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Cross-modal representation of identity in the
primate hippocampus
Timothy J. Tyree1,2, Michael Metke1,3, Cory T. Miller1,3*

Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it
is not known how these signals are integrated into a cross-modal representation of individual identity
in the primate brain. We discovered that, although single neurons in the marmoset hippocampus
exhibited selective responses when presented with the face or voice of a specific individual, a parallel
mechanism for representing the cross-modal identities for multiple individuals was evident within
single neurons and at the population level. Manifold projections likewise showed the separability of
individuals as well as clustering for others’ families, which suggests that multiple learned social
categories are encoded as related dimensions of identity in the hippocampus. Neural representations
of identity in the hippocampus are thus both modality independent and reflect the primate social network.

N
avigating complex primate societies re-
lies on learning the identity of each indi-
vidual in the group and their respective
social relationships (1). Neurons in the
brains of primates and other mammals

selectively respond to the identity when view-
ing the face or hearing the voice of a specific
individual as unimodal signals (2–8). How-
ever, data showing that single neurons are
responsive to both the face and voice of an
individual—a cross-modal representation of
identity—are limited to “concept cells” in the
human hippocampus (9–11). These neurons
are notable for several reasons, including their
putative role in memory functions (12) and
potential uniqueness to humans (13). We in-
vestigatedwhether cross-modal representations
of identity are evident in the hippocampus of
marmosetmonkeys by recording single hippo-
campal neurons (14) while presenting subjects
withmultiple exemplars of individual marmo-
set faces (from different viewpoints) and voices
as unimodal stimuli (4), as well as concurrently
by presenting the faces and voices from the same
or different individuals—i.e., match versus mis-
match (MvMM). Visual stimuli were presented
from a monitor directly in front of the animal
while a speaker positioned directly below the
screen broadcast the acoustic stimuli. Subjects
were only presented with familiar conspecifics
housed in the same colony who differed in
their respective social relatedness (11).

Identity-selective neurons

To first test whether cross-modal representa-
tions of identity are evident in the hippocampus

of anonhumanprimate,weperformed the same
receiver operator characteristic (ROC) selectivity
analysis described previously in humans (9–11)
and detected a population of cross-modal in-
variant neurons for individual identity when
observing marmoset faces or voices (Fig. 1A
and fig. S1A), as well as neurons selective for
individual identity when viewing only their
faces (Fig. 1B and fig. S1B) or hearing only
their voices (Fig. 1C and fig. S1C). These iden-
tity neurons were confirmed in all hippocam-
pal subfields (Fig. 1D). Notably, only neurons
that exhibited a mean peak firing rate 2 SDs
above baseline qualified for this analysis, which
supports P < 0.01, and differed from the 5 SDs
used previously in humans (9–11). Responses
were determined from the mean firing rate
during a 500-ms continuous sliding window
maximized over the duration of the 3500-ms
stimulus. Overall, we observed that N = 148
(9.2%) of N = 1602 qualifying neurons dem-
onstrated selectivity for a single preferred
individual (Fig. 1E), with different neurons
selective for faces (N = 52), voices (N = 39), or
both faces and voices (N = 57) (Fig. 1F). The
mean area under the ROC curve (AUC) of iden-
tity neurons (AUC = 0.902 ± 0.014) was sig-
nificantly above chance (P < 0.001) (Fig. 1G).
Although these neurons in marmosets were
overall less selective than in humans (9–11), this
disparity may reflect species differences in hip-
pocampus properties that affect neural coding
mechanisms for identity. Baseline hippocampal
activity, for example, was considerably higher
in the current study (mean 6.47 Hz; N = 2358
neurons) (fig. S2) than has been reported in
humans (15), although a more comprehensive
comparative analysis of physiological differ-
ences is needed to better understand how
such differences affect hippocampal functions.
Analysis of eyemovements (Fig. 1H) revealed

that marmosets’ visual behavior and neural

activity were differentially affected by modal-
ity and identity. Marmosets exhibited signifi-
cantly shorter fixations (P < 0.001, Nfixations =
18,965) (Fig. 1I) and significantly more sac-
cades (P < 0.001, Nsaccades = 2203) during trials
with face-only relative to the voice-only trials
(Fig. 1J). These monkeys were also highly
focused on faces during stimulus presenta-
tions, with faces accounting for 77.9% of view-
ing time and eyes specifically accounting for
37.6% of viewing time. The firing rate of iden-
tity neurons was significantly greater than the
remaining neurons when subjects were look-
ing at the eyes or face (both P < 0.001) (Fig.
1K). This was not, however, a broad atten-
tional effect (16) because the firing rate of simul-
taneously recorded nonidentity neurons did
not show the same increased firing rate when
gazing at faces or eyes.

Multiple identities are represented in
single neurons

A potential parallel mechanism to highly se-
lective concept cells is for individual cells to
contribute to multiple functions (17, 18), such
as single neurons being sensitive to the cross-
modal identity of multiple conspecifics. Hip-
pocampal neurons are sensitive tomismatches
between the features of a particular stimulus
and a previously learned category (19, 20). To
test whether a similar mechanism is evident
for the learned social identities of conspecifics
inmarmoset hippocampus, we tested whether
neuronswould respond differently when simul-
taneously observing the face and voice from
the same (identity match) or different (iden-
tity mismatch) individuals. By presenting a
face and voice in all identity MvMM trials, we
controlled for the potential effects of multi-
modal integration (fig. S3A) and instead tested
whether a subordinate category, identity,
elicited changes in neural activity. Indeed, a
subpopulation of units, MvMM neurons, ex-
hibited a significant firing rate preference for
either match trials (Fig. 2A) or mismatch trials
(Fig. 2B), with some neurons modulated only
by this category distinction (Fig. 2A) and others
more generally stimulus driven (Fig. 2B). Over-
all, 21.7% of neurons (N = 511 of 2358) exhibited
a significant response during MvMM trials,
with significantlymore units exhibiting a higher
firing rate during match (N = 401) than mis-
match (N = 110) trials (P < 0.001) (Fig. 2C and
fig. S3B). MvMMneurons were largely distinct
from the identity neurons described above
(Fig. 2D and fig. S3C). Notably, 56% of the
neurons observed in both populations whose
anatomical location could be confirmed were
recorded in CA1. In contrast to identity neu-
rons, MvMMneurons were biased to CA1 (Fig.
2E), with N = 155 (44.3%) out of 350 neurons
confirmed in the CA1 qualifying as MvMM
neurons. In CA1, significantly more MvMM
neurons (N = 129/155, 83.2%) preferred match
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trials to mismatch trials (P < 0.001). MvMM
neurons exhibited significantly higher median
firing rate while the subject was looking at
the eyes or face (P < 0.001, N = 511) (Fig. 2F).
Marmosets exhibited significantly more sac-
cadic eye movements duringmismatch trials
(Fig. 2G), and this difference in behavior was

most prominent 1 to 2 s after stimulus onset
(P < 0.05, Nsaccades = 4603) (Fig. 2H).

Encoding cross-modal identity in
neuron populations

These findings suggest that two seemingly dis-
tinct mechanisms for representing cross-modal

identity are evident in primate hippocampus.
We conjectured thatmore temporally selective
coding mechanisms in hippocampus may in-
form how these two processes for encoding
identity are integrated at a population level.
Therefore, we developed an algorithm to iden-
tify intervals of time during which individual

Fig. 1. Putative concept cells in marmoset
hippocampus. (A to C) Top row: Subset of
stimuli shown above raster and peristimulus
time histogram (PSTH). Bottom row: Spike
waveform density; normalized PSTH to all
stimuli (preferred: red, nonpreferred: black),
indicated are time points that show
significant difference (P < 0.05); median
number of spikes for unimodal stimuli
(gray/black indicate nonpreferred individuals);
ROC curve (shuffled controls shown in black).
Exemplar identity neurons responding
selectively to the face and voice of a
preferred conspecific (red) (A), the face
only (B), and the voice only (C) are shown.
(D) Anatomical distribution of identity
neurons (red) in hippocampal subfields
relative to neurons remaining that responded
to any stimulus (white). Black shadow indicates
the electrode array track with magnetic
resonance imaging distortion artifact.
DG, dentate gyrus; Sub, subiculum. (E) Pie
chart showing the abundance of identity
neurons in red with the number of remaining
neurons that qualified for the ROC
selectivity analysis in white. (F) Mode
distribution of identity neurons. Modes
included face (light blue), voice (dark blue),
and both (orange). (G) Histogram showing
the distribution of AUCs comparable
with red ROC curves in (A) to (C). Colors
are as in (F). Black dotted line is the mean,
and red dotted line is the mean of 10,000
random shuffles of the labels. (H) Exemplar eye
movements (yellow) with fixations indicated
(red). (I) Distribution of eye fixation
durations for unimodal trials. (J) Distribution
of apparent saccade number for unimodal
trials. (K) Distribution of median firing
rates while observer was looking at eyes
(left) and face (right) for identity neurons
(black) versus remaining neurons (white).
Significant median differences, ***P < 0.001.
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Fig. 2. Single neurons in hippocampus
represent multiple individuals. (A and B)
PSTH normalized by the prestimulus baseline
(top) and spike raster (bottom) for two
exemplar MvMM neurons. Black indicates
match trials, and red indicates mismatch
trials. Vertical line indicates stimulus
onset. Inset shows spike waveform density.
Significant time points, *P < 0.05.
Exemplar neuron with higher firing rate
for match (A) and mismatch (B) trials.
(C) Pie chart showing the number of
neurons that responded significantly
more for match (black) or mismatch
(red) trials. (D) Venn diagram showing
the number of MvMM neurons (black)
in common with identity neurons (red).
(E) Relative abundance of MvMM
neurons in each hippocampal subfield.
(F) Distribution of median firing rate
while looking at the eyes (left) and face
(right) for MvMM neurons (black) versus
remaining neurons (white). (G) Probability
density of saccadic eye movements
directed toward the eyes for match
(black) and mismatch (red) trials.
Indicated are the time points in (H).
(H) Distribution of apparent number
of saccades to eyes. Significant median
differences, *P < 0.05.
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neurons exhibited significant differences in
median firing rate for a specific category (P <
0.05), which we labeled as predictive time bins
(fig. S4). This algorithm was applied to all
neurons in the population, not only those
classified as identity-selective or MvMM neu-
rons. We first identified predictive time bins
selective for specific individualswhen observing

