in different clusters for different runs. So they are not order
independent. The K-SC randomly initializes cluster center μ,
although it is updated in a way that the new center μ∗

k is
the minimizer of the sum of d̂(xi, μk)

2 over ∀xi ∈ Ck. That
is, μ∗

k = arg minμ
∑

xi∈Ck
d̂(xi, μ)

2. Due to its random initial-
ization of center, K-SC does not satisfy order independence.
The k-DBA utilizes DBA to minimize DTW squared distance
to averaged sequence (center) which avoids applying iterative
pairwise averaging to cluster. Although it is insensitive to
ordering effects, the k-DBA is still not independent from the
initialization of the first average sequence, so it returns differ-
ent clusters along with different initializations. Consequently,
the k-DBA does not satisfy order independence. The k-Shape
computes cluster centroid by transforming to an optimization
problem that aims to obtain the minimizer of the sum of the
squared distances between EEG trials to the centroid. But in
iterative clustering, the previously computed centroid is used
as the reference sequence (centroid). According to this, the
k-Shape likely returns different clusters during different runs.
Therefore, the k-Shape is not order independent. The USLM
requires many initializations, such as the length of shapelets,
learning rate, etc., to the cluster. However, the leading influ-
ence is the initialization of the first shapelet. As a result, with
different initializations for the fist shapelet, the USLM obtains
different clusters. So it does not satisfy order independence.
Although the MTEEGC updates cluster centroid during clus-
tering, it also relies on the centroid sequence initialization, so it
produces different clusters with multiple runs, which precludes
it satisfying order independence.
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Fig. 8. Comparison of clustering properties that clustering algorithms satisfy.
(
√

and ×, respectively, denote the “satisfied” versus “not satisfied” clustering
property.)

Fig. 8 summarizes the foregoing discussion and clearly
indicates that mwcEEGc outperforms the ten state-of-the-art
clustering algorithms since it satisfies three of four properties
while the ten baselines only satisfy one. In accord with the
impossibility theorem [35], [61] that all four properties cannot
be satisfied simultaneously, we, therefore, underline theoreti-
cally that no other EEG clustering algorithms perform better
than mwcEEGc for now.

VIII. CONCLUSION

With ever-increasing unlabeled EEG, unsupervised EEG
clustering is a challenging but valuable task. This arti-
cle explored the problem and proposed an MWC inspired
approach, that is, mwcEEGc. The mwcEEGc clusters EEG
trials by mapping it to searching cliques of maximum weights
in an improved Fréchet similarity-weighted EEG graph with
respect to intracluster compactness as well as intercluster scat-
ter. The method simultaneously considers vertex weights and
edge weights, and it is not required to compute cluster cen-
troid during the process. The experimental comparisons with
ten state-of-the-art clustering approaches on 14 EEG datasets
with respect to six cluster evaluation criteria demonstrated the
superiority of mwcEEGc. Besides, the mwcEEGc theoretically
satisfies three of four key clustering properties: 1) richness;
2) consistency; and 3) order independence while those ten
baselines only satisfy one: scale invariance.

In this article, we mainly focused on within-subject EEG
clustering, but the cross-subject analysis is also important
in EEG applications, so we also plan to handle it in our
future work. The proposed method mwcEEGc exploits an FD-
based metric to measure EEG similarities, and it would be an
interesting direction to evaluate more similarity or dissimilarity
measures for mwcEEGc. Moreover, mwcEEGc in this article
treats all EEG channels equally, and it is worthy of weighting
more for event-related channels or EEG channel selection for
mwcEEGc clustering in future work. In addition, as a specific
of time series with such characteristics as complexity, nonlin-
earity, nonstationarity, high dimension, and low signal-to-noise
ratio, EEG signals are probably handled by mwcEEGc, so it
could be also applied on other types of biological signals,
such as electrocardiogram (ECG), electromyogram (EMG),
and may be fMRI signals as well. It is another orientation
to apply mwcEEGc for these signal clustering in the future.

REFERENCES

[1] M. F. Glasser et al., “A multi-modal parcellation of human cerebral
cortex,” Nature, vol. 536, no. 7615, pp. 171–178, 2016.

