Unit 4

- No class next week. We'll catchup the following week!

Stimulus-dependