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SUMMARY

The retrosplenial cortex (RSC) is involved in a broad
range of cognitive functions, integrating rich sensory,
motor, and spatial signals from multiple brain areas,
including the hippocampal system. RSC neurons
show hippocampus-dependent activity reminiscent
of place cell sequences. Using cellular calcium imag-
ing in a virtual reality (VR)-based locomotion task, we
investigate how the integration of visual and locomo-
tor inputs may give rise to such activity in RSC. A
substantial population shows neural sequences
that track position in the VR environment. This activ-
ity is driven by the conjunction of visual stimuli se-
quences and active movement, which is suggestive
of path integration. The activity is anchored to a refer-
ence point and predominantly follows the VR upon
manipulations of optic flow against locomotion.
Thus, locomotion-gated optic flow, combined with
the presence of contextual cues at the start of each
trial, is sufficient to drive the sequential activity. A
subpopulation shows landmark-related visual re-
sponses that are modulated by animal’s position in
the VR. Thus, rather than fragmenting the spatial
representation into equivalent locomotion-based
ensemble versus optic-flow-based ensemble, in
RSC, optic flow appears to override locomotion sig-
nals coherently in the population, when the gain
between the two signals is altered.

INTRODUCTION

The retrosplenial cortex (RSC) integrates inputs from multiple

sensory and motor cortices, subcortical nuclei, and the hippo-

campal formation and is involved in various cognitive behaviors,
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including spatial navigation and multisensory integration [1–4].

Many studies have identified various spatially informative signals

in RSC, including head-direction-sensitive signals [5], spatially

localized firing [6, 7], and selective responses to cues that are

useful for navigation and the location of rewards [8–10]. During

free exploration, RSC neurons show periodic spatial activity pat-

terns [11, 12] that encode positions relative to important cues or

decision points. Thus, RSC neuronal activity may reflect integra-

tion of self-motion signals relative to a reference point. Indeed,

behavioral studies have demonstrated that animals with RSC

lesions show deficits in path integration in darkness [13, 14].

RSC also participates in visual processing via extensive con-

nections with multiple cortical visual areas, including direct pro-

jections from the primary visual cortex [15, 16]. RSC neurons

can respond to visual stimuli [17] and encode visual features

[18]. Moreover, RSC has been extensively studied as a part of

the head-direction system with some neurons exhibiting head-

direction tuning that may be referenced to visual landmarks

[5, 6, 19, 20]. Therefore, RSCmay be important for spatial naviga-

tion behaviors involving various visual cues.

Thus, the question arises as to how internal self-motion and

external visual inputs influence spatial activity in RSC. Previous

experiments with free-moving rodents face challenges in decou-

pling self-motion cues fromvisual inputs in a controllablemanner.

Recent experiments have begun to dissociate the relative contri-

butions of different factors to hippocampal spatial activity by

introducing conflict between self-motion and visual inputs [21].

Hippocampal place fields can sometimes rescale dramatically

when locomotion and vestibular self-motion cues are eliminated

[22]. Under head-restrained conditions, grid cells in the medial

entorhinal cortex (MEC) showasymmetric andnonlinear changes

when the gain between visual scene and locomotion is manipu-

lated [23], indicating that there is no single source dominating

grid cell firing, be it optic flow, locomotion, or visual landmarks.

We have recently shown neuronal activity sequences in

RSC that track position and/or task progression during

head-fixed treadmill running [7]. Resembling the activity of

hippocampal place cells [7], this activity requires intact
c.
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Figure 1. RSC Neural Sequences Encode Virtual Location during Locomotion in the VR Environment

(A) VR-treadmill belt assay with a treadmill apparatus and three displays facing the animal’s front, left, and right sides.Movement of the VR scenewas triggered by

treadmill belt movement. The VR scene was a virtual tunnel of fixed length with pseudo-random visual textures on the wall and floor providing locomotion-related

optic flow without strong positional cues.

(B) Left, diagram of a mouse brain with the imaging window above RSC. Sinuses are visible. Right, imaging was performed in transgenic Thy1-GCaMP6s mice

targeting superficial agranular RSC. An example histology image (coronal section, at the dashed line in left) is shown.

(C) Example active neurons (left) and corresponding calcium time courses (right, fluorescence signals as a function of time). Speed trace is shown at the bottom.

(D) Top, color-coded calcium time courses for 230 simultaneously imaged neurons ordered by their preferred position in the VR environment—i.e., the position of

peak average response. All neurons in the recording were included. Traces below show position in the VR environment, measured (black) and estimated with

Bayesian decoding (red). Blue drops indicate time points of reward delivery. Bottom, same calcium time courses ordered by each neuron’s preferred position on

the treadmill belt. Movement speed is shown at the bottom. The VR track was 90 cm in length and the treadmill track was 150 cm in length. The VR displays were

briefly turned to black at the end of each trial (gray bars, 0.5 s).

(E) Decoding errors, absolute value of the difference betweenmeasured and estimated position, computed for VR (top) and belt (bottom) position. Data from four

animals and three sessions per animal. Horizontal thick red bars indicatemean decoding errors obtained frommeasured data. Thin gray traces show distributions

of decoding errors obtained from shuffled data (1,000 times). Gray arrow indicates the example session shown in (D). Blue arrows indicate the subset of sessions

in which belt position decoding errors did not differ significantly from shuffle analysis (p < 0.05).

See also Figure S1 and Table S1.
hippocampi and develops with repeated exposure to the

same environment [24].

Here, we used cellular functional imaging of RSC neurons and

a virtual reality (VR) assay in head-fixed mice. We assessed neu-

ral correlates of path integration based on optic flow, locomo-

tion, and contextual cues. We found that locomotion-gated optic

flow plays an important role in driving spatial activity sequences

that are anchored to contextual cues.

RESULTS

RSC Neural Sequences Track Progress in a Virtual
Reality Environment
To study how vision and locomotion drive neuronal activity in

RSC, we used a VR-based head-fixed locomotion task
(Figure 1A). Transgenic mice (Thy1-GCaMP6s GP4.3, n = 4)

[25] were head fixed on a custom VR apparatus and trained to

move a 150 cm fabric treadmill for a sucrose water reward while

receiving panoramic visual motion stimuli. The mice initiated a

trial by moving the treadmill. This triggered display of a VR scene

that was updated based on treadmill movement. The visual VR

scene was a linear tunnel made of pseudorandom visual tex-

tures, which, like the treadmill belt, provided self-motion cues

(optic flow) but not salient positional cues. Each trial ended

when animals reached the virtual tunnel’s end, which corre-

sponded to a fixed travel distance on the treadmill (but not a fixed

belt position). The end of the tunnel was signaled by turning the

visual display to black and delivering the sucrose water reward

followed by a 0.5 s timeout separating the next trial. The distance

on the treadmill to traverse the tunnel was set at 90 cm, different
Current Biology 30, 1680–1688, May 4, 2020 1681



from the length of the treadmill belt. The combination of treadmill

locomotion and reward yielded tens of trials in which animals tra-

versed the same VR environment. It also allowed disambiguation

of activity linked to reference frames defined by the visual VR and

the treadmill belt.

To measure RSC neuronal activity, we used 2-photon calcium

imaging through a chronically implanted glass window (Figures

1B, 1C, and S1). Cortical pyramidal neurons in superficial agra-

nular RSC were imaged. We obtained calcium activity time

courses of 2,935 neurons (n = 12 sessions, 4 animals) (Table

S1). We plotted the calcium time series ordered by locations

that elicited their maximal activity (Figure 1D). To identify these

locations, we deconvolved calcium time series [26] and calcu-

lated the average activity as a function of position in the VR envi-

ronment or on the treadmill belt. Ordering data by preferred VR

location revealed pronounced neural sequences that tracked

progress within the VR environment (Figure 1D, top). In contrast,

ordering the data by preferred location on the treadmill belt did

not show such coordinated activity (Figure 1D, bottom).

To assess encoding of location by RSC neurons, we used

Bayesian decoding [24, 27, 28]. From RSC population activity

(using all recorded neurons), we calculated estimates of the an-

imal’s position in either the VR environment or on the treadmill

belt, and compared the accuracy of estimates obtained from

measured and randomly shuffled data (2-fold cross validation;

STAR Methods). To measure decoding accuracy, we computed

decoding errors defined as the mean absolute difference be-

tween estimated and observed positions. Decoding of VR posi-

tion yielded small decoding errors (error = 6.78 ± 1.56 cm;

mean ± SD across animals), which differedmarkedly from shuffle

control (p < 0.001) (Figure 1E, top; thick red bars versus thin gray

traces). In comparison, decoding of belt position yielded large

decoding errors (error = 45.58 ± 2.39 cm; mean ± SD across an-

imals), which did not differ significantly from shuffle control (p >

0.40 for 8 sessions, p < 0.10 for 4 sessions) (Figure 1E, bottom;

thick red bars versus thin gray traces). In a subset of the data

(three individual sessions from different animals), RSC activity

also encoded significant information about belt position (p <

0.05) (Figure 1E, blue arrows).

To examine the functional diversity, we identified neurons with

selectivity to position in the VR or on the treadmill belt (STAR

Methods). Overall, 27% of neurons (801/2,935) showed activity

linked to position in the VR environment, 4% of neurons (117/

2,935) showed activity correlated with position on the belt, and

3% of neurons (80/2,935) showed activity correlated with both

reference frames. The latter group of neurons may have contrib-

uted to the good decoding performance in both reference frames

for these three sessions (Figure 1E, blue arrows).

To summarize, the above results suggest that during VR-

based locomotion, RSC population activity encodes primarily

location in the VR reference frame.

Decoupling Visual Inputs and Locomotion Disrupts RSC
Neural Sequences
Do RSC neural sequences reflect responses to the visual VR

scene or does the activity require conjunction of vision and loco-

motion? To address this question, we recorded RSC activity in

response to synthetic VR trajectories presented independently

of the animal’s locomotion. This open-loop visual stimulation
1682 Current Biology 30, 1680–1688, May 4, 2020
failed to induce the pronounced sequential activity that was

observed during active VR travel (Figures 2A and 2B). It also

yielded large decoding errors (error = 16.50 ± 2.43 cm; mean ±

SDacross animals) (Figure 2D) that did not differ from shuffle con-

trol (p > 0.15) (Figure 2D; thick red bars versus thin gray traces).

This lack of position encoding by RSC population was in striking

contrast with the results obtained during closed-loop VR stimula-

tion in matching neuronal populations, which can reliably predict

VR position (error = 6.4 ± 0.97 cm, p < 0.001; mean ± SD across

animals) (Figure 2C, same data as in Figure 1E; one session from

each animal). These results show that RSC neural sequences do

not reflect mere sensory responses to the VR scene but rather

require conjunction of visual and locomotion inputs.

RSCNeural Sequences Reflect Integration of Optic Flow
Do neural sequences observed during VR navigation reflect inte-

gration of optic flow from the VR scene, or do they instead reflect

distance traveled on the treadmill belt? To distinguish between

these possibilities, we studied how RSC population representa-

tions of the VR environment are affected by changes in VR gain,

which rendered the distance traveled in VR different from dis-

tance on the treadmill belt (Figure 3A).

We recorded the activity of the same RSC neuronal popula-

tions in consecutive blocks of trials with distinct VR gains

(1x, 2x, 0.5x, and 1x) (Table S1), which corresponded to distinct

travel distances on the belt (90 cm, 45 cm, 180 cm, and 90 cm).

We focused on neurons that encoded information about VR po-

sition in the first block (1x) (31%, 570/1,821 neurons; n = 8 ses-

sions, 4 animals) (Table S1) and compared population activity

across VR gain conditions. If neuronal activity is driven by optic

flow from the VR scene, then the position tuning curves in the VR

reference framewould be largely invariant to changes in VR gain.

Consistent with this hypothesis, VR position tuning curves were

invariant to changes in VR gain (Figure 3A). To quantify potential

changes in representations, we computed the Pearson correla-

tion of the population tuning curves as function of VR position

across gain conditions. The resulting correlation matrices

showed a single, highly significant band along the main diagonal

(Figures 3B and 3C; Table S1), confirming invariance of repre-

sentations across VR gains. The correlation appeared to be

higher for the high-gain condition (1x versus 2x) than the low-

gain condition (1x versus 0.5x) (Figure 3C; Table S1).

The above results indicate that RSC neural sequences track

progress in a VR scene by integrating visual inputs such as optic

flow or local features from the textures. To assess whether optic

flow alone is sufficient to drive RSC sequential activity, we did

additional experiments in which elements of the wall textures

of the VR scene were randomly blinked at 10 Hz so that only

10%of texture elements were shown and a unique visual pattern

was shown at any given time (Figure 4A). As seen during locomo-

tion in VR scenes with fixed textures, we observed robust

sequential activity that could reliably predict the animal’s loca-

tion in the VR environment during travel through this randomly

changing environment (Figure 4B). Furthermore, correlation

analysis of the measured position tuning curves of the same

neuronal population showed strong correlation bands along

the main diagonal between different VR gain conditions (Fig-

ure 4C). The high-gain condition showed more concentrated

bands along the diagonal than the low-gain condition (Figure 4C;
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Figure 2. Decoupling Visual Inputs and Locomotion Disrupts RSC Neural Sequences
(A) Top: color-coded, raw calcium time courses for 243 simultaneously imaged neurons during closed-loop VR locomotion; movement in the VR environment was

updated based on the animal’s locomotion. Calcium time courses were ordered by locations in the VR environment eliciting the largest responses. Locomotion

and VR speeds are shown below. Bottom: actual (black) and decoded (red) position traces. Blue drops indicate reward delivery.

(B) The responses of the same neurons as (A) during open-loop VR stimulation (sorted by itself). Open-loop VR scene depicts movement at constant speed

through VR environment, regardless of animal’s locomotion.

(C) Decoding errors frommeasured and shuffled data in closed-loop runs (same data as shown Figure 1E). Horizontal thick red bars indicate the decoding errors

of the actual data. Thinner gray traces indicate the corresponding distributions of decoding errors for shuffled data (1,000 times). All p values were smaller than

0.001 (actual decoding error relative to the distribution of decoding errors obtainied from shuffled data). n = 4 sessions, 4 animals.

(D) The same as (C) but for the open-loop experiments. Individual p values are indicated.

See also Table S1.
Table S1). Bayesian decoding of VR position from population ac-

tivity yielded similar accuracy across gains (p = 0.55, 0.49, and

0.72 for decoding window size of 0.3 s, 0.5 s, and 0.7 s, respec-

tively; one-way ANOVA) (Figures 4D and S2).

This confirms that RSC neural sequences are driven by the

integration of locomotion-gated optic flow rather than local fea-

tures, which is suggestive of path integration.

Positional Modulation of Landmark-Related Visual
Responses in RSC
To examine how visual landmark encoding is reflected in the ac-

tivity of RSC neurons, new recordings weremade in a distinct VR

scene with four identical visual landmarks. The landmarks were
presented at four locations (9 cm, 31.5 cm, 54.0 cm, and

76.5 cm) in the VR environment (Figure 5A). Consistent with ex-

periments without landmarks, about 30%of neurons (388/1,312)

showed sparse sequential activity involving neurons with signif-

icant activation at single VR positions (n = 7 sessions, 3 animals).

Some other neurons, rather than the sparse activation, showed

repeated activation in lockstep with the visual landmarks (Fig-

ures 5B and 5C). Overall, 12% of neurons (152/1,312) showed

multiple significant activation points at fixed intervals relative to

the visual landmarks (STAR Methods). The neuronal population

exhibited repeated sequences activated by the visual land-

marks, as shown by the parallel stripes in the correlation matrix

(Figure 5D). Within this subpopulation, many neurons (64%,
Current Biology 30, 1680–1688, May 4, 2020 1683
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Figure 3. RSC Neural Sequences Track the VR

Environment Upon Gain Manipulations

(A) Experiments with different VR gains were performed in

consecutive blocks: 1x, 2x, 0.5x, and 1x again. Colormap,

sorted neuronal activity of 92 cells (sorted by block 1x) as

a function of VR position for an example session. Mean

speed traces are shown below.

(B) Mean population vector correlation matrices (across

animals, n = 4) between different VR gain conditions.

(C) Mean population vector correlations as a function of VR

position ratio. Shaded area, SEM across animals (n = 8

sessions, 4 animals for 1x versus 2x; n = 5 sessions, 4

animals for 1x versus 0.5x and 1x versus 1x0). Solid and

dashed blue lines indicate mean and 95% confidence in-

tervals, respectively, of the population vector correlations

for shuffled data (1,000 times). Note peak correlations near

VR position ratio of 1 (i.e., encoding the same VR position).

See also Table S1.
97/152) showed different levels of activation at distinct VR posi-

tions, suggesting the modulation of landmark responses by ani-

mal’s position in VR (Figure 5C; STAR Methods).

Thus, RSC neurons show pronounced, repeatable responses

to visual landmarks, which are influenced by animal’s position in

the VR environment, suggesting an integrated code of internal

representation and external stimuli in RSC.

RSC Neural Sequences Are Anchored to Contextual
Cues
Finally, we examined howRSC neural sequences are affected by

spatial context. We recorded RSC neuronal activity during navi-

gation in a virtual triangle environment made of three connected

tunnels that differed only by the visual scene visible at the

vertices only after the animals exited the tunnels (Figure 6A;

STAR Methods). Randomly blinking dots were presented on

the tunnel wall (Figure 6A, bottom), providing optic flow coupled

to locomotion. The three vertices were associated with a virtual

turn of 120�, reward delivery, and a scene of a classroom envi-

ronment, which provided a contextual cue indicating the end of

the past tunnel and the start of the next tunnel. Some RSC
1684 Current Biology 30, 1680–1688, May 4, 2020
neurons showed multiple activation points at

fixed intervals from vertex positions (Figure 6B).

About 35%of neurons (342/975) showed signif-

icant positional selectivity (STAR Methods) (n =

4 sessions, 2 animals) (Figure 6C). Consistent

with a role of path integration, the neuronal

populations exhibited repeated activity se-

quences referenced to the vertex positions

(Figures 6C and 6D). A small fraction of these

neurons (9.6%, 33/342) showed significantly

different firing rates over the three tunnels.

The mere presentation of the visual contextual

cue and virtual rotation with reward omission

was sufficient to reset the neural sequences

(Figure S3). Different from the above results,

these spatial activity sequences did not reflect

responses to the visual landmarks that were

not visible from within the tunnels. Instead,

the neural sequences may arise from integra-
tion of self-motion that was anchored to the reference points at

the vertices.

These results indicate that RSC neural sequences can be

reset by environmental contextual cues but may be modu-

lated somewhat by the most recent context, even if no longer

visible.

DISCUSSION

Our results indicate that vision and locomotion jointly contribute to

the generation of spatial activity sequences in RSC. Optic flow

plays an important role and, in conjunction with locmotion, is suf-

ficient to drive robust activity sequences. As seen in the hippo-

campus [21], movement through the environment is necessary.

Breaking the coupling between vision and locomotion impairs

the spatial activity. Thepositionencoding in thecurrent study likely

reflects path integration from a reference point. Similar to what is

observed in the primary visual cortex [29], RSC neurons show re-

sponses to visual landmarks, and these responses aremodulated

by animal’s spatial position. These responses likely reflect low-

level sensory responses, which appear to be gated by internal
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Figure 4. RSC Neural Sequences Integrate Locomotion-Gated Optic Flow

(A) A blinking VR scene with 10% randomly selected squares shown at any given time. The visual scene was unique at any given moment (10 Hz refreshing rate).

Experiments with different distinct VR gains were tested in consecutive blocks of trials.

(B) Sorted raw calcium time courses of 96 neurons under different VR gain conditions for an example session. Neurons were sorted by block 1x. Speed and

position (actual and decoded) traces are shown below.

(C) Top: population vector correlation matrices between different VR gain conditions. Bottom: mean population vector correlations as a function of VR position

ratio. Shaded area, SEM across animals (n = 7 sessions, 4 animals). Solid and dashed blue lines indicate mean and 95% confidence intervals, respectively, of the

population vector correlations for shuffled data (1,000 times).

(D) Decoding errors under different VR gain conditions for three different decoding window sizes. Error bars, SEM across animals; n = 4.

See also Figure S2 and Table S1.
path integration signals.Contextual cuescan resetRSCneural se-

quences, with reward being a salient cue. In thisway, not onlywas

the entire track coded, but also the segmentsbetweenany behav-

iorally significant cues (e.g., left or right turn) [11], or decision

points, were encoded in the activity of RSC neurons. Integration

of various internal and external cues may generate the periodic

activation patterns of RSC neurons that may encode progression

between path locations [11, 12]. This is consistent with a broader

viewof the roleofpath integration, that it can trackmultiple vectors

based on self-motion information. We speculate that one of the

functions of path integration in the current task is tomap task pro-

gression between salient events.

External sensory cues and internal movement-related infor-

mation jointly contribute to the spatial code in the hippocampal
formation [21–23, 30]. Visual inputs provide information about

absolute position from visual landmarks as well as motion sig-

nals from optic flow. RSC sits between the visual cortex and

the hippocampal formation. The direct influences of visual inputs

on spatial coding and path integration may gradually decrease

along the RSC-MEC-hippocampus circuit [23]. The hippocam-

pus may globally mediate the generation of neural sequences

throughout the cortex [24, 31, 32], which may involve a gain fac-

tor determined by internal self-motion information (e.g., locomo-

tion) and externally driven motion cues (e.g., optic flow).

The integrated VR and treadmill assay in head-fixed prepa-

rations is a useful tool to dissect the relative contributions of

visual and locomotor inputs on the activity in RSC. Other

external cues (e.g., tactile, acoustic cues) could also be added
Current Biology 30, 1680–1688, May 4, 2020 1685
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Figure 5. Landmark-Related Visual Responses in RSC Are Modulated by Position
(A) Visual scene with periodic visual landmarks (dome shape, mosaic pattern).

(B) Calcium time courses (raw and deconvolved) for three example neurons showing multiple activation points within a single trial.

(C) Polar plots of the position-mapped responses for five example landmark-responsive neurons. Red color numbers and black arrows indicate landmark po-

sitions. Black numbers indicate peak response magnitude (deconvolved DF/F). Shaded gray area indicates SEM over trials. Solid and dashed red lines indicate

mean and 95% confidence interval, respectively, for the shuffled distributions.

(D) Left: sorted, color-coded neuronal activity for neurons that showed significant landmark-related responses (n = 7 sessions, 3 animals). Right: population

vector correlation matrix between even and odd trials for the positional activity map shown on the left. Note relatively high correlation stripes paralleling the main

diagonal because of the recurring sequences.

See also Table S1.
to test the influences of other sensory modalities. Head-fixed

animals lack acceleration or velocity signals from the vestibular

system but not self-motion from limb movement and optic

flow. It is possible that the simplified experimental paradigm

used here may have masked more complex influences of

vision on RSC neuronal responses in a free-movement

context. In a free-behavior context, vestibular inputs—

including translational and rotational signals and their

interactions with vision—may exert strong impacts on the

path integration process. The present paradigm may have re-

strictions similar to those used in human studies using func-

tional magnetic resonance imaging, which investigate the role

of optic flow on navigational behavior in a VR setup [33–35].

Previous human studies have shown that the hippocampus

and RSC work in concert for successful path integration [34,

36]. The path integration sequences from visual inputs and

locomotion in RSC likely result from interactions among multi-

ple regions [37].

Our findings are consistent with the postulated role of

RSC in transforming between egocentric and allocentric repre-

sentations [38], possibly via interactions with the posterior

parietal cortex (PPC) [39, 40]. Bottom-up (external) signals

from sensory cortices carry environmental information (e.g.,
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derived from optic flow fields) in RSC and PPC, whereas inter-

nal, global self-motion representations from the hippocampal

formation provide a spatiotemporal substrate to integrate

velocity over time to give rise to positional information. As we

have shown previously [24], hippocampal outflow is essential

for the development of spatial coding in this region of cortex.

Information flow is bidirectional, in that RSC back-projects to

sensory and motor cortices and forward-projects to the medial

temporal lobe (MTL). Within the MTL-RSC-primary cortices

framework, sensory/motor cortices could organize behavior

based on allocentric information. In addition, MTL could

encode or index momentary behavior-relevant (egocentric)

sensory experiences [41, 42]. Further work will need to dissect

precisely how the top-down and bottom-up signals are inte-

grated in RSC.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY
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Figure 6. RSC Neural Sequences Are Reset by Contextual Cues

(A) Diagram of the virtual triangle environment. The maze was placed in a big classroom environment. The three vertices were connected by tunnels. Mice ran in

the tunnels without seeing the end of the tunnel or the outside environment. Upon exit mice saw the scene of the classroom. A snapshot of the scene is shown.

Mice were rewarded and virtually turned by 120� at each vertex. The bottom diagram shows the diagram of the scene within the tunnel. The tunnel wall was

decorated with random dots and the floor with pebble patterns.

(B) Polar plots of the position-mapped responses for four example neurons showing multiple activation points. Black arrows indicate vertex positions. Black

numbers indicate peak response magnitude (deconvolvedDF/F). Shaded gray area indicates SEM over trials. Solid and dashed red lines indicate mean and 95%

confidence interval of the shuffled distributions.

(C) Sorted, color-coded neuronal activity for neurons that showed significant positional selectivity (n = 4 sessions, 2 animals). Note recurring neural sequences

upon vertex positions.

(D) Population vector correlation matrix between even and odd trials for the positional activity map shown in (C). Note relatively high correlation stripes paralleling

the main diagonal because of the recurring sequences.

See also Figure S3 and Table S1.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data and Code

Preprocessed data and code https://gin.g-node.org/dunmao/RSC_OpticFlow N/A

Chemicals, Peptides, and Recombinant Proteins

C & B Metabond Parkell Cat# S380

Vetbond 3M Cat# 1469SB

Optical glue Norland Cat# NOA71

Experimental Models: Organisms/Strains

Mouse: C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J The Jackson Laboratory RRID: IMSR_JAX:024275

Software and Algorithms

Blender 2.79 Blender Foundation RRID: SCR_008606

MATLAB (R2017a) MathWorks RRID: SCR_001622

Suite 2P [43] N/A

Deconvolution algorithm [26] N/A

Other

Tablets Samsung SM-T230N

Microcontroller Adruino Mega 2560

Treadmill Custom built N/A

Treadmill belt Country Brook L-BLA-2

Data acquisition Axon Instruments Digidata 1322A

2-photon microscope Thorlabs Bergamo II

Head plate Custom made N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests should be directed to and will be fulfilled by the Lead Contact, Dun Mao (zjumao@gmail.com). This

study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
All animal procedures were performed in compliance with the protocols approved by the ethical research committee of the University

of Lethbridge. Four Thy1-GCaMP6s GP4.3 [25] (RRID: IMSR_JAX:024275) male mice (20-25 g, 2-4 months old at the time of surgery)

were used in this study. This transgenicmouse linewas selected for its strong and stable expression of GCaMP6s in a large fraction of

cortical excitatory neurons. Mice were group-housed before surgeries and individually housed afterward. After head-plate implan-

tation, mice were habituated to head fixation over a few days and trained to move on a treadmill. Mice were maintained under 12-h

light/dark cycle throughout, kept on water restriction and their body weights were maintained around 85% of their baseline weights.

After all experiments, mice were perfused to allow for brain histology.

METHOD DETAILS

Surgical procedures
Mice were implanted with a head-plate and a removable cranial window [44]. Briefly, mice were injected with dexamethasone

(0.2 mg/kg, intramuscular) 2 h before surgery, and anesthetized with isoflurane (1%–1.5%, O2: 0.5-1 L/min) with body temperature

maintained at 37�C. A custom-made head-plate was attached to the skull using adhesive cement (C&B-metabond, Parkell) and

acrylic material (TAB 2000, Kerr). Two rubber rings were attached to the head-plate using superglue. Then mice were allowed to

recover for one week and behavior training started. After 2-3 weeks of training, a 2nd phase surgery was performed. Mice were pre-

pared in the sameway as during the 1st phase surgery. A 3mmdiameter craniotomywasmadewith a dental drill (600 mm tip) over the
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retrosplenial cortex across the midline, centered at �2 mm from lambda [45]. The craniotomy was rinsed and covered with artificial

cerebrospinal fluid (ACSF). A cranial window made of 3 circular (one 5 mm, two 3 mm) coverslips (affixed with optical adhesive

NOA71, Norland) was implanted and attached to the skull using Vetbond tissue adhesive (3M) and acrylic material [44].

Behavioral training
After recovery from the 1st phase surgery, mice were trained to be head-fixed and to move on a training treadmill. The treadmill belt

length was 120 cm. The belt was made from Velcro material and free of texture patches on its surface. The movement of the belt was

guided by 2 3-D printed wheels. A rotation encoder was used to monitor belt movement. A pinch valve was used for reward delivery

through amicrocontroller (ArduinoMega 2560). Mechanical parts were obtained from Thorlabs. Mice were under water restriction for

the course of the training and imaging experiments. Mice were trained to actively move the treadmill belt to obtain a drop of sucrose

water reward at the end of each trial. Their body weights were monitored and maintained at around 85% of normal weights. After

2-3 weeks of training, the 2nd phase surgery was performed and mice were allowed to recover for another week. Then mice were

re-habituated to the training treadmill for 1 week and imaging experiments started on a separate experiment treadmill integrated

with a VR setup, which was at a distinct location in the room. The experiment treadmill and VR was placed under the 2-photon

microscope. The treadmill belt length was 150 cm. Therefore, the experiment treadmill and VR setup were novel to the mice on

the first day imaging data were collected.