their face or voice. A pair of exemplar neurons
that exhibited separate predictive time bins for
two different individuals is shown (Fig. 3A and
fig. S5). Out of 2358 hippocampal neurons,
1634 (69.3%) exhibited at least one identity-
specific predictive timebin,withmost exhibiting
predictive time bins for two or more individ-
uals (Fig. 3B). Identity-specific predictive time

bins exhibited a mean AUC (0.802 ± 0.003)
that was significantly above chance (P < 0.001,
Nbins = 3958) (Fig. 3C). Neurons that had
identity-specific predictive time bins exhibited
a significantly greatermedian firing rate when
subjects were looking at the face of a preferred
individual (P < 0.001) (fig. S6A), although sig-
nificant suppression was observed relative to

Fig. 3. Cross-modal decoding of
identity. (A) PSTH of two exemplar
predictive neurons. Colored traces
average over trials involving preferred
individual, and the gray shaded regions
indicate 95% confidence intervals.
Colored regions indicate identity-
specific time bins. (B) Pie chart
showing number of identity-specific
predictive neurons that prefer one
(white), two (gray), and three or
more individuals (red). (C) Histogram
showing AUC distribution of
identity-specific time bins with
colors indicating preferred individuals
in legend. Dotted lines indicate
the mean (black) and the control
(red). (D) Distribution of median firing
rates while the observer was looking
at the face for the identity-specific
predictive neurons compared with
the remaining neurons. (E) Histogram
showing AUC distribution of MvMM
time bins. Dashed lines indicate
the mean (black) and the control
(red). (F) Distribution of median firing
rates while the observer was looking
at the face for the MvMM predictive
neurons compared with the remaining
neurons. (G) ROC curves for the
detection of face or voice of individu-
als. Firing rates were considered
from MvMM time bins (green, AUC =
0.536) and identity-specific time bins
(black, AUC = 0.779) similarly aver-
aged over individuals. Thinner colored
lines indicate individuals as in (C).
(H) ROC curves for the detection of
match trials. Firing rates from MvMM
time bins (green, AUC = 0.782)
and from identity-specific time bins
(black, AUC = 0.516). (I) ROC curves
for the detection of both face and
voice of individuals from same
19 recording sessions as in (G) and
(H). Firing rates from MvMM time bins
(green, AUC = 0.615), identity-specific
time bins (black, AUC = 0.622), and
the INM (gray, AUC = 0.818) are similarly averaged over individuals. Results of the INM for individuals are shown by thin lines colored as in the legend of (C).
Red dotted line indicates random as in (G) and (H). (J) Bar plot showing true positive rates predicted by a winner-take-all model that considered predictions from the
INM specific to 12 individuals. Indicated is the mean of the shuffled labels (red) and 5× that value (black). Bar plots summarize the trials from the testing sets of
33 recording sessions (Ntrials = 454). (K) Bar plot showing mean AUC with identity neurons removed (light gray) versus the control randomly removing an equal number of
bins from the remaining cells (dark gray). Uncertainty indicates 95% confidence of the mean. No significant difference was observed across recording sessions for any of the
three qualifying subjects (Archie, P = 0.81, Nidentities = 14; Baloo, P = 0.58, Nidentities = 9; Hades, P = 0.50, Nidentities = 12). ***P < 0.001; n.s., not significant.

A

C D E

F G H

I J K

B

RESEARCH | RESEARCH ARTICLE

Tyree et al., Science 382, 417–423 (2023) 27 October 2023 4 of 7

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of A

rizona on N
ovem

ber 17, 2023



the other neurons when normalizing by the
background, which was averaged from t =
−0.8 s to t = −0.3 s (P < 0.001) (Fig. 3D). We
applied the same algorithm to test for pre-

dictive time bins that distinguished MvMM
trials and found a similar result (Fig. 3E), with
1455 neurons exhibiting MvMM predictive
time bins. Neurons with predictive time bins

for MvMM exhibited a significantly greater
median firing rate when subjects looked at the
face (P < 0.001) (fig. S6B), although signif-
icant suppression was observed relative to the

Fig. 4. Cross-modal representation of identity using rate and event codes.
(A) Two-dimensional manifold projection of our rate-coded representation
computed from firing rates of identity-specific time bins. One identity-match
trial was equivalent to one presentation of the stimulus as face and voice
matched. Each identity-match trial represented a different, randomly selected
face and/or voice stimulus. Firing rates were computed from each identity-
specific predictive time bins and then concatenated into a feature vector for
each identity-match trial. This feature vector was then projected onto the
manifold and plotted as one symbol per identity-match trial in one of the
scatter plots. Indicated is the mean (black). Colors in legend correspond to
individuals. UMAP, uniform manifold approximation and projection. (B) Schematic
illustrating the hindsight delay to a given neuron (left), used to generate histograms
of signed connection rates to three neurons (right). PDF, probability density function.
(C) Two-dimensional manifold projection of our event-coded representation of

identity computed as the manifold projection of signed connection rates of all
neurons in the same exemplar recording session. One symbol represents
one spike. Indicated is the mean (black). (D) Boxplots of MSR showing significantly
different values when subjects observed family of other subjects. Shown is Archie
observing family of Hades (top left, P < 0.001, Nidentities ≥ 23), Buck observing family
of Hades (top right, P = 0.003, Nidentities ≥ 26), Archie observing family of Baloo
(bottom left, P = 0.017, Nidentities ≥ 30), and Buck observing family of Baloo
(bottom right, P = 0.828, Nidentities ≥ 37). Significance was computed according to
Student’s t test. (E) Latent activity averaged over all recording sessions from
subjects Archie (left) and Buck (right). Colors indicate average over the family of
Baloo (blue) and Hades (orange) relative to all conspecifics (gray). Shaded regions
indicate 95% confidence of the mean estimated through bootstrap. (F) Graph of
connections bundled between individuals. Triangles in legend indicate family
members as in (A) and (C).
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other neurons when normalizing by the same
background (P < 0.001) (Fig. 3F). Instances
of face and eye viewing were highly variable
and not limited to the timing of predictive time
bins, which suggests that attentional effects
from visual behavior were not likely driving
neural activity during these periods (fig. S7).
We observed considerable overlap between
neurons with identity-specific and MvMM
predictive time bins because 82.2% (N = 1196;
fig. S8A) exhibited predictive time bins in both
analyses.

Identity network model

We developed a stable neural decoder by com-
bining the firing rates of predictive time bins
using an ensemble of gradient-boosted deci-
sions trees (21). When using identity-specific
time bins, we could reliably decode the iden-
tity of all marmosets when subjects observed
their face or voice (accuracy: 77.4%) (Fig. 3G).
The same approach could successfully decode
MvMM trials when using MvMM time bins
(accuracy: 75.7%) (Fig. 3H). The two kinds of
decoders used mostly different time points,
with only 24.6% ± 1.5% of identity-specific
time bins overlapping withMvMM time bins
within the same neurons (fig. S8B).
To test whether the same population could

represent multiple cross-modal identities, we
developed the identity network model (INM),
which integrates these twodecoding approaches.
The first approachwas identical to the identity-
specific decoder described above, which re-
sulted in accurate decoding for each individual’s
face or voice. The second approach classified
MvMM trials as either match or mismatch but
was anonymized to individual identity. Our INM
combined these two approaches to achieve cross-
modal decoding of individual identity (fig. S9).
This combination was critical because the
identity-specific predictive population was only
accurate for individual identity but performed
poorly for classifyingMvMM (Fig. 3G), whereas
the MvMM predictive population was the op-
posite (Fig. 3H). When combined across in-
dividuals, the INM successfully decoded the
cross-modal identity of all 12 individuals (ac-
curacy: 84.5%) (Fig. 3I). Decoding perform-
ance tested at least 5× above chance when
distinguishing all individuals (Fig. 3J and
fig. S10).
Because identity neurons were included in

decoding, we investigated whether their ex-
planatory contribution was disproportionate
to their sparse distribution. We compared
INM performance when these neurons were
removed from the analysis and separately
used only in the analysis versus an equal num-
ber of other neurons. We observed no signif-
icant effect on decoding performance despite
the consideration of only individuals preferred
by identity neurons (Fig. 3K and figs. S11 and
S12), which suggests that these highly selective

neurons are no more notable for decoding the
cross-modal identity of familiar individuals
in the hippocampus than other neurons in the
same population. Furthermore, no significant
effect of identity neurons on decoding was dem-
onstrated at a larger 5-SD response threshold.

Social category representations in hippocampus

An individual’s identity is also coupled to their
social relationships, such as their family. To
test whether hippocampus encodes categor-
ical attributes of social identity, we applied
nonlinear dimensionality reduction techniques
(22). Using mean firing rates consistent with
studies of face and voice processing in the
primate brain (23), we first verified that these
reduction techniques were capable of separat-
ing the stimulus categories at multiple probe
locations along the anterior-posterior axis (fig.
S13). We next replicated the findings of the
INM using the same identity-specific predic-
tive time bins for marmoset faces and voices
drawn from the entire hippocampal popula-
tion and showed that manifold projections
similarly separated individuals (Fig. 4A and
fig. S14), including for different subpopula-
tions of neurons (fig. S14G). This suggests that
cross-modal identity representations are evi-
dent in the population activity of marmoset
hippocampus.
To investigate whether representation of

identity can be described by the relative timing
of spikes, we computed manifold projections
of spike times recorded during identity-match
trials (Fig. 4B, left) using parameterless signed
connection rate features. The signed connec-
tion rate from one neuron to another describes
how they interact, which reveals statistical dis-
tributions specific to any given pair of neurons
(Fig. 4B, right)—a facet of neural activity dis-
tinct from the firing rate of any single neuron.
Each spike was concatenated into a feature
vector, which was then projected onto the
manifold as is shown by one symbol (Fig. 4C).
The feature vector was computed as the signed
connection rate to each neuron at each ob-
servation time. Each observation time was a
spike time of the neuron with the greatest
number of spikes. Results using this event-
coded measure revealed excellent separability
for identity-match trials (Fig. 4C), which there-
by replicated the effect observed with the INM
using a distinct facet of neural activity.
We next investigated whether social cate-

gories other than identity may likewise be
represented in event-coded hippocampal ac-
tivity. We tested whether representations of
other marmosets’ family members were dis-
tinct from nonfamily members for the two
marmosets whose families were not included
in the stimulus sets using two distinct quan-
tifications of manifold projections, although
the pattern was consistent for all subjects.
First, results revealed a significant difference

in the mean square range (MSR) of the mani-
fold projections along this category boundary
(Fig. 4D and fig. S15A), which suggests that a
larger event-coded state space was occupied
while observing family members (fig. S15B).
Although these projections were supervised,
the clustering that emerged on the basis of
respective social relatedness was unsuper-
vised. Second, we computed the unsupervised
latent firing rate as the manifold projection
of the absolute value of signed connection
rate. Although individual identities did not
separate (fig. S16A), we found trajectories that
appeared stable in time and comparable across
trials (fig. S16B). The motion of mean latent
firing rate significantly separated social cate-
gories at multiple time points for all subjects
(Fig. 4E and fig. S16, C and D). Together, these
results demonstrate that neural representa-
tions of social identity in primate hippocampus
are not only invariant to the sensory modality
and comparable over time (fig. S17) but that
low-dimensionalmanifolds (Fig. 4F) candescribe
relationships between different social catego-
ries (e.g., individual identity, family groups).

Conclusions

We showed that the cross-modal identity of
multiple conspecifics is represented in the pri-
mate hippocampus. Although we identified
putative concept cells similarly to human
studies (9, 12), we discovered that this popu-
lation of highly selective neurons is not the
only mechanism for representing concepts
of individuals. Rather, both single neurons
and the broader population in hippocampus
encode cross-modal identity of multiple con-
specifics, similar to what has been reported
for objects (24), which suggests that the sparse
representations of concept cells may not be
the only mechanism to represent semantic
memory in hippocampus. An important caveat
to these findings, however, is that our criteria
for determining the responsiveness of putative
concept cells differed somewhat fromprevious
studies in humans (9–11), as described above.
It is possible, therefore, that the concept cells
in marmoset and human hippocampus are not
strictly analogous. Ultimately, whether these
neurons are equivalent is not determined solely
by the physiological properties used to classify
them in analyses but their functional role in
memory. To directly address this issue, com-
parative experiments examining the com-
putational contributions of concept cells in
hippocampus across species during memory
are critical, as such data are currently lacking.
In addition to these findings at the single-
neuron level, a population-level code repre-
senting not only the cross-modal identity of
multiple familiar individuals but information
pertinent to social categories was likewise re-
ported in this study. Information from both
the putative concept cells and those neurons
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that encoded multiple identities were inte-
grated, which suggests that cross-modal iden-
tity in hippocampus is evident in the ensemble
activity of this keystone brain structure. Sim-
ilar to the role of hippocampus in other con-
texts (fig. S18) (25), the cross-modal identity
representations revealed in this experiment
may support a learned schema that here ap-
plies to social identity (26, 27). That these
experiments were performed in a highly con-
strained context limits our ability to deter-
mine whether such a schemawould indeed be
leveraged in more naturalistic contexts during
which social decisions on the basis of con-
specifics’ identity aremade continuously (6, 8).
The presence of unimodal representations of
identity in the primate frontal and temporal
cortex (2, 8, 28), amygdala (5, 29), and the
medial temporal lobe (30) and representations
of social dominance in the amygdala (31) may
reflect an integrative social recognition circuit
in which substrates in the broader network
play distinct but complementary roles that col-
lectively govern natural primate social brain
functions (32).
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Editor’s summary
There are numerous animal studies showing that single neurons encode the identity of conspecifics from social signals
in different sensory modalities such as olfaction, vision, or audition. However, there has been no demonstration in a
nonhuman animal that these unimodal signals are integrated into a cohesive cross-modal representation of individual
identity. Tyree et al. performed single-neuronal recordings in marmosets presented with pictures and sounds from
conspecifics (see the Perspective by Wirth). A subpopulation of neurons responded selectively to both the face and
voice of individual animals, much like concept neurons in the human medial temporal lobe. Furthermore, animal
identity could be successfully decoded from the neuronal population activity, along with aspects of social relationships
such as being a family member. —Peter Stern
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Materials and Methods 
Subjects 

Four adult marmosets (2 male, 2 female) served as subjects in these experiments. All animals are 
socially housed with 2-8 conspecifics in the Cortical Systems and Behavior Laboratory at the University of 
California San Diego (UCSD). All animals housed in a cage are family members, as each cage comprises 
a pair-bonded adult male and female and 1-3 generations of offspring. The UCSD marmoset colony in the 
Miller Lab houses ~70 animals in 15 family groups in a single room with visual and acoustic access between 
cages. All procedures were approved by the Institutional Animal Care and Use Committee at the University 
of California San Diego (S09147) and follow National Institutes of Health guidelines. A total of 47 
recording sessions were performed with these subjects over the course of the experiment and analyzed here. 

The total number of single units recorded from marmoset hippocampus totaled N=714 in Archie, 
N=822 in Baloo, N=212 in Buck, and N=610 in Hades (Figure S3B). All four subjects were considered 
equally in the identity neuron analysis and the MvMM neuron analysis (Figures 1, 2). All subjects were 
considered in the predictive time bin analysis (Figure 3) except for Buck due to his low count of single units 
across his 13 recording sessions. For the manifold projection analysis (Figure 4), all subjects were 
considered while they observed families that had at least two family members from amongst the cohort of 
individuals shown. All subjects were wild type common marmosets (Archie: male deceased at 3 years 6 
months, Baloo: female deceased at 3 years 2 months, Buck: male deceased at 6 years and 4 months, Hades: 
female deceased at 1 year and 10 months). 

Experiment Design 
Neurophysiological recordings were performed while subjects were head and body restrained in 

our standard marmoset chair (34) Visual stimuli were presented on an LED screen from a BenQ monitor 
1080 positioned 24 cm in front of the animal. Acoustic stimuli were presented at 70-80 dB SPL from a 
speaker positioned below the monitor (Figure S19). All behavior was collected in an anechoic chamber 
illuminated only by the screen, which had a dynamic range from 0.5 to 230 cd/m2, with luminance linearity 
verified by photometer. Stimulus presentation was controlled using custom software and eye position was 
monitored by infrared camera tracking of the pupil. For hardware, calibration, and validation see previous 
work in the lab (34). During the recording session, we were blind to the randomized presentation of four 
hundred stimuli per recording session, which was the maximum duration that was practical for a subject.   

Subjects initiated trials by holding fixation of gaze for 100ms at a center fixation dot on the screen, 
at which point stimulus presentation was initiated. The 150ms period immediately post-stimulus was 
discarded to account for the time for visual signals to propagate from the retina to the hippocampus. This 
latency has been measured to be in the range 100-200ms (35). This biophysical argument supports our 
estimate of the stimulus onset t=0 occurring 150ms after stimulus was presented. Unless otherwise 
specified, baseline firing rates were estimated from 500ms preceding t=0 excluding 300ms for anticipatory 
firing, as mentioned in the main text and later. Stimulus responses were initially measured by comparing 
the peristimulus baseline firing rate to firing rates averaged from the max of a 500ms sliding window from 
t=300ms to 3.5s, as mentioned in the main text and later. 

Stimuli were divided amongst unimodal– face-only and voice-only– and cross-modal– identity 
match and identity mismatch– on a trial-by-trial basis. Up to twelve conspecifics were represented per 
stimulus set (min 10, max 12). Face stimuli comprised multiple examples of each individual marmoset from 
different head orientation. 

All face and voice stimuli were pictures or audio recordings from animals housed in the same 
colony room as the subjects. Because the colony is housed in a single room in which all animals have visual 
and acoustic interactions with each other, we assumed that all animals have sufficient experience observing 
each other to be familiar with their respective individual identities. Each individual marmoset was 
represented in multiple distinct stimuli (Nstimuli=36.0±15.3) for each individual in each recording session 
across each of the three stimulus classes: face forward, face profile and vocalization. No single stimulus 



was presented to subjects more than two times in a single test session. Monkeys with fewer than 10 
presentations per individual in a recording session were not considered in any analysis. The stimulus 
duration of trials involving vocalizations (i.e. voice-only and cross-modal) necessarily varied because each 
“phee” call differed in duration (mean: 3.02±0.74s). The median face stimulus duration was 3.50 seconds 
(IQR: 2.78-3.51 seconds). The minimum face stimulus duration was 2.05 seconds and the maximum face 
stimulus duration was 4.46 seconds. Stimuli were presented in 10-trial blocks, with an inter-block active 
forage trial with juice reward to maintain attention. Each recording set was composed of 400 face and/or 
voice stimuli, split into 2 subsets. 

All stimuli were composed of faces and/or voices of conspecific monkeys in our colony familiar to 
each subject. A total of 16 individual monkeys were represented overall (9 male, 7 female). Test subjects 
were not included in their own stimulus sets. Because our goal was to test for representations of individual 
identity rather than cross-modal perceptual integration of face/voice biomechanical movements (i.e. 
McGurk Effect) we presented subjects with static face stimuli so as not to introduce confounds that may 
emerge due to temporal misalignments of the face and vocalizations during the identity mismatch trials.  

All face stimuli were photographs of monkeys from our colony taken while animals were in our 
standard marmoset chair with a light background behind them. The animals are trained to sit comfortably 
while a neck guard restricted their mobility. While seated, subjects could freely change head direction. 
Photographs of each subject were visually inspected and selected based on image quality and suitable 
representation of multiple head orientations (Figure 1A-C, S1). Photos used as stimuli were cropped to only 
show the neck guard and the face/head, so as to eliminate views of the rest of the body and chair.  

All voice stimuli were marmoset “phee” calls comprising two pulses, the species-typical long-
distance contact calls. Previous work has shown that marmosets are able to recognize the caller’s identity 
when hearing “phee” calls (36). Recordings were made at 44.1kHz sampling rate while a monkey engaged 
in natural vocal interactions with a visually occluded conspecific in a soundproof chamber and hand-
selected using custom code. Only examples with high SNR and minimal background noise were selected 
for stimuli.  

All analyses were performed in Python unless otherwise indicated.  
 
 
Surgical and neural recording details  

The surgical procedure employed here has been described previously (14). Briefly, we performed 
an initial surgery to affix a post to the skull on each animal to restrain subjects’ head during experiment 
preparation. Following recovery, a second procedure was performed to embed the drive housing and the 
electrode array for stable chronic electrophysiological recording. We implanted a 64-channel microwire 
brush array (MBA, Microprobes) either unilaterally or bilaterally into the hippocampus using preoperative 
MRI stereotaxic coordinates. Electrode locations were confirmed by postoperative MRI and histology. All 
surgeries were performed under sterile and anesthetized conditions. The implants were inserted 7-13 
degrees of angle off the vertical using the medial sulcus as reference before the operation has taken place. 
Neural recordings were performed with an Intan 512ch Recording Controller system via an RHD2164 64-
channel amplifier chip, sampled at 30kHz. Neurophysiology data was analyzed using Spyking Circus 
yielding across all recording sessions 2,358 isolated units, referred to as neurons in the main text and in the 
remainder of Methods and Materials. Standard procedures were employed to remove obvious recording 
errors, which resulted in less than 1% of trials being removed from the analysis a priori.   
Statistical tests comparing median firing rates were Wilcoxon-Mann-Whitney tests because they make no 
assumption that specifies the distributions of its arguments. 
 
Identifying Identity Neurons 

Hippocampal neurons were tested for an invariant response to individuals in the face-only and 
voice-only trials using an ROC analysis similar to that described in human hippocampus (9). For each 
isolated single neuron we performed the analysis for all identities where at least 4 unimodal stimuli (either 



face or voice but not both) were presented for each of the following three unimodal stimulus categories: 
face forward, face profile and voice.  

The response of a neuron to a trial was the taken to be the maximum spike count in a 500 
millisecond continuous sliding time window from t=0.3 seconds to t=3.5 seconds following stimulus onset 
at time t=0, as described above and in the main text. As in (9), the response of a neuron to a stimulus was 
the median response averaged over all presentations of the stimulus.  

A neuron was considered responsive to a stimulus if its response to the stimulus was above the 
responsiveness threshold, which was determined as the sum of the mean baseline plus two standard 
deviations (s.d.) of the baseline, where the baseline was the number of spikes averaged over the times t=-
0.8 seconds to t=-0.3 seconds, as described above and in the main text. This differs from the original study 
in humans (9), which used five s.d. instead of two, which was not practical in this study due to marmoset 
hippocampal neurons typically exhibiting larger baseline firing rates (Figure S2), for which five s.d. would 
have resulted in responsiveness thresholds that would only be evident in N=166 out of the 2,358 single 
units involved in this study (7.0%).  At a five s.d. response threshold, zero neurons were face and voice 
invariant (0%), four neurons were selective for faces (2.4%), and twenty-six neurons were selective for 
voices (15.7%). We decreased the significance threshold from five s.d. (mean threshold: 32.30 Hz) to two 
s.d. (mean threshold: 16.80 Hz) when identifying putative ‘concept cells’ to support the same significance 
level for selectivity (p<0.01).  For comparison with other studies, the mean stimulus response in marmosets 
was 11.98 Hz and the mean background firing rate was 6.47 Hz. 

A neuron was considered cross-modal invariant to an individual if it was responsive to all three 
unimodal stimulus categories for that individual. If a neuron instead responded only to the voice of an 
individual, then it was considered voice-invariant. If a neuron instead responded to an individual for both 
the front facing and profile facing stimulus categories, then it was considered face-invariant.  

As in (9), stimuli were considered in ROC selectivity analyses only if at least one neuron responded 
to it. Also as in (9), an above-threshold response to a stimulus of the preferred subject was considered a 
positive test. Significance of an ROC for a given subject was determined by comparison to 99 surrogate 
ROC curves, which resulted from randomly and independently shuffling the labels. An area under the curve 
(AUC) that surpassed that of all surrogates was considered significant (p<0.01). Neurons that met or 
exceeded these thresholds were necessary to determine selectivity for individual identity in marmosets.  

If a neuron was determined to be invariant to an individual within a given mode or modes, then 
selectivity was determined using the same mode or modes for that same individual. That is, cross-modal 
invariant neurons were tested for selectivity using all three unimodal stimulus categories, face-only 
invariant neurons were tested for selectivity using only front facing and profile facing unimodal stimuli, 
and voice-only invariant neurons were tested for selectivity using only the voice.  

Cross-modal invariant neurons that passed the ROC selectivity test of (9) were considered selective 
for the identity and were thus labeled as putative ‘concept cells’. Because all voice-only unimodal stimuli 
were combined into a single stimulus category, voice-invariance would imply voice-selectivity for one 
identity if not for an additional statistical test that compared the median trial response to the voice stimuli 
of the preferred individual to that of all other individuals according to a one-sided Wilcoxon-Mann-Whitney 
test (p<0.01) with an above-threshold response constituting a positive prediction of the preferred individual. 
The comparable test was used to determine selectivity for the face-invariant neurons. The invariant neurons 
demonstrating selectivity were considered identity neurons. 
 
 
Identifying MvMM Neurons  

Determination of MvMM neurons was achieved by comparing the median response of a neuron to 
identity match trials to the median response of that same neuron to identity mismatch trials. If a neuron was 
responsive to either match or mismatch trials, then a statistically significant difference computed according 
to a Wilcoxon-Mann-Whitney test qualified a neuron as a MvMM neuron (p<0.05). Preference of a MvMM 
neuron to match or mismatch trials was subsequently determined by a one-tailed Wilcoxon-Mann-Whitney 



test (p<0.05). Importantly, we did not preselect for neurons that were broadly stimulus driven, but focused 
analysis only during the median stimulus and compared activity between match and mismatch trials. This 
is reflected in the exemplar neurons selected for Figure 2. The match preferent neuron (Figure 2A) shows 
a difference in firing rate during presentation of the stimuli but is not broadly stimulus driven. By contrast, 
the mismatch preferent neuron (Figure 2B) exhibits stimulus driven activity as well as differential firing 
rate between the stimulus types.  
 To quantify the responsivity of MvMM neurons in a way specific to multimodal integration, we 
computed the multimodal index (Figure S3A).  The multimodal index is a measure of responsivity of a 
neuron to the combination of two modes relative to the greatest of either mode presented 
independently.  The multimodal index (MMI) is the quantity given by 
 

𝑀𝑀𝐼 =
𝑟!"!! −max)𝑟#$%& , 𝑟"'(%&+
𝑟!"!! +max	(𝑟#$%& , 𝑟"'(%&)

, 

 
where 𝑟)'*& is the mean response averaged over all trials of a neuron responding to a given mode. 
 
 
Identifying predictive time bins 

Hippocampal neurons were analyzed in terms of their firing rate response during time bins that we 
identified as candidate time bins. For each neuron, our procedure consisted of three stages. The first stage 
was to generate a large list of time bins of varying duration using an extension of a sliding window approach. 
The second stage identified a subset of time bins as having a general ability to distinguish trials. We required 
this subset to be mutually disjoint. Candidate time bins resulted from the third stage, which varied each 
time bin independently according to our refining procedure.  