[2] E. Barzegaran, B. van Damme, R. A. Meuli, and M. G. Knyazeva,
“Perception-related EEG is more sensitive to Alzheimer’s disease effects
than resting EEG,” Neurobiol. Aging, vol. 43, pp. 129–139, Jul. 2016.

[3] J. S. Jeong, “EEG dynamics in patients with Alzheimer’s disease,” Clin.
Neurophysiol., vol. 115, no. 7, pp. 1490–1505, 2004.

[4] J. G. Bogaarts, E. D. Gommer, D. M. Hilkman,
V. H. van Kranen-Mastenbroek, and J. P. H. Reulen, “EEG fea-
ture pre-processing for neonatal epileptic seizure detection,” Ann.
Biomed. Eng., vol. 42, no. 11, pp. 2360–2368, 2014.

[5] K. Samiee, P. Kovacs, and M. Gabbouj, “Epileptic seizure classification
of EEG time-series using rational discrete short-time Fourier transform,”
IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 541–552, Feb. 2015.

[6] B. Hordacre, N. C. Rogasch, and M. R. Goldsworthy, “Commentary:
Utility of EEG measures of brain function in patients with acute stroke,”
Front. Hum. Neurosci., vol. 10, Dec. 2016, Art. no. 621.

[7] M. R. Nuwer, S. E. Jordan, and S. S. Ahn, “Evaluation of stroke using
EEG frequency analysis and topographic mapping,” Neurology, vol. 37,
no. 7, pp. 1153–1159, 1987.

[8] W. He, Y. Zhao, H. Tang, C. Sun, and W. Fu, “A wireless BCI and BMI
system for wearable robots,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 46, no. 7, pp. 936–946, Jul. 2016.

[9] H.-H. Kim and J. Jeong, “Representations of directions in EEG-BMI
using winner-take-all readouts,” in Proc. 5th Int. Win. Conf. Brain
Comput. Interface (BCI), 2017, pp. 121–122.

[10] H. Cecotti and A. Graeser, “Convolutional neural networks for P300
detection with application to brain–computer interfaces,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 433–445, Mar. 2011.

[11] A. K. Das, S. Suresh, and N. Sundararajan, “A discriminative subject-
specific spatio-spectral filter selection approach for EEG based motor-
imagery task classification,” Expert Syst. Appl., vol. 64, pp. 375–384,
Dec. 2016.

[12] L. He, D. Hu, M. Wan, Y. Wen, K. M. von Deneen, and M. Zhou,
“Common Bayesian network for classification of EEG-based multiclass
motor imagery BCI,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 6, pp. 843–854, Jun. 2016.

[13] R. Roy, M. Mahadevappa, and C. S. Kumar, “Trajectory path planning
of EEG controlled robotic arm using GA,” in Proc. 7th Int. Conf. Intell.
Human Comput. Interact. (IHCI), 2016, pp. 147–151.

[14] H. A. Shedeed and M. F. Issa, “Brain-EEG signal classification based
on data normalization for controlling a robotic arm,” Int. J. Tomograghy
Simul., vol. 29, no. 1, pp. 72–85, 2016.

[15] F. Velasco-Álvarez, A. Fernandez-Rodríguez, and R. Ron-Angevin,
“Switch mode to control a wheelchair through EEG signals,” in Proc. 3rd
Int. Conf. NeuroRehabil. (ICNR), 2017, pp. 801–805.

[16] S. K. Swee, K. D. T. Kiang, and L. A. You, “EEG controlled wheelchair,”
in Proc. Int. Conf. Mech. Manuf. Model. Mechatron. (IC4M), vol. 51,
2016, Art. no. 02011.

[17] N. Mammone, C. Ieracitano, H. Adeli, A. Bramanti, and F. C. Morabito,
“Permutation Jaccard distance-based hierarchical clustering to estimate
EEG network density modifications in MCI subjects,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 5122–5135, Oct. 2018.

[18] A. Ozdemir, M. Bolaños, E. Bernat, and S. Aviyente, “Hierarchical
spectral consensus clustering for group analysis of functional brain
networks,” IEEE Trans. Biomed. Eng., vol. 62, no. 9, pp. 2158–2169,
Sep. 2015.