Integrated VR and treadmill belt assay
Three Android-based (Android 4.2) tablets (Samsung SM-T230N) (one in the front, one on the left and the third on the right, covering a

total of �240� visual field) displaying visual scene synchronized to treadmill motion were used to construct the VR. The VR environ-

ment was created using Blender 2.79 (Blender Foundation). The rendering program was developed and compiled using Unity (Unity

Technologies). All behavioral data were recorded in a data acquisition system (Axon Digidata 1322A), which was also used to trigger

and synchronize with imaging data. The distance to run for each trial in the VR was always 90 cm. At the end of each trial, VR was

instantaneously turned off for 0.5 s and reward was delivered and next trial started. In the random square experiment (Figures 1–3),

the visual scene was composed of white squares randomized on the wall and pebbles on the floor. The same scene was played

across trials. Under normal condition (1x), VR was calibrated such that the distance run in the VR matched to the distance run on

the belt (i.e., locomotion distance). In the blinking square experiment, at any given time, only 10% randomly selected white squares

were shown (Figure 4). The visual scene was refreshed every 0.1 s. In the visual landmark experiment, the random square visual

pattern on the wall was replaced by half-dome white mosaic, which was presented at 4 equidistant positions along the VR track:

9, 31.5, 54.0, and 76.5 cm (Figure 5). Each mosaic pattern covered about 10 cm VR distance. Each mosaic pattern moved from cen-

tral to lateral 120� visual field as the mice moved through the track. The same pebble scene was used on the floor. Thus, both optic

flow and landmarks were available.

In the virtual triangle maze experiment, the maze was placed in a classroom environment. The maze was consisted of three

tunnels that were connected at the three vertices. Mice ran within the tunnels by moving on the treadmill belt. The tunnels had

random dots on the wall and pebble patterns on the floor. Mice did not see the external environment or the end while running

in the tunnels. Upon exit, mice saw the classroom environment, were virtually rotated by 120� (by turning the classroom environ-

ment in VR), and a drop of sucrose water was delivered. Then mice entered the next tunnel. Mice traversed the three tunnels that

were interleaved by different contextual cues unidirectionally. In the reward omission experiment, the reward at the north vertex

(vertex b) was omitted.

VR gain manipulation experiments
Under 1x VR gain condition, VR moved at the same speed as locomotion speed. Under 2x VR gain condition, VR moved at twice the

speed of the locomotion speed. Under 0.5x VR gain condition, VRmoved at half the speed of the locomotion speed. Across different

VR gain conditions, the distance for each trial in the VR was always 90 cm. The corresponding distance for each trial on the treadmill

belt was 90 cm, 45 cm, and 180 cm, for 1x, 2x, and 0.5x VR gain, respectively. Experiments with different VR gains were ran in blocks,

i.e., 1x, 2x, 0.5x, and 1x again, with each block lasting 5-10 min. In the open-loop experiments, the visual scene was decoupled from

animal’s locomotion and played at constant speed 18 cm/s. Mice were rewarded with a drop of sucrose water at the end of each trial

and next trial started.

Two-photon imaging
Population of RSC neurons at 100-200 mm from dorsal surface (for superficial agranular RSC) were imaged using a Bergamo II multi-

photon microscope (Thorlabs). A Ti:Sapphire excitation laser (Coherent) was operated at 920 nm (�20-120 mW laser power at the

sample) through a 16x lens (NA = 0.8, Nikon). Green fluorescence fromGCaMP6s was collected and measured with a GaAsP photo-

multiplier tubes (PMTs). Blackout fabric was used to prevent stray light from entering the objective and PMTs. Images were collected

at �20 frames per second. Imaging window was centered at around 2.5 mm from the traverse sinus and 0.5 mm from the midline

sinus. The field of view was 835 3 835 mm in size.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Image pre-processing and quantification of calcium activity
Data analysis was performed using MATLAB (R2017a, The Mathworks). Somatic calcium activity time courses were extracted using

Sutie2P [43]. Images were registered to correct for translational XY motion. Regions of interest (ROIs) over neuronal cell bodies were

identified by using local pixel correlation analysis. All ROIs were then visually inspected and putative non-somatic ROIs were manu-

ally excluded. The baseline-subtractedDF/F0 was calculated for each ROI using the summed value of all pixels corresponding to that

ROI [46] by subtracting the summed value of a single layer of pixels that surrounded the cell body [47]. The raw time-courses were

deconvolved for further analysis using constrained nonnegative matrix factorization [26].

Statistics
Exact p values were reported except for p values smaller than 0.001 which were reported as p < 0.001. Unless stated otherwise,

statistical significance for all data analyses was assessed by comparing the results from original data to the results obtained from

1000 random permutations obtained by randomly and circularly shifting calcium activity time courses relative to the recorded

behavioral data. If the actual data were beyond the 95% confidence interval of the resampled distribution, it was considered

as significant. Data were written in mean ± SEM over animals (otherwise indicated). Detailed quantifications for each figure

were listed in Table S1.

Detection of neurons with spatial activity
Data shown in Figures 1 and 2 were based on all imaged, active neurons. Data shown in Figures 3–6 were based on neurons

showing significant spatial activity. We used two methods to select neurons that showed spatial activity. Deconvolved data

were used. In the first method, the entire linear track was divided into 100 position bins and occupancy-normalized activity

was smoothed using a Gaussian window (SD = 3 position bins) for each neuron. Trial-averaged activity as well as the standard

error across trials as a function of position was obtained. We then circularly shifted the neuronal activity trace in time for a random

time between 20 and session duration less 20 s, and obtained the trial-averaged, occupancy-normalized activity as a function of

position. We repeated this process for 1000 times and obtained the mean and 95% confidence interval of the shuffled distribution.