The first stage extended the sliding window approach by using 200ms time bins evenly distributed 
between 0 and 3.6 sec, the maximum stimulus duration (Figure S4A). Time bins of duration greater than 
200ms were constructed by joining adjacent time bins, leading to a maximum allowed time bin duration of 
3.6 seconds. A general ability to weakly distinguish trials was determined by splitting the training trials 
according to three-fold stratified cross-validation and then computing the training AUC of each fold (Figure 
S4B). Training AUC was initially computed from the ROC curve that resulted from an above-threshold 
firing rate response determining a positive trial. Separately, training AUC was computed from a below-
threshold firing rate response as determining a positive trial. In either case, if the training AUC was greater 
than chance (AUC>0.5) for all three folds, then the time bin was retained for stage two. The same 
convention for above versus below firing rate response as determining a positive trial was used for stage 
two and for stage three. All population-level decoders were blind to this convention of sign. 

The second stage selected a disjoint set of candidate time bins, optimizing for their ability to distinguish 
trials by maximizing the mean AUC averaged over the same three folds. To achieve this, time bins were 
selected in decreasing order of their mean AUC and included only if doing so maintained the disjointness 
of time bins. 

To reduce the effect of discretizing the trial into time bins, the third stage refined the resulting disjoint 
set by considering a number of random perturbations of each remaining candidate time bin and keeping 
only the optimal perturbation. The random perturbations shifted the start times and the end times 
independently by a random amount identically sampled from the normal distribution with zero mean and 
standard deviation equal to the duration of the unperturbed time bin. We generated a sample of N=100 
perturbed time bins and removed those with a duration <10ms. Perturbations were additionally removed if 
they exhibited a start time before stimulus onset t=0 or if they exhibited an end time after t=3.6 seconds. A 
worsening AUC in any of the folds resulted in rejection of the given candidate time bin. 

If any of the resulting training AUC values were smaller than that of the unperturbed time bin, there 
that perturbation was removed from consideration. The overall training AUC was computed for each 
perturbation using all training trials together. The perturbed time bin with the largest overall training AUC 



was kept instead of the unperturbed time bin. Perturbed time bins were allowed to overlap with other 
remaining time bins, thereby relaxing the condition of disjointness for the sake of parallelizability, which 
is statistically valid because zero spike times in the training set appear in the testing set and the decoder 
makes no assumption of independence of features. A flowchart summarizes the time bin refinement 
procedure (Figure S4C).  

If no perturbations remained under consideration, then the unperturbed time bin was kept from stage 
two. Any remaining candidate time bins were considered predictive only if they presented a statistically 
significant difference in median firing rate for the true (e.g. identity match) training trials compared to the 
false (e.g. identity mismatch) training trials. Significance was determined according to p<0.05, where p was 
the statistic computed as the mean p-value resulting from a Wilcoxon–Mann–Whitney test conducted over 
the training trials averaged over five stratified cross-validation folds over training, which was a sufficient 
statistic in the sense that all time bins with p<0.05 also exhibited a statistically significant difference in 
median value at the same level of significance according to a Wilcoxon-Mann-Whitney test conducted over 
all MvMM trials. This procedure provided the features used in our population-level decoders. Data and 
code are made available to the reader (see Author Contributions). 

Training the population-level neural decoders 
Population-level decoders were trained on the training trials before computing predictions for the 

separate testing trials. Decoders were trained and tested on a Quadro RTX 5000 GPU typically in less than 
five seconds of runtime.  

The population-level decoders trained using firing rates directly as inputs. Neither translating nor 
scaling of the firing rates was performed, as the decoders were both location and scale invariant (21). The 
prediction was estimated by the weighted average of values returned by an ensemble of gradient-boosted 
decision trees relative to a default value of one half (controlled by base_score in Table S1). For each training 
epoch, at least 25 decision trees were trained (controlled by num_parallel_tree). While a unique solution 
exists for a given decision tree, a heuristic algorithm was used to approximate the unique solution using the 
quantile method of (37). 

Decision trees were trained to minimize the binary cross-entropy loss function (equivalently, to 
maximize likelihood) at the ensemble-level by considering only a fraction of the training trials (controlled 
by subsample). Decision node rules considered only a fraction of the input firing rates (controlled by 
colsample_bynode) to determine placement of its weight. The weight of a node was limited to a certain 
amount (controlled by max_delta_step). The complexity of the decision node rules was further limited using 
linear and quadratic regularization (controlled by reg_alpha and reg_lambda in Table S1, respectively). 

Each decision tree was gradient boosted in the sense that nodes were recursively added in 
accordance with an estimate of the gradient of a training loss computed at the ensemble-level. If inserting 
a decision node failed to improve the loss by a sufficiently large amount (controlled by gamma), then that 
decision node was removed from the tree. To further limit structural complexity, the maximum tree depth 
was set to no more than five decisions (controlled by max_depth). The weight for a new decision tree was 
scaled down by a factor (controlled by learning_rate). Training terminated for a given decision tree when 
the total weight for the next decision node was smaller than a certain amount (controlled by 
min_child_weight). After all decision trees terminated training, the training epoch was complete. After a 
fixed, predetermined number of training epochs, the ensemble terminated training. Then, predictions were 
computed for the testing trials (Figure S9A). Predictions were used to evaluate the predictive ability of a 
given set of one or more predictive time bins in terms of AUC. 

Determining hyperparameter settings for the population-level neural decoders 
The parameter settings for our population-level neural decoders resulted from a series of coarse 

grid searches each conducted over a wide range of settings for one pair of hyperparameters at a time. Each 
parameter setting considered five-fold stratified cross-validation involving the training trials only with the 



goal of maximizing mean testing AUC. Early stopping was used during this tuning procedure, which 
supported a minimum 60 training epochs for the match vs mismatch (MvMM) predictive population and a 
minimum 67 training epochs for the identity-specific predictive population as sufficient according to early 
stopping. By increasing the number of training epochs, stability of performance became immediately 
apparent for up to 500 epochs for both MvMM and identity-specific decoders. We made no use of early 
stopping anywhere else apart from the hyperparameter tuning procedure described here. 

This hyperparameter tuning procedure was conducted only on the training trials for Archie 
observing Waylon in one recording session from subject, Archie (session #8). Archie (male) and Waylon 
(female) were not family members– though they likely knew each other in the colony. These training trials 
(from session #8) were complementary to testing trials from no more than one of the multiple recording 
sessions summarized in Figure 3. The hyperparameter settings that resulted are reported in Table S1. 
 
 
Summarizing testing performance from multiple predictors 

Population-level decoders were trained as MvMM or identity-specific predictors for each 
individual identity in each recording session involved in Figure 3. To account for variations in prediction 
magnitude between decoders, predictions were scaled linearly to a maximum value of unity before 
combining ROC traces in the multiple recording sessions summarized in Figures 3G-I,K and S11-12. No 
such scaling was involved with the multiclass predictions reported in Figures 3J and S10. 
 
 
Sampling trials for multiple predictive populations from the same recording session 

For a given recording session, the following criteria were respected while partitioning testing trials 
from training trials involving the identity network model (INM) discussed in the main text. Testing trials 
for the INM were also testing trials for both the MvMM decoder and the identity-specific decoders. Because 
stimuli involving individuals were sampled uniformly, the frequency of a given individual could be small 
for a given recording session. To account for this, individuals were considered only if they exhibited at least 
forty appearances in a given recording session. 

Because of the uniform nature of our uniform random sampling of trials over the larger space of 
cross-modal stimuli, each recording session had relatively few trials involving both the face and the voice 
of a particular individual. This resulted in far more negative trials being presented to the observer relative 
to the number of true trials for the INM. This was also the case for both the MvMM decoders and the 
identity-specific decoders reported in Figures 3 and S10-12. All three binary classification tasks had 
balanced samples randomly selected, which were then randomly shuffled before 30% were randomly 
selected to be testing trials. The remaining 70% of trials were considered for training. Unbalanced sampling 
in the training set was accounted for by scaling the positive weights by a factor of 5 for the MvMM decoders 
and 100 for the identity-specific decoders. Decoders involved in Figure 3 used 200 training epochs, all of 
which were used in testing decoder performance except the first training epoch. The only exception was 
the identity-specific decoders involved in evaluating the INM for the winner-take-all model in Figures 3J 
and S10, which considered all 500 training epochs. 
 
 
Decoding multiple identities using a winner-take-all model 

We used the winner-take-all model to predict the identities of multiple individuals shown during 
identity match and face-only trials. The twelve individuals summarized (Figure 3J) have their detailed 
testing performance reported (Figure S10). The winner-take-all model predicted the correct identity with 
an overall testing accuracy of 91.0% (Ntrials=454). For a given recording session, the following procedure 
was performed to generate the predictions for the winner-take-all model. First, we identified all identities 
involved in a sufficient number of identity match trials (Ntrials≥12). All identity match trials involving the 
identities identified were shuffled and 30% were randomly selected as testing trials to be withheld from 
training with the remaining 70% of trials. 



We considered predictions of our INM to approximate a predicted probability that a given trial 
from the testing set involved the given identity. The presence of the individual was modeled using the 
decoder outputs in the winner-take-all model if the INM had the sufficient number of predictive time bins 
available. After repeating this procedure for all individuals in the recording session, the predicted identity 
of the winner-take-all model corresponded to that of the maximum predicted value (Figure S9B). 
 
 
Quantifying relative contribution of identity neurons in decoders of preferred identities 

To investigate the possibility of identity neurons exhibiting any clearly observable significance in 
the INM at the population-level, we removed all identity neurons from consideration and recomputed the 
testing predictions of Figure 3I for each individual that was statistically preferred by an identity neuron. 
After recording the testing AUC, we repeated a comparable procedure as a control that randomly removed 
an equivalent number of predictive time bins from any neuron that was not found to be an identity neuron. 
This control procedure was repeated many times (Nsamples=200) and then averaged to estimate the mean 
control testing AUC, which was not significantly different from a normal distribution according to 
D’Agostino-Pearson's omnibus test (p>0.05, Nsamples=200). The aforementioned control and test procedures 
were conducted using independent randomized samples.  