[19] C. Dai, J. Wu, D. Pi, and L. Cui, “Brain EEG time series selection:
A novel graph-based approach for classification,” in Proc. SDM, 2018,
pp. 558–566.

[20] P. A. Bizopoulos, D. G. Tsalikakis, A. T. Tzallas, D. D. Koutsouris,
and D. I. Fotiadis, “EEG epileptic seizure detection using k-means
clustering and marginal spectrum based on ensemble empirical mode
decomposition,” in Proc. 13th IEEE Int. Conf. BioInform. BioEng., 2013,
pp. 1–4.

[21] P. Wahlberg and G. Lantz, “Methods for robust clustering of epileptic
EEG spikes,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 857–868,
Jul. 2000.

[22] C. Dai, D. Pi, L. Cui, and Y. Zhu, “MTEEGC: A novel approach for
multi-trial EEG clustering,” Appl. Soft Comput., vol. 71, pp. 255–267,
Oct. 2018.

[23] Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, “l2,1-norm reg-
ularized discriminative feature selection for unsupervised learning,” in
Proc. IJCAI, 2011, pp. 1589–1594.

Authorized licensed use limited to: The University of Arizona. Downloaded on June 26,2020 at 17:38:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[24] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, “Unsupervised feature
selection using nonnegative spectral analysis,” in Proc. 26th AAAI Conf.
Artif. Intell. (AAAI), 2012, pp. 1026–1032.

[25] M. Qian and C. Zhai, “Robust unsupervised feature selection,” in
Proc. 23rd Int. Joint Conf. Artif. Intell. (IJCAI), 2013, pp. 1621–1627.

[26] L. Shi, L. Du, and Y.-D. Shen, “Robust spectral learning for unsuper-
vised feature selection,” in Proc. IEEE Int. Conf. Data Min. (ICDM),
2014, pp. 977–982.

[27] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proc. SODA, 2007, pp. 1027–1035.

[28] T. Rakthanmanon et al., “Searching and mining trillions of time
series subsequences under dynamic time warping,” in Proc. 18th ACM
SIGKDD Int. Conf. Knowl. Disc. Data Min., 2012, pp. 262–270.

[29] F. Petitjean, A. Ketterlin, and P. Gancarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognit., vol. 44, no. 3, pp. 678–693, Mar. 2011.

[30] J. Yang and J. Leskovec, “Patterns of temporal variation in online
media,” in Proc. WSDM, 2011, pp. 177–186.

[31] W. Meesrikamolkul, V. Niennattrakul, and C. A. Ratanamahatana,
“Shape-based clustering for time series data,” in Proc. Pac.–Asia Conf.
Knowl. Disc. Data Min. (PAKDD), 2012, pp. 530–541.

[32] J. Paparrizos and L. Gravano, “k-shape: Efficient and accurate clustering
of time series,” in Proc. SIGMOD, 2015, pp. 1855–1870.

[33] L. Ulanova, N. Begum, and E. J. Keogh, “Scalable clustering of time
series with U-shapelets,” in Proc. SDM, 2015, pp. 900–908.

[34] Q. Zhang, J. Wu, H. Yang, Y. Tian, and C. Zhang, “Unsupervised feature
learning from time series,” in Proc. 25th Int. Joint Conf. Artif. Intell.
(IJCAI), 2016, pp. 2322–2328.

[35] J. Kleinberg, “An impossibility theorem for clustering,” in Proc. 15th
Int. Conf. Neural Inf. Process. Syst. (NIPS), 2002, pp. 463–470.

[36] M. Ackerman and S. Ben-David, “Measures of clustering quality: A
working set of axioms for clustering,” in Proc. Adv. Neural Inf. Process.
Syst. (NIPS), 2008, pp. 121–128.

[37] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,” in Proc. SIGMOD, 1994,
pp. 419–429.

[38] M. R. Berthold and F. Höppner, “On clustering time series using
Euclidean distance and Pearson correlation,” 2016. [Online]. Available:
arXiv:1601.02213v1.