If the lower bound of the actual activity (mean-SEM) in any position bin across trials was greater than the 97.5 percentile of the

shuffled distribution, then the neuron was considered to carry significant spatial activity. In the landmark experiment (Figure 5), if

the neuron had more than one local maxima that was significantly greater than the shuffled distribution (i.e., lower bound larger

than 97.5 percentile), and the local maxima was at fixed position from its preceding landmarks (difference < 5 cm, for at least 2

landmarks), it was considered as encoding position from landmarks, i.e., landmark vector cells. Within the landmark vector cells,

we compared the activity as a function of position across trials and identified neurons that showed significantly different responses

to the 4 landmarks using one-way ANOVA.

In the second method, neurons with place cell characteristics were identified based on spatial information content. Original spatial

information was calculated using the following formula [48]:

SI =
XN
i= 1

pi

fi
f
log2

fi
f

where pi is the occupancy probability (the fraction of time spent) in the i-th position bin; fi is the occupancy-normalized activity

(summed activity divided by the total time spent) in the i-th position bin; f is the overall activity (summed fi over all bins); and N

is the number of position bins (N = 100). Resampled spatial information distribution was obtained by circularly shifting the

neuronal activity relative to the position trace by a random time between 20 and session duration less 20 s for 1000 times. If the orig-

inal spatial information is greater than 97.5 percentile of the shuffled distribution, it was considered as carrying significant spatial

information.

These two methods in selecting spatially responsive cells yielded qualitatively similar results. Results shown in the paper were

based on the first method.

The position that elicited the largest response in the trial-averaged, occupancy-normalized position tuning curves was used to sort

neurons across all figures.

Bayesian decoding of position from calcium activity time courses
All neurons imaged in a single session were used for position decoding. We adapted a Bayesian approach to build a probability dis-

tribution of position given the population activity (i.e., population vector) at each time bin (non-overlapping 0.5 s window) [24, 27]. The

size of the time window was selected to minimize the decoding error [24]. Position decoding was performed for period where the

movement speed was above 1 cm/s. Training and testing trials were separated (odd trials for training and even trials for testing). De-

coding error was defined as the median error of the entire session. Resampled decoding error distributions were obtained by circu-

larly shifting the time courses of all neurons relative to the position trace by a random time between 20 and session duration less 20 s

for 1000 times. The population activity was considered to significantly code position if the actual decoding error is lower than
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5 percentile of the shuffled distribution. The detailed decoding algorithm is described below, we aimed to estimate the probability of

animal’s position given all neurons’ activity in a short time window:

P

�
posj

�
dF

F

�
all

�
=
P
�ðdF=FÞall��pos�3PðposÞ

P
�ðdF=FÞall�

where pos denotes position; ðdF=FÞall is the activity of all imaged neurons (population vector); P stands for probability. PðposÞ is the
fraction of time the animal spent in each position bin. Given the assumption of independent firing and Poisson distribution of firing

rates, we have:
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where t is the size of the time bin (0.5 s); fiðposÞ is the position tuning curve (trial-averaged and occupancy-normalized) for the i-th

neurons (using only odd trials);N is the total number of neurons; ni is the mean activity of the i-th neuron within that time bin. Thus, we

have,
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where C is a normalization factor such that PðposjðdF=FÞallÞ sums to 1. PðposjðdF=FÞallÞ is the probability distribution of position for

the current time bin. Position with the maximum probability was considered as the decoded position for the current time bin.

Population vector correlation analysis
Trial-averaged, occupancy-normalized position activity for all identified spatially responsive cells (population vector) at each position

bin (100 bins) under one condition (e.g., 1x VR gain) was correlated (Pearson linear correlation) with that under another condition (e.g.,

2x VR gain) to obtain the population vector correlation matrix. Themean population vector correlation as a function of position ratio in

the VR or belt reference frame was obtained by the projection of the correlation matrix along paths radiating from the origin. Corre-

lation along the path was averaged. The tangent of the angle of corresponding path corresponded to the VR position ratio between

conditions. There was one-to-one correspondence between VR position and belt distance ratios. A significant maxima in the result-

ing correlation curve at the VR position ratio of 1 indicated that the population tracks position in the VR. A significant maxima at the

belt distance ratio of 1 indicated the population activity reflect locomotion-based path integration. The 95%confidence interval of the

resampled correlation distribution was obtained by circularly shifting the neuronal time courses relative to the position trace by a

random time between 20 and session duration less 20 s for 1000 times. For each shuffling, the resulting average population vector

was then correlated with that of the block it was compared to. The 95% CI of the correlation at each position/distance ratio was the

2.5 and 97.5 percentiles of the resampled correlation distribution.

DATA AND CODE AVAILABILITY

The preprocessed data and essential code are deposited at (https://gin.g-node.org/dunmao/RSC_OpticFlow). Further requests

should be directed to any of the corresponding authors.
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