
Unit 7

Midterm next week. Take Home (at least in part).



Spike timing

- What is the ‘neural code’ ?
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Spike timing

time

- Two ‘competing’ theories: Rate Vs. Temporal code
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(Kumar et al, 2010; Ainsworth et al, 2012)



Spike timing

- Why would one need precise spike timing ?... Elicit a spike

Presynaptic strength is small. 

● Paired recordings: 1 EPSP ~1-3 mv → need 3-5 almost simultaneous

presynaptic synaptic releases to trigger a spike in a postsynaptic cell (cortex). 

● Synapses fail ~3 out of 4 times → need 12 to 20 almost simultaneous neurons 

to trigger a postsynaptic cell (hippocampus).

● In vivo, synchrony occurs with ~3-20 ms jitter → realistically need ~50-100 

synchronous presynaptic neurons to trigger a postsynaptic cell.

● Not accounting for synaptic dynamics (depression, facilitation) or dendritic 

synaptic location.

(Furhman et. al. 2004)

(Williams and Stuart 2002)Dendritic attenuation
Facilitation and depression



Spike timing

- Why would one need spike timing: … Synaptic plasticity

Spike-Timing-Dependent-Plasticity (STDP)

Pre → PostPost → Pre

Pre Post
epsp

spike

Dt=Postspike-Preepsp
(Bi & Poo, 2001)

Long Term Depression

(LTD)

Long Term Potentiation

(LTP)

Repeated pairings: spike/epsp



Spike timing

- What is the experimental evidence that spike timing may carry 

information: Reliable spiking in vitro

(Ariav et al. 2003)

20 mV

400 pA500 ms

(Mainen & Sejnowski, 1995)

Determinism: Same stimulus → Same spike times



Spike timing

- What is the experimental evidence for spike timing: Reliable spiking in vivo

(Reinagel & Reid 2002)

Different 

animals!

Visual 

Stimulation

(grey levels)

LGN
Full field flicker



Spike timing

(Buracas, Zador, DeWeese, Albright, 1998)

Visual 

Stimulation

MT

Moving Gabor

>12 synapses from the stimulus !

Stimulus → Eye →LGN →V1 →V2 → V4 →MT

- What is the experimental evidence for spike timing: Reliable spiking in vivo



Spike timing

- Analyzing spike timing: Reliability (‘repeatability’) and precision (‘tightness’)
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- Step 1: histogram

bin size ?

Time (s)



Spike timing
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- Step 2: smoothing the histogram

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

- Analyzing spike timing: Reliability and Precision

Rule of thumb…Smoothing window= ~1x/2x bin size

Also see smooth() in Matlab for a simple ‘moving average’ smoothing method

Gaussian Smoothing/Convolution



Spike timing
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4 events, Reliability: 0.56, Precision: 13.12 (ms), Event-rel: 0.81

- Step 3: Finding ‘events’

- Analyzing spike timing: Reliability and Precision

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

4 peaks found

Threshold ?

- Step 4: Computing (average) Reliability and Precision



Spike timing: Reliability and Precision

● Reliability
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- Analyzing spike timing: Reliability and Precision

(average) jitter



Spike timing

(Reinagel and Reid 2002)

- Computing Reliability and Precision in vivo



Spike timing

- Comparing the firing of two cells

Mean time of 

the events

(Reinagel and Reid 2002)
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Spike timing

- Analyzing spike timing: Spike train distances

D=0

D=D1>0

D=D2>D1

What is D? (metric)
Side bar: Distance Vs Metric



Spike timing

- Distances: Vectorial approach

000000010100000010000100000000010000000011000000000000000100001…

1 N

N-dimensional vectorial space

● Use Euclidian Distance in N-Dimensional space (a.k.a L2 norm)
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2 spike trains v and w:

● Binning

● Problem: High dimensional space (computationally expensive)

small spike jitter ➔ discrete shifts in new dimensions 



Spike Timing

- Metric: Bin-less approach
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(Kruskal et al, 2007; Lyttle and Fellous, 2011)



Spike patterns

How is information represented in the brain?

- Spike Count

- Firing Rate

- Spike Timing

-…?...



Reliability In Vivo: Cat LGN

(Reinagel & Reid 2002)

Different 

animals!

Visual 

Stimulation

- Stimulus-dependent sensory information (e.g. Vision) is represented by 

precise and reliable firing events. Recall:



Reliability in Vitro
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- Same in vitro (i.e. no synaptic activity)

(Fellous et al, 2004)



Reliability in the Face of Unreliability

- Neurons receives thousands of background (noise) synaptic inputs.

- Synaptic transmission is unreliable (p ~= 0.2-0.3).

- Network configurations are different from animal to animal.

How can a neuron in vivo, several synapses away 

from a stimulus, fire reliably with millisecond 

precision?

What are some of the characteristics of in vivo reliable and precise 

firing?