[39] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic time
warping,” Knowl. Inf. Syst., vol. 7, no. 3, pp. 358–386, 2005.

[40] A. A. Taha and A. Hanbury, “An efficient algorithm for calculating
the exact Hausdorff distance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 11, pp. 2153–2163, Nov. 2015.

[41] P. K. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir, “Computing
the discrete Fréchet distance in subquadratic time,” SIAM J. Comput.,
vol. 43, no. 2, pp. 429–449, 2014.

[42] U. Mori, A. Mendiburu, and J. A. Lozano, “Similarity measure selection
for clustering time series databases,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 1, pp. 181–195, Jan. 2016.

[43] P. Chen, K. Xu, G. Li, J. Wan, and Y. Chen, “Local Fréchet distance in
specific emitter identification,” in Proc. IEEE Int. Conf. Commun. Softw.
Netw., 2017, pp. 842–845.

[44] A. Driemel, A. Krivosija, and C. Sohler, “Clustering time series under
the Fréchet distance,” in Proc. SODA, 2016, pp. 766–785.

[45] A. Driemel and F. Silvestri, “Locality-sensitive hashing of curves,” 2017.
[Online]. Available: arXiv:1703.04040v1.

[46] E. Billet, A. Fedorov, and N. Chrisochoides, “The use of robust local
Hausdorff distances in accuracy assessment for image alignment of brain
MRI,” Insight J., Jun. 2008. [Online]. Available: http://hdl.handle.net/
1926/1354

[47] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge, “Comparing
images using the Hausdorff distance,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 15, no. 9, pp. 850–863, Sep. 1993.

[48] Y. Jeong, M. K. Jeong, and O. A. Omitaomu, “Weighted dynamic time
warping for time series classification,” Pattern Recognit., vol. 44, no. 9,
pp. 2231–2240, 2011.

[49] M. Schlesinger, E. Vodolazskiy, and V. Yakovenko, “Fréchet similarity
of closed polygonal curves,” Int. J. Comput. Geom. Appl., vol. 26, no. 1,
pp. 53–66, 2016.

[50] A. Driemel, S. Har-Peled, and C. Wenk, “Approximating the Fréchet
distance for realistic curves in near linear time,” Discr. Comput. Geom.,
vol. 48, no. 1, pp. 97–127, 2012.

[51] K. T. Malladi, S. Mitrovic-Minic, and A. P. Punnen, “Clustered
maximum-weight clique problem: Algorithms and empirical analysis,”
Comput. Oper. Res., vol. 85, pp. 113–128, Sep. 2017.

[52] Q. H. Wu and J. Hao, “A review on algorithms for maximum-clique
problems,” Eur. J. Oper. Res., vol. 242, no. 3, pp. 693–709, 2015.

[53] Y. Wang, J.-K. Hao, F. Glover, Z. Lü, and Q. Wu, “Solving the maxi-
mum vertex weight clique problem via binary quadratic programming,”
J. Comb. Optim., vol. 32, no. 2, pp. 531–549, 2016.

[54] S. Cai and J. Lin, “Fast solving maximum-weight clique problem in
massive graphs,” in Proc. 25th Int. Joint Conf. Artif. Intell. (IJCAI),
2016, pp. 568–574.

[55] N. S. Sengör, Y. Cakir, C. Guzelis, F. Pekergin, and Ö. Morgul, “An
analysis of maximum-clique formulations and saturated linear dynamical
network,” ARI Int. J. Phys. Eng. Sci., vol. 51, no. 4, pp. 268–276, 1998.

[56] A. Chouakria-Douzal and P. N. Nagabhushan, “Improved Fréchet dis-
tance for time series,” Data Sci. Classification, pp. 13–20, 2006.

[57] H. Alt and M. Godau, “Computing the Fréchet distance between two
polygonal curves,” Int. J. Comput. Geom. Appl., vol. 5, pp. 75–91, 1995.

[58] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” J. Amer. Stat. Assoc., vol. 66, no. 336, pp. 846–850, 1971.

[59] C. J. van Rijsbergen, Information Retriveal, 2nd ed. London, U.K.:
Butterworths, 1979.

