Unit 7

Midterm next week. Take Home (at least in part).

- What is the 'neural code'?

- Two 'competing' theories: Rate Vs. Temporal code

- Why would one need precise spike timing ?... Elicit a spike

Presynaptic strength is small.

• Paired recordings: 1 EPSP ~1-3 mv \rightarrow need 3-5 *almost simultaneous* presynaptic synaptic releases to trigger a spike in a postsynaptic cell (cortex).

- Synapses fail ~3 out of 4 times \rightarrow need 12 to 20 *almost simultaneous* neurons to trigger a postsynaptic cell (hippocampus).
- In *vivo*, synchrony occurs with \sim 3-20 ms jitter \rightarrow realistically need \sim 50-100 *synchronous* presynaptic neurons to trigger a postsynaptic cell.

• Not accounting for synaptic dynamics (depression, facilitation) or dendritic synaptic location.

Dendritic attenuation

(Williams and Stuart 2002)

Facilitation and depression

(Furhman et. al. 2004)

- Why would one need spike timing: ... Synaptic plasticity Spike-Timing-Dependent-Plasticity (STDP)

- What is the experimental evidence that spike timing may carry information: Reliable spiking *in vitro*

⁽Mainen & Sejnowski, 1995)

Determinism: Same stimulus \rightarrow Same spike times

(Ariav et al. 2003)

- What is the experimental evidence for spike timing: Reliable spiking in vivo

⁽Reinagel & Reid 2002)

- What is the experimental evidence for spike timing: Reliable spiking in vivo

- Analyzing spike timing: Reliability ('repeatability') and precision ('tightness')

- Step 1: histogram

- Analyzing spike timing: Reliability and Precision
 - Step 2: smoothing the histogram

Rule of thumb...Smoothing window= $\sim 1x/2x$ bin size Also see *smooth()* in Matlab for a simple 'moving average' smoothing method

- Analyzing spike timing: Reliability and Precision
- Step 3: Finding 'events'

- Step 4: Computing (average) Reliability and Precision

Spike timing: Reliability and Precision

- Analyzing spike timing: Reliability and Precision

• Reliability

$$R = \frac{\sum_{e} N_{e}}{N}$$

With N_e = number of spikes within event e N= total number of spikes

• Average event-reliability

$$r = \frac{1}{e} \sum_{e} \frac{N_e}{N_t}$$

With N_t = number of trials/units

- Computing Reliability and Precision in vivo

- Analyzing spike timing: Spike train distances

What is D? (metric)

Side bar: Distance Vs Metric

- Distances: Vectorial approach
 - Binning

• Use Euclidian Distance in N-Dimensional space (a.k.a L2 norm)

2 spike trains v and w:
$$D(v, w) = \sqrt{\sum_{i=1}^{N} (v_i - w_i)^2}$$

Problem: High dimensional space (computationally expensive) small spike jitter → discrete shifts in new dimensions

(Kruskal et al, 2007; Lyttle and Fellous, 2011)

Spike patterns

How is information represented in the brain?

- Spike Count
- Firing Rate
- Spike Timing

Reliability In Vivo: Cat LGN

- Stimulus-dependent sensory information (e.g. Vision) is represented by precise and reliable firing events. Recall:

Reliability in Vitro

- Same in vitro (i.e. no synaptic activity)

Reliability in the Face of Unreliability

- Neurons receives thousands of background (noise) synaptic inputs.
- Synaptic transmission is unreliable (p \sim = 0.2-0.3).
- Network configurations are different from animal to animal.

How can a neuron *in vivo*, several synapses away from a stimulus, fire reliably with millisecond precision?

What are some of the characteristics of *in vivo* reliable and precise firing?

In Vitro: Reliabilities

- Response to a stimulus is non-stationary and (in at least some cases) non deterministic

In Vitro: Reliabilities

- Limited non-determinism: Cycle skipping

(Fellous et al, 2004)

In Vitro: Reliabilities

Surrogate dataset

- Can one hide/find different spike patterns?
- Surrogate set: Jitter, Noisy-spikes, missing spikes

Clustering

Find cluster centers, and cluster radii to maximize correct classification

Spike patterns

- Real Data: No knowledge of the cluster structure 'unsupervised learning'
- Find cluster centers, and cluster radii to *minimize* the number of outliers

- Find cluster centers $\{C\}$, and radii $\{R\}$ to *maximize* an 'objective function'

$$O(C, R) = \frac{D_{between_clusters}}{D_{within_clusters}}$$

Spike patterns - Clustering

- K-means clustering
 - 1: Start with random guess: K cluster centers.
 - 2: Assign each data point to the nearest cluster (also called 'Centroidal Voronoi tesselation'). If no new assignments: STOP
 - 3: Move each cluster center to the mean of the data assigned to it.

- 4: Go to 2.

- Other algorithms: Mixture of Gaussian (EM-algorithm), Fuzzy K-Means ...

Recoding: 'Everything is Relative'

- Problem: Space of spike trains is large and infinite.

Spike train j

Dot product i.j

Time (ms)

- \rightarrow Recode in a smaller, finite space.

Similarity Matrix

Clustering Method: Clustering

- Maximize Spike train space occupancy

Spike Patterns In Vitro

- \rightarrow Surrogate sets: As expected...
- In vitro data: As expected ...

Complex Inputs

- Complex inputs in vitro (prefrontal cortex, rat)

Complex Inputs

Complex inputs in vitro (prefrontal cortex, rat)
Discrete clusters in response to the same stimuli

Spike Patterns in Vivo

Spike Patterns in Vivo

- Is there more to 'global alignments'?

In Vivo: Behaving Monkey, MT

Spike Patterns in Vivo

- Is there more to 'global alignments'?

In Vivo: Anesthetized Cat, LGN

Multi-unit spike patterns

From Multiple Trials to Multiple Neurons

- Population dynamics in vitro: Are there spatio-temporal patterns of spiking?

Mice visual cortical slices, Fura2-AM, 2-photon imaging:

Spike Patterns in vitro/ in vivo?

- Record spontaneous post-synaptic events
 - \rightarrow Single cell receives repeating patterns of (near identical) synaptic inputs

Repeating pattern of synaptic inputs

Repeating pattern of (presynaptic) firing

Problem: Need to record from neurons!

Recording from >800 neurons simultaneously.

- Repeated Motifs across cell populations

Significance and Surrogate Datasets

- Motifs by chance?

Surrogate datasets for controls

A: Destroys temporal correlations within cells (e.g. oscillations) – Preserves firing rate.

B: Destroys motif cell composition - Preserves partial synchronization.

C: Destroys spike orders within motif - Preserves number of spikes per cell, and population firing modulations.

For more on the debate: \rightarrow (Mokeichev et al, 2007) \rightarrow (Ikegaya et al 2008)

- Is there topographic (spatial) organization for each Motif?
- \rightarrow classification problem (no theory... yet)

- Motifs of Motifs....Cortical songs

 \rightarrow 2 major issues: detecting songs, and assessing their (statistical) significance

- Is there temporal compression?