ROC curves were computed with above-threshold values indicating a positive trial for the three 
observers with at least two family members amongst the identities presented. The INM appeared successful 
despite the removal of identity neurons independently for multiple observers (Figure S12). Removing 
identity neurons from the INM for all recording sessions involving one observer resulted in a mean testing 
AUC that was not significantly smaller than that of the control according to a one-tailed paired student’s t-
test that supposed identity neurons contributed more to decoding than other neurons. We independently 
replicated this same statistical insignificance of identity neurons at the population-level for multiple 
observer subjects (p>0.05, Nobservers=3). This insignificance was consistent with a comparable analysis that 
made no assumption of normality, which suggested the median testing AUC was also not significantly 
smaller when all identity neurons were removed relative to the control (p>0.05, Nobservers=3). It is uncertain 
whether this insignificance can be attributed to these identity neurons being observed in nonhuman 
primates, as no comparable predictive time bin analysis has ever been performed in humans to the 
knowledge of the authors. 
 
 
Computing signed connection rate 

Our event-coded representation relied on our signed connection rate measure, which we computed 
using our two primitive event measures. The first we referred to as the hindsight delay, 𝜏+ > 0, which is 
the amount of time since a given neuron has spiked. The second we refer to as the foresight delay, 𝜏, > 0, 
which is the amount of time until a given neuron will spike. A schematic illustrating the computation of the 
hindsight delay is shown (Figure 4B, left). A similar computation is found for the foresight delay by time 
inversion. If the given neuron has not yet spiked, then we take the hindsight delay to approach infinity. 
Similarly, if the given neuron was not observed to spike again, then we take the foresight delay to approach 
infinity. Note that our primitive event measures do not evaluate to non-positive real numbers. 

The magnitude of our signed connection rate is the multiplicative inverse of the minimum of the 
hindsight delay and the foresight delay. Finally, we set the sign of our signed connection rate to be negative 
if the hindsight delay was used. Using the standard conventions of real analysis, our signed connection rate 
is now well-defined at all times for all neurons that exhibited at least two spikes. Equivalently, our signed 
connection rate was computed according to a real function of two variables 
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where 𝛩(x)=1 if x is nonnegative, otherwise, 𝛩(x)=0. We found a statistically significant correlation 
between the signed connection rate and firing rate during predictive time bins (p<0.001) according to 
Pearson's test for correlation (correlation: -0.223), Spearman's test for correlation (correlation: -0.639), and 
Kendall's test for correlation (correlation: -0.461).  This is explained by signed connection rate being 
normalized for spiking rate by design.  One can view the signed connection rate magnitude as a sample of 
one divided by the distribution of inter-spike intervals.  As firing rate is defined by a local average over the 
same distribution of inter-spike intervals, a statistical correlation must be apparent, as was observed. 

We evaluated our signed connection rate for every neuron at the spike times of the neuron that 
spikes the most over the recording session (i.e. the reference neuron). This was our attempt to measure how 
a single neuron “connects” with any other neuron. In doing this, we observed statistical distributions that 
appeared specific to a given neuron pair (Figure 4B, right), as discussed in the main text. We considered a 
given neuron to have an approximately symmetric signed connection rate if it exhibited no more than twice 
as many negative values as positive values in these statistical distributions. 
 
 
Estimating manifold projections 

We used uniform manifold approximation and projection (UMAP) to compute our manifold 
projections in Figure 4 of the main text, which presents descriptive manifold projections computed from 
predictive firing rate features and separately from our signed connection rate measure of spiking events. 
The same parameter settings on the same optimization algorithm was used for both rate and event-coded 
manifold projections. We used the identity-specific predictive time bins in the rate-coded representation. 
The rate-coded manifold projections considered neuron spikes from t=0 to 2 seconds after the stimulus 
onset. Similarly, the event-coded manifold projections considered neuron spikes from t=0 to 2 seconds after 
the stimulus onset. The average predictive time bin from the MvMM predictive population reported in 
Figure 2 was centered from t=0 to 2 seconds after the stimulus onset, with approximately half of predictive 
time bins ending earlier, which supports 2 seconds as a reasonable choice for the max time considered by 
the rate and event-coded manifold projections. 

The UMAP algorithm was composed of two steps that can fruitfully be described as graph 
construction and graph projection (38). The graph was constructed from a given set of comparable 
observations. The graph was projected to a low-dimensional space of real numbers. The output was 
embedded in two to three dimensions for visualizations and statistical analyses. In the optimization 
procedure, five negative samples were selected for each positive sample. The minimum distance between 
two observations was set to 0.1Hz. The number of nearest neighbors was initialized to 50 for rate-coded 
representations and 1000 for our event-coded representations. Repulsion strength was initialized to unity. 
Local connectivity was set to 1Hz in estimating probability distances. We trained for 200 epochs at a 
learning rate initialized to unity. The resulting function was equipped with a learned graph of the data, 
which projected to the manifolds visualized in Figures 4, S14, and S17-18. An example of connections from 
such a learned graph were visualized (Figure 4F).  

For our rate-coded manifold projections, the inclusion of predictive time bins (p<0.05) appeared 
sufficient for the separation of individuals (Figure S14A), which was supported by computing the minimum 
distance between the centroid of any individual and then comparing across multiple recording sessions. 
Minimum distances that were computed from predictive time bins exhibited a significantly smaller median 
value when compared to candidate time bins that were not predictive (p>0.85) according to a Wilcoxon-
Mann-Whitney test (p<0.001, Nsessions=29), suggesting predictive activity leads to better separation of 
individuals in comparable rate-coded representations (Figure S14B). Shown are examples of rate-coded 
manifold projections that used predictive firing rates as trial-by-trial observations. Event-coded manifold 
projections used signed connection rates as spike-by-spike observations for Hades (Figure S12C,D) and for 
Baloo (Figure S14E,F) in addition to Archie (Figure S17A-C) and Buck (Figure S17D-F). 

 
 
 



Estimating latent firing rate 
Our latent firing rate was computed using unsupervised nonlinear dimensionality reduction of the absolute 
value of the signed connection rate for all neurons that had no less than one third of its computed signed 
connection rate values as positive (i.e. approximately symmetric). In computing the latent firing rate, we 
used a method of nonlinear dimensionality reduction that made no assumption of uniformity, which was 
achieved by passing the keyword argument, densmap=True to the manifold projection constructor, 
umap.UMAP, in the Python programming language. The output metric and the input metric were both 
Euclidean (flat), which supports the output having the same units as the input. The output was embedded 
in six-dimensional real space and the first three dimensions are visualized in Figure S16A for an exemplar 
recording session. After this output was computed at the spike times of all neurons involved, it was analyzed 
as a time series by time ordering the data according to evaluation time. 
 By considering latent firing rates evaluated at the times t=0 to 4 seconds after a stimulus onset, we 
observed relatively stable trajectories for multiple recording sessions conducted over multiple observers. 
Shown are three exemplar identity match trials, where Baloo observed the face and voice of her mother, 
her father, and her sister as shown in Figure S16B. We performed a median filter with a sliding window of 
50 neuron spikes before plotting our estimates of the latent firing rates. 
 
Generating the hammer bundle plot 

The graph of connections bundled between individuals in Figure 4F represents the learned graph 
associated with an event-coded representation of identity analogous to Figure 4C. The procedure for 
generating the shape of Figure 4F was achieved using the Python function, umap.plot.connectivity with the 
keyword argument, edge_bundling=‘hammer’. Coloration was achieved to multiplying the resulting image 
with a color mask. The color mask resulted from passing the colored scatter plot of the event-coded 
representation through a Gaussian filter using the GNU Image Manipulation Program, which was also used 
for the image multiplication. 
 
 
Determining anatomical positions of implants 

All implants were followed by at least one postoperative MRI (Figure S20). The scans were aligned 
to anatomical features with RadiAnt Dicom viewer and the position along the anterior-posterior axis was 
determined by measurement from the center of the array to the ear canal. Because implants were 
stereotactically performed coronally, all recordings for a given array were assigned the same anterior-
posterior (AP) position. 

Because of the 1mm spread of the microwire brush arrays, it was difficult to precisely estimate the 
position of any given electrode, or indeed the entire bundle on a particular day. We used the position of the 
tip of the electrode from each MRI and extrapolated the trajectory by estimating position along the drive 
axis by cross-referencing with contemporaneous notes made of the date and distance of every movement 
of the drive. Based on a centroid at each estimated position, we chose particular sessions for we had the 
greatest confidence that the majority of the array was located predominantly in one or two hippocampal 
fields. Because the relative positioning of individual electrodes was not clearly observable, all reported 
analyses were developed to be agnostic to neuron location. 
 
 
Confirming implant location by MRI 

MRI was performed at the UCSD Center for Functional Magnetic Resonance Imaging in a 7.0T 
Bruker 20cm small animal imaging system using Advance II software. Preoperative images were analyzed 
in Osirix DICOM Viewer and stereotactic coordinates were established using a pair of saline-filled barrels 
affixed above the putative posterior end of temporal sulcus (marked on the skull during headcap surgery). 
Array positioning and tract trajectory was verified by post-operative MRI. Follow-up scans were performed 
occasionally to update array position. 