[60] J. L. Fleiss, “Measuring nominal scale agreement among many raters,”
Psychol. Bull., vol. 76, no. 5, pp. 378–382, 1971.

[61] R. B. Zadeh and S. Ben-David, “A uniqueness theorem for clustering,”
in Proc. Conf. Uncertainty Artif. Intell., 2009, pp. 639–646.

[62] V. K. Garg, Y. Narahari, and M. N. Murty, “Novel biojective clustering
(BiGC) based on cooperative game theory,” IEEE Trans. Knowl. Data
Eng., vol. 25, no. 5, pp. 1070–1082, May 2013.

Chenglong Dai received the master’s degree
in computer science and technology from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, in 2014, where he is currently pur-
suing the Ph.D. degree in computer science and
technology.

He has published several related high-quality
papers in journals and top conferences like SDM
(awarded the Best Paper Award in Data Science
Track). His research interests include EEG process-
ing, EEG analyzing, and data mining.

Mr. Dai has served as a Reviewer for IJCNN’18 and IJCNN’19.

Jia Wu (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Technology Sydney, Ultimo, NSW, Australia.

He is currently a Lecturer with the Department
of Computing, Macquarie University, Sydney, NSW,
Australia, and a Chair Professor with the School
of Computer Science, Wuhan University, Wuhan,
China. Since 2009, he has been published in
over 100 refereed journal and conference papers,
including the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, the
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,
the ACM Transactions on Knowledge Discovery from Data, IJCAI, AAAI,
ICDM, and SIAM SDM. His current research interests include data mining
and machine learning.

Dr. Wu was a recipient of the SDM’18 Best Paper Award in Data Science
Track, the IJCNN’17 Best Student Paper Award, and the ICDM’14 Best Paper
Candidate Award. He is an Associate Editor of the ACM Transactions on
Knowledge Discovery From Data, the Journal of Network and Computer
Applications, and Neural Networks.

Dechang Pi received the Ph.D. degree from the
Nanjing University of Aeronautics and Astronautics,
Nanjing, China, in 2002.

He is currently a Professor with the School
of Computer Science and Technology, Nanjing
University of Aeronautics and Astronautics. He has
published seven research books and more than 100
papers in journals and conferences, won over 20
grants, including the National Science Foundation
of China, the Technology Foundation of National
Defence, and the Aviation Science Foundation of

China. His main research interests lie in the area of big data, including data
mining and EEG data preprocessing.

Authorized licensed use limited to: The University of Arizona. Downloaded on June 26,2020 at 17:38:27 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DAI et al.: BRAIN EEG TIME-SERIES CLUSTERING USING MAXIMUM-WEIGHT CLIQUE 15

Stefanie I. Becker received the Ph.D. degree in
cognitive psychology/experimental psychology from
the University of Bielefeld, Bielefeld, Germany, in
2007.

She is currently an Associate Professor and
an ARC Future Fellow with the University of
Queensland, St. Lucia, QLD, Australia. She is an
internationally recognized expert on visual attention.
She has authored or coauthored over 60 papers in
high-ranking journals.

Ms. Becker received several awards for her work
involving eye tracking, EEG, and fMRI. She was as an Associate Editor for
the Journal of Experimental Psychology: Human Perception and Performance.

Lin Cui received the master’s degree from the
School of Computer Science and Information
Engineering, Hefei University of Technology, Hefei,
China, in 2008.

She is currently a Professor with the Intelligent
Information Processing Laboratory, Suzhou
University, Anhui, China. Her research interests
include data mining, POI recommendation, and
social network analysis.

Qin Zhang received the master’s degree from
the University of Chinese Academy of Sciences,
Beijing, China, in 2014, and the Ph.D. degree from
the Center for Artificial Intelligence, University of
Technology Sydney, Ultimo, NSW, Australia, in
2017.

She has published several papers in top
journals and conferences, such as the IEEE
TRANSACTIONS ON PATTERN ANALYSIS

AND MACHINE INTELLIGENCE, the IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, IJCAI, and ICDM. Her main research interests include data
mining and online learning.

Dr. Zhang has served as a Reviewer (Subreviewer) for KDD-15, ICDM-15,
IJCAI-15, AAAI-15, and NIPS-15.