In Vitro: Reliabilities
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(Fellous et al, 2004)

Transient Steady State

- Response to a stimulus is non-stationary and (in at least some cases) non 

deterministic



In Vitro: Reliabilities

- Limited non-determinism: Cycle skipping

(Fellous et al, 2004)

Steady State



In Vitro: Reliabilities
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Same information

Two different spike patterns
(Fellous et al, 2004)



Surrogate dataset
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- Can one hide/find different spike patterns?

- Surrogate set: Jitter, Noisy-spikes, missing spikes



Clustering
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Spike patterns

- Real Data: No knowledge of the cluster structure – ‘unsupervised learning’

C1
C3

C2

C1
C2

- Find cluster centers, and cluster radii to minimize the number of outliers

- Find cluster centers {C}, and radii {R} to maximize an ‘objective function’
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Spike patterns - Clustering

- K-means clustering

- 1: Start with random guess: K cluster centers.

- 2: Assign each data point to the nearest cluster (also called ‘Centroidal

Voronoi tesselation’). If no new assignments: STOP

- 3: Move each cluster center to the mean of the data assigned to it.

- 4: Go to 2.

- Other algorithms: Mixture of Gaussian (EM-algorithm), Fuzzy K-Means …



Recoding: ‘Everything is Relative’
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- Problem: Space of spike trains is large and infinite.

- → Recode in a smaller, finite space.



Clustering Method: Clustering

Reshaping Fuzzy
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(Fellous et. al. 2004)

- Maximize Spike train space occupancy



Spike Patterns In Vitro
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- In vitro data: As expected …
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(Fellous et. al. 2004)



Complex Inputs
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- Complex inputs in vitro (prefrontal cortex, rat)

(Fellous et. al. 2004)



Complex Inputs
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(Fellous et. al. 2004)

- Complex inputs in vitro (prefrontal cortex, rat)

→ Discrete clusters in response to the same stimuli

Fuzzy clustering. K=2 Fuzzy clustering K=2



Spike Patterns in Vivo

(Buracas, Zador, DeWeese, Albright, 1998)

Visual 

Stimulation

- Behaving monkey, Area MT

- Visual stimulation, moving 

Gabor patches

Is there more to ‘global 

alignments’?



Spike Patterns in Vivo

64

1 2

- Is there more to ‘global alignments’?



In Vivo: Behaving Monkey, MT
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3 clusters 5 clusters

~50% empty!

~25% empty!



Spike Patterns in Vivo

- Is there more to ‘global alignments’?

Within cells 

Vs 

Across cells



In Vivo: Anesthetized Cat, LGN
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Multi-unit spike patterns

From Multiple Trials 

to 

Multiple Neurons

Time (s)

Trial #

Time (s)

Neuron #



Spike Patterns in vitro?

(Ikegaya, Aaron, Cossart, Aronov, Lampl, Ferster, Yuste 2004)

Mice visual cortical slices, Fura2-AM, 2-photon imaging:

- Population dynamics in vitro: Are there spatio-temporal patterns of spiking?

class9-timing-patterns/yuste.avi


Spike Patterns in vitro/ in vivo?

(Ikegaya, et al 2004)

- Record spontaneous post-synaptic events

→ Single cell receives repeating patterns of (near identical) synaptic inputs

E/IPSPs

E/IPSC

2x

3x

‘2 Motifs/Patterns’

‘3 Motifs/Patterns’

(Ctx, Layer 5, mice)



Spike Patterns in vitro?

Problem: Need to record from neurons! 

Recording from >800 neurons simultaneously. 

→ Use calcium imaging

→ ‘Bursts’ detection

Repeating pattern of synaptic inputs          

Repeating pattern of (presynaptic) firing

(Ikegaya, et al 2004)



Spike Patterns in vitro?

10 cells x 2

4 cells x 4

Warning: bursts… not spikes!

- Repeated Motifs across cell populations



Significance and Surrogate Datasets

‘Frame jitter’ = ‘temporal jitter’ in terms of image frames

Surrogate datasets for controls- Motifs by chance? 

A: Destroys temporal correlations within cells (e.g. oscillations) – Preserves 

firing rate.

B: Destroys motif cell composition - Preserves partial synchronization.

C: Destroys spike orders within motif - Preserves number of spikes per cell, 

and population firing modulations. 

CA B

For more on the debate: → (Mokeichev et al, 2007) → (Ikegaya et al 2008)



Spike Patterns in vitro?

- Is there topographic (spatial) organization for each Motif?

→ classification problem (no theory… yet)



Spike Patterns in vitro?

- Motifs of Motifs….Cortical songs

➔ 2 major issues: detecting songs, and assessing their (statistical) significance

P<0.05

Spatial 

locations of

motifs

No correlation

with firing rate

Misc-presentation-docs/Yuste-2.mov


Spike Patterns in vitro?

- Is there temporal compression?

compression

Most motifs compress in time