Determination of anatomical positioning was performed using RadiAnt DICOM Viewer 
(Medixant, n.d.). Stereotactic alignment was performed using a number of clearly defined and readily 
identifiable anatomical landmarks. 2D coronal slices were made vertical by rotating to align the medial 
longitudinal fissure with a vertical line. Yaw was corrected by re-slicing the coronal plane to align both 
interaural canals. Pitch correction was performed by re-slicing MRI so that the 4th ventricle was aligned 
vertically with the isthmus of the corpus callosum.  

Position on the anterior-posterior axis was calculated relative to the interaural canal. Measurement 
was taken from the coronal slice at which the array first entered the hippocampal complex (Figure 1D, 2E). 
Arrays were implanted with as little pitch as possible, so AP position variability is negligible along the 
electrode trajectory. 

Electrode positions are not precisely determinable with our brush arrays, as microwires are not 
visible at the resolution of the scans and individual tips are not individually distinguishable by any practical 
means available. Electrode splay of the 64-ch MBA in tissue was measured at approximately 1mm, so we 
approximated electrode position by use of a 1mm spherical voxel centered at the tip of the array. 

We used a Microdrive with a 500µm thread pitch that could reliably make controlled movements 
with a precision of 30-40µm. An array tip was identified for every MRI in each subject and position was 
extrapolated based on contemporaneous notes regarding electrode movement. Once putative array centroids 
have been hand-tagged they were assigned to one of the hippocampal subfields. Centroids were deemed to 
be in a hippocampal subfield if more than 70% of their volume fell within that area, as assessed by hand-
traced MRI. Recording sessions where the centroid fell significantly between two subregions were not 
counted in anatomical analyses. CA2 and CA3 were combined due to insufficient granularity in this 
methodology and resolution in our scans to effectively differentiate them. Figure S20 shows the estimated 
position of each electrode array in the hippocampus for all subjects.  
  



 

 
 
Fig. S1.  
Supplementary Exemplar Neurons. Shown are exemplar identity neurons that are (A) cross-modal 
invariant, (B) face-selective, and (C) voice-selective comparable to Figure 1A-C. (A-C) Top row: subset 
of stimuli shown above raster and peristimulus time histogram (PSTH). Bottom row: spike waveform; 
normalized PSTH to all stimuli (preferred: red, nonpreferred: black), indicated are time points that show 
significant difference (p<0.05); median number of spikes for unimodal stimuli (grey/black indicate non-
preferred individuals; ROC curve (shuffled controls shown in black). PSTH was normalized by the pre-
stimulus baseline, and shaded regions indicate 95% confidence intervals. Indicated are time points that 
show a statistically significant difference in mean (p<0.05). Horizontal dotted lines indicate mean 
background firing rate and responsiveness threshold. 



 
 

 
 
Fig. S2.  
Marmoset hippocampus neurons have high baseline firing rates. Shown is a histogram of the mean 
background spike counts computed for all neurons involved in this study. The dotted lines come from the 
mean baselines reported in the main figures from Quian Quiroga et al., Nature (2005), which summed over 
700ms instead of 500ms.  We confirm all recorded neurons are considered in this histogram. 
 
 
 
 
 
  



 
 
Fig. S3.  
Distribution of neuron categories. (A) Histogram showing the multimodal index of MvMM neurons 
(black) and all recorded neurons (gray). Neither the mean nor median multimodal index was significantly 
greater than zero for either population (p>0.05, N≥499). The multimodal index was not well defined for 
N=12 out of 511 MvMM neurons due to small response. Zero is indicated by the black dotted line. Bin 
width is 0.01. (B) Pie charts showing the abundance of MvMM neurons averaged over all recording sessions 
for each observer involved in this study. Shown is the number of MvMM neurons (black, top) amongst all 
other recorded neurons (white, top) and the number of identity-match preferring MvMM neurons (black, 
bottom) amongst the identity-mismatch preferring MvMM neurons (red, bottom). The CA1 region was only 
confirmed in Nsessions=4 out of 8 of the recording sessions from Hades. (C) Shown are (top) Venn diagrams 
and (bottom) pie charts that show the composition of populations investigated in the main text. (top) Venn 
diagram overlaps represent the abundance of (black) MvMM neurons in common with (red) identity-
selective neurons, which exhibited a relative abundance of putative ‘concept cells’ as represented by the 
orange color in (bottom) the pie charts.  Results are shown for each subject involved in this study. 
Furthermore, the number of MvMM neurons in common with MvMM predictive neurons was 359, while 
the number of MvMM neurons in common with the identity-specific predictive neurons was 388. 
 
 
 



 
 
Fig. S4.  
Identification of predictive time bins. (A) Schematic showing (gray) the spike times of an example neuron 
firing versus time after the stimulus onset at t=0. Indicated are (black) start and end times of time bins 
before the refinement procedure. (B) Flow chart showing training trials being split by stratified cross-
validation to result in multiple ROC traces. Each training fold resulted in an area under the ROC curve 
(AUC), which were then averaged to produce the mean training AUC as an estimator of the general ability 
of a time bin to distinguish true trials from false trials. Time bins satisfying a list of properties were 
considered as candidate time bins (described in Methods). (C) Flow chart showing the procedure that 
resulted in all predictive time bins (described in Methods). 
 
 



 
 
Fig. S5.  
Exemplar predictive neurons. Shown are (top) PSTH traces and (bottom) spike rasters for two predictive 
neurons that each prefer at least two individuals.  Shaded regions indicate predictive time bins, which 
exhibited a significantly different median firing rate for their preferred identity (p<0.05).  Colors correspond 
to legends. The number of trials shown for Overall is matched in the plot to the number of trials for the two 
selective individuals.  
  



 
 

 
 
Fig. S6.  
Predictive neurons driven by suppression of high background firing rate during face-viewing. (A-B) 
Boxplots showing median firing rate of (A) identity-specific and (B) MvMM predictive neurons versus the 
remaining neurons in terms of spikes per second (left) and z-score computed relative to baseline (right) 
averaged over times where the observer was looking at faces.  Three asterisks indicate a significant 
difference in median according to a two-tailed Wilcox-Mann-Whitney test (p<0.001).  The greater 
population was then confirmed by a one-tailed version of the test. We can infer that the predictive 
populations had relatively large baseline firing rates and that their mechanism may consist of the acquisition 
of inhibition or the release of inhibition.  This mechanism explains the median firing rate being less than 
the remaining neurons (suppression) in terms of z-score, while the median firing rate is simultaneously 
larger for the predictive neurons relative to the remaining neurons. 



 
 
Fig. S7.  
Variability of visual behavior relative to identity-specific predictive time bins. (A-F) Shown are visual 
behavior rasters (left) and spike rasters (right) for six predictive time bins. Blue shaded regions indicate the 
identity-specific predictive time bin. Gray indicates face gazing while black indicates eye gazing in the 
visual behavior rasters. Trials represent repeated presentations of the same front-facing unimodal stimulus. 
Unimodal stimuli were chosen to agree with the identity preference of the predictive time bin. (G-H) 
Histograms showing the relative abundance of random delays that increased the amount time in common 
between the time bin and time spent gazing at preferred faces (G, gray) and time spent gazing at preferred 
eyes (H, black). Bar height shows the percent of identity-specific predictive time bins, where each time bin 
had at least 10 presentations of at the same unimodal face-only stimulus where both eyes of the preferred 
individual were clearly visible (Nbins=218). More area in the right two bars indicates perturbing the time 
bins typically decreased overlap with visual behavior.  Thus, more area in the right two bars relative to the 
left two bars supports the visual behavior being unrelated to predictive time bin occurrence.  



 

 
 
Fig. S8.  
Overlap of predictive neuron populations. (A) Venn diagram showing the abundance of predictive 
neurons in common between the identity-specific predictive neurons (black) and the MvMM predictive 
neurons (green). (B) Histograms showing the probability density of the average percent overlap of the 
identity-specific predictive time bins with the MvMM predictive time bins from the same neurons (gray) 
and of an equal number of uniformly distributed pairs of random time bins as control (red). Indicated by 
the dashed lines is the total duration of overlap divided by the total duration of identity-specific predictive 
time bins, (612.3s/2493.7s)=24.6%±1.5% (black dashed line), which was significantly greater than control 
17.0%±0.5% (red dashed line) according to Student’s t-test (p<0.001, Nsamples=10,000). Control uniformly 
sampled pairs of time bins on the interval from t=0 to t=3.5 seconds following stimulus onset. The bin width 
is 0.25%. 
 



 
 
Fig. S9.  
Decoder Schematics. (A) Flow chart showing predictive time bins were combined with the training trials 
that were used to determine the same predictive time bins to train a decoder for classifying trials as either 
true or false. The decoder then produced remarkably strong predictions on novel trials. (B) Flow chart 
showing the winner-take-all model resulting from a MvMM decoder and one identity-specific decoder for 
each individual. Cross-modal trials were categorized as either match or mismatch trials. The identity of the 
match trial was then predicted as that of the decoder with the largest output via winner-take-all (WTA). 

 
 
 

 



 
 
Fig. S10.  
Multiple individuals classified by winner-take-all model. Confusion matrix reporting the winner-take-
all predictions of the INM on twelve individuals shown to three observers over 34 recording sessions 
(testing accuracy=0.91, sensitivity=0.91, specificity=0.91, precision=0.88, negative predictive value=0.93, 
Ntrials=454 match trials). The biological sex of the observed conspecifics is indicated by on the diagonal 
with blue indicating female and black indicating male. The following conspecifics were family members 
with a subject: Aladdin, Jasmine, Mowgli, Ares, Hermes. Percentages indicate true positive rates of the 
testing set of trials. All individuals decoded testing trials with a true positive rate at least 5X random chance, 
as is indicated by the black dashed line in Figure 3J of the main text. 