Blake Johnson received the M.A. and Ph.D. degrees
from Fraser University, Burnaby, BC, Canada, in
1988 and 1993, respectively.

He is currently an Associate Professor with
the Department of Cognitive Science, Macquarie
University, Sydney, NSW, Australia, where he was
a Chief Investigator with the Australian Research
Council Centre of Excellence for Cognition and its
Disorders and a Project Leader with the Australian
Government’s Hearing Cooperative Research Centre
(Hearing CRC). Current work on the development

of speech motor control in children is funded by the Australian Research
Council. His neuroimaging research investigates typical and a typical human–
brain function using a variety of brain measurement techniques, including
EEG and MEG (magnetoencephalography).

Authorized licensed use limited to: The University of Arizona. Downloaded on June 26,2020 at 17:38:27 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CYBERNETICS 1

Supplementary File of ”Brain EEG Time Series
Clustering Using Maximum Weight Clique”

Chenglong Dai, Jia Wu, Dechang Pi, Stefanie I. Becker, Lin Cui, Qin Zhang, and Blake Johnson

S-I. PROOF OF THEOREM 1

This section shows the proof of Theorem 1 of the paper in detail.

Proof: With 0 ≤ 1− p ≤ p, the inequation P (Ek≥n
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when n = 2i+ 1, i ∈ Z+, the inequation is transformed as

n∑
k=i+1

(
n
k

)(
pk(1− p)n−k

)
−

i∑
k=0

(
n
k

)(
pk(1− p)n−k

)
=

i∑
k=0

(
n
k

)(
pn−k(1− p)k

)
−

i∑
k=0

(
n
k

)(
pk(1− p)n−k

)
=

i∑
k=0

(
n
k

)(
pn−k(1− p)k − pk(1− p)n−k

)
∵ 0 ≤ 1− p ≤ p. ∴ (1−p)m

pm
≤ 1,m ∈ Z+. Then,
i∑

k=0

(
n
k

)(
pn−k(1− p)k − pk(1− p)n−k

)
≥

i∑
k=0

(
n
k

)( (1− p)n−2k

pn−2k
· pn−k(1− p)k − pk(1− p)n−k

)
=

i∑
k=0

(
n
k

)(
pk(1− p)n−k − pk(1− p)n−k

)
= 0

when n = 2i, i ∈ Z+, it achieves the same result.
Besides, the fundamental condition requires 0 ≤ 1 − p ≤ p. If p < 0.5, the probability of gaining similar EEG signals is

smaller than that of getting dissimilar ones, that is, most EEG signals recorded are invalid.
Additionally, a conclusion of greater generality is: As introduced before, stimulating a cerebral task A for n≥2 times, p and

1− p is the probability of getting similar EEG signals and of getting dissimilar ones respectively, where 0 ≤ 1− p ≤ p, then
the probability of getting more than k(2 ≤ k ≤ n) similar EEG signals is not smaller than the probability of getting more than
k −m(1 ≤ m < k) similar ones, namely P (Et≥k) ≥ P (Et≥k−m). This conclusion of greater generality with 0 ≤ 1− p ≤ p can
be proofed as similarly as Theorem 1.

S-II. PROOF OF PROPOSITION 1

This section elaborates the proof of Proposition 1 of the paper.

Proof: Set Ak = A(Ck) =
∑
i∈Ck

ηi, then

F(C) =
m∑
k=1

∑
e∈E(Ck)

δk≤µe<δk−1

we =
1

2

m∑
k=1

∑
i∈Ck

∑
j∈Ck\i

δk≤µij<δk−1

wij

=
1

2

m∑
k=1

∑
i∈Ck

∑
j∈Ck\i

δk≤µij<δk−1

(ηi + ηj
Nk − 1

+ µij
)

=
1

2

m∑
k=1

∑
i∈Ck

( ∑
j∈Ck\i

ηi
Nk − 1

+
∑

j∈Ck\i

ηj
Nk − 1

+
∑

j∈Ck\i
δk≤µij<δk−1

µij
)
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=
1

2

m∑
k=1

∑
i∈Ck

(
ηi +

Ak − ηi
Nk − 1

+
∑

j∈Ck\i
δk≤µij<δk−1

µij
)

=

m∑
k=1

( (Nk − 2)ηi +Ak
2(Nk − 1)

+
1

2

∑
i∈Ck

∑
j∈Ck\i

δk≤µij<δk−1

µij
)

=

m∑
k=1

( ∑
i∈Ck

ηi +
∑

e∈E(Ck)
δk≤µe<δk−1

µe
)

S-III. PROOF OF THEOREM 2

This section introduces the proof of Theorem 2 in detail.