 
 
 
 
 
 
 
 



 
 
Fig. S11.  
Decoding performance with and without identity selective neurons averaged over preferred 
individuals. (A) Shown are the ROC traces of the INM with all identity neurons removed (gray; 
AUC=0.850) and an equal number of random neurons removed from the remaining predictive population 
(black; AUC=0.820). (B) Shown are the ROC traces of the INM with only identity neurons considered 
(gray; AUC=0.700) and an equal number of neurons randomly selected from the remaining predictive 
population as control (black; AUC=0.677). Indicated is random chance (red dotted; AUC=0.500). (C) 
Shown are the ROC traces of the INM with all putative ‘concept cells’ removed (gray; AUC=0.841) and 
an equal number of random neurons removed from the remaining predictive population (black; 
AUC=0.795). (D) Shown are the ROC traces of the INM with only putative ‘concept cells’ considered 
(gray; AUC=0.700) and an equal number of neurons randomly selected from the remaining predictive 
population as control (black; AUC=0.666). Indicated is random chance (red dotted; AUC=0.500). 

 
 

  



Fig. S12. 
Identity network model for individual subjects. ROC curves were computed by averaging over all 
recording sessions for each of three observers: Archie (left, Nsessions=14), Baloo (middle, Nsessions=12), and 
Hades (right, Nsessions=8). (A) ROC curves of our INM with only identity neurons (black) and an equal 
number of cells from the remaining predictive population (gray). Individual identities were averaged over 
if they were preferred by at least one identity neuron. (B) ROC curves demonstrating the predictive power 
of our INM with all ‘concept cells’ removed (black) and an equal number of cells removed from the 
remaining predictive population (gray). Individual identities were averaged over if they were preferred by 
at least one ‘concept cell’. We controlled for network size by using the same number of features for both 
ROC curves in each panel. We did this for both the MvMM predictive population and the identity-specific 
predictive population in evaluating the INM. 



 
 
Fig. S13.  
Separating stimulus categories at multiple probe locations. Shown are manifold projections from a 
single recording session conducted on (left) the most posterior and (middle) the most anterior probe location 
(anterior-posterior (AP) positions: -3.1mm, -0.9mm, respectively).  (right) Shows AP positions versus 
mean-squared range (MSR) from (black dot in left and in middle) the mean projected trial location.  MSR 
was scaled across recording sessions to have a mean value of unity, as is shown by the black dashed line in 
the scatter plot to the right.  One symbol represents one recording session in the scatter plot to the right.  
Indicated is the direction from posterior to anterior hippocampus. (A) Shown are stimulus categories of 
mode (dark blue) voice-only trials, (light blue) face-only trials, and (orange) identity-match trials.  (B) 
Shown are face-only trials categorized by orientation as either (light blue) front-facing or (orange) profile.  
(C) Shown are unimodal and identity match trials categorized by identity as is indicated by the legend.  
Large MSR values suggest excellent separation at the indicated probe location.  In the majority of recording 
sessions conducted on the most posterior electrode array (AP position: -3.1 mm), MSR was greater than the 
mean, suggesting excellent separability of identity in the most posterior probe location.  Input features were 
mean firing rates averaged over the stimulus from t=0 to 3.5 seconds for each recorded neuron.  The most 
posterior probe at -3.1 mm was implanted in Hades, who generated all recording sessions confirmed to be 
in CA1.  Recording sessions were omitted if their AP position was not confirmed to be the same within a 
95% confidence of no more than ±0.1 mm, which resulted in 28 recording sessions being considered. 
 



 
 
Fig. S14.  
Low-dimensional projections of our rate code and event code. (A) Scatter plot showing an exemplar 
recording session as two-dimensional rate-coded representations of individual identity, where the firing 
rates were computed from all candidate time bins exhibiting (left) p<0.05, (middle) p<1.00, and (right) 
p>0.85. (B) Box-and-whisker plots showing the minimum distance between any individual in our rate-
coded representation of individual identity. The median minimum distance of (left) p<0.05 was 
significantly smaller than the median minimum distance of (right) p>0.85 according to a Wilcoxon-Mann-
Whitney test (p<0.001, Nsessions=29). (C-F) Shown are the (top) first two axes and (bottom) first three axes 
of our representations of individual identity for two distinct observers: (C,D) Hades and (E,F)  Baloo. (C,E) 
Shown are manifold projections of our predictive time bins and (D,F) our signed connection rate. Colors 
indicate individuals, and triangles indicate family members. The signed connection rate was evaluated no 
more than two seconds after stimulus onset, which was evaluated whenever the neuron with the largest 
overall spike count fired. (G) Rate-coded manifold projections comparing the same recording session 
restricted to four subpopulations of identity-specific predictive neurons. Subpopulations are shown (from 
left to right): all identity-specific predictive neurons, all identity neurons, all cross-modal invariant ‘concept 
cells’, and all MvMM neurons. Colors indicate individual identities listed in legends.  The recording session 
shown was confirmed to be in the CA1 region.  

 
 



 

Fig. S15.  
Separability of social categories.  Some significantly different values when subjects were observing the 
family of (top) Hades and (bottom) Baloo. (A) Shown are boxplots of MSR of subjects observing families 
of other subjects. Significance was computed according to a one-sided Student’s t-test consistent with the 
other subjects viewing the same family, resulting in (top left, Nidentities≥20) p<0.001, (top right, Nidentities≥16) 
p<0.001, (bottom left, Nidentities≥14) p=0.102, and (bottom right, Nidentities≥26) p=0.055. Gray box indicates 
subjects were observing their own families. (B) Histograms showing the relative abundance of neurons with 
significantly larger variance of signed connection rate for the subject’s own family relative to other 
conspecifics according to Fligner-Killeen’s test (p<0.01). Variance of signed connection rate was computed 
from the reference neuron to each neuron. Control was a random shuffle of the labels for each neuron. 
Distributions were determined via bootstrap. Dotted lines indicate the mean values for Hades viewing her 
own family (left, 18±3% out of N=610) and Baloo viewing her own family (right, 10±2% out of N=822), 
which both exhibited significantly more significant neurons than control (left, 2.0±1.1% out of N=610; 
right, 5.2±1.5% out of N=822) according to Student’s t-test (p<0.001, Nbootstrap=10,000). Uncertainty 
indicates 95% confidence intervals of the mean. Gray box indicates subjects were observing their own 
families.  Bin width is 0.5%. 

 



 

Fig. S16.  
Quantification of latent activity. (A) Shown are the first three axes of the six-dimensional latent firing 
rate, which was an unsupervised manifold projection of the absolute value of the signed connection rate 
from the same neuron with the largest overall spike count (i.e. the reference neuron) to all neurons that 
appeared approximately symmetric (defined in Methods). (B) Shown are time traces of our latent firing rate 
for an exemplary trial from each of three family members of Baloo. Each color represents one dimension. 
The color of dimensions is consistent between panels. (C) Root mean squared (RMS) change in latent firing 
rate versus time averaged over all recording sessions from subjects (left) Baloo and (right) Hades. Traces 
average over identity match trials showing (blue) the family members of the subject and (gray) all 
conspecifics. (D) Latent activity versus time for (left) Baloo and (right) Hades. Latent activity traces were 
computed as the ratio of the RMS change in latent firing rate to control minus one. Control was RMS change 
in latent firing rate averaged over all identity match trials. (E) Latent activity versus time for (left) Baloo 
and (right) Hades viewing their own family. Control was as in (D). 

 



Fig. S17. 
Separability of individuals over long time scales. (A-F) Manifold projections comparing three different 
recording sessions conducted on different observers, Archie (A-C) and Buck (D-F). Shown are rate-coded 
projections (left), event-coded projections (middle), and MSR computed from the event-coded projections 
(right). Colors indicate individual identities listed in legends. Triangles indicate family members. 



 
 

 

 

Fig. S18.  
Separability of socially-agnostic categories. (A-B) Event-coded representations of inanimate objects from 
the laboratory setting. Separation of socially-agnostic categories are shown in marmoset hippocampus for 
two subjects, (A) Baloo and (B) Hades. Visual images from each of these object categories was presented 
to subjects using the same stimulus presentation protocol as for the unimodal stimuli while recording single 
neuron activity in marmoset hippocampus from two marmosets.  Likewise, we performed the same signed-
connection rate analysis and input those data into UMAP using the same data analysis pipeline as described 
for analyses presented in Figure 4.   

  



 

 
 
Fig. S19.  
Schematic drawing of experimental setup. In an anechoic chamber, marmoset subjects were seated, 
positioned 24 centimeters away from a monitor and a speaker. The speaker was located just below the 
monitor. 

  



 

 

 

 
 
Fig. S20.  
Anatomical locations of microwire bundles across animals. Arrows on MRI cross-sections indicate 
trajectory of each microwire brush array in marmoset hippocampus. Each color indicates a different 
animal’s array. Circles correspond to anterior-posterior position. 
  



Hyperparameter MvMM identity-specific 
base_score 0.5 0.5 
num_parallel_tree 25 50 
subsample 0.2 0.2 
colsample_bynode 0.1 0.1 
max_delta_step 0.5 1 
reg_alpha 0.4 0.3 
reg_lambda 0.4 0.3 
gamma 0.1 5 
max_depth 5 2 
learning_rate 0.9 0.6 
min_child_weight 0.5 1 

Table S1 Table of hyperparameters for our population-level neural decoders. Numerical values were 
passed as keyword arguments to the constructor of xgboost.XGBClassifier instances (21). Columns 
correspond to the two types of predictive populations reported in the main text. 
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