Proof: (⇒) Since vt ∈ C∗, obviously ∀vi ∈ C, µit ≥ δC .
(⇐) For a vertex vt such that ∀vj ∈ C, µtj ≥ δC , recall Proposition 1:

∑
e∈E(C)

we =
∑
vi∈C

ηi +
∑

e∈E(C)

µe, then

∑
e∈E(C∪{vt})

we −
∑

e∈E(C)

we

=
∑

vi∈C∪{vt}

ηi +
∑

e∈E(C∪{vt})

µe −
∑
vi∈C

ηi −
∑

e∈E(C)

µe

= ηt +
∑
vi∈C

µit > 0

Namely, the added vertex vt and ∀vi ∈ C construct a new clique C∗ = C ∪ {vt} whose weight is larger than C.

S-IV. PROOF OF PROPOSITION 2

This section describes the detailed proof of Proposition 2 of the paper.

Proof: Recall Proposition 1: (m≥1, δk=1,··· ,m−1)-mwcEEGc can be written as F(C) =
m∑
k=1

∑
e∈E(Ck)

δk≤µe<δk−1

we → max
C∈C

while

δ0 = 1, δm = 0. Based on Theorem 2, then

F(C) =
m∑
k=1

∑
e∈E(Ck)

δk≤µe<δk−1

we → max
C∈C

=

m∑
k=1

( ∑
i∈Ck

ηi +
∑

e∈E(Ck),δk≤µe<δk−1

µe
)
→ max
C∈C

=
(
(
∑
i∈C1

ηi +
∑

e∈E(C1),δ1≤µe<1

µe) + · · ·+ (
∑

i∈C\C1\···\Cm−1

ηi +
∑

e∈E(C\C1\···\Cm−1)
δm≤µe<δm−1

µe)
)
→ max
C∈C

∵ e ∈ E(Ck), 0 ≤ δk ≤ e < δk−1, δ0 = 1, δm = 0; k = 1, · · · ,m

=
(
(
∑
i∈C1

ηi +
∑

e∈E(C1),δ1≤µe<1

µe)→ max
C1∈C

)
+ · · ·+

(
(

∑
i∈C\C1\···\Cm−1

ηi +
∑

e∈E(C\C1\···\Cm−1)
δm≤µe<δm−1

µe)→ max
Cm∈C

)

=

m∑
k=1

{
(
∑
i∈Ck

ηi +
∑

e∈E(Ck),δk≤µe<δk−1

µe)→ max
Ck∈C

}

S-V. IFD-BASED EEG SIMILARITY DISTRIBUTION AND SIMILARITY MATRIX

The figure in this section illustrates EEG similarity distributions d(s) and similarity matrixes of 14 EEG data sets, with which
the mwcEEGc algorithm proposed in the paper can set proper similarity thresholds δk=1,··· ,m,m≥1 to achieve high-quality EEG
clusters.
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Fig. S-1: IFD-based similarity distributions d(s) of 14 EEG data sets and their similarity matrixes. Bar and line plots (i.e., left subfigures)
show the similarity distribution of EEG signals in every class (i.e., “Label”), which indicates that most similar EEG signals located in a
moderate similarity threshold δ and it also helps mwcEEGc obtain balancedly high-quality clusters by setting proper similarity thresholds.
The spectral similarity matrix (i.e., right subfigures) shows the similarities of EEG signals in different labeled classes, indicating that EEG
signals in the same class have high similarity with each other and those in different classes have relatively lower similarities. (∗ Please zoom
up to review the figure∗)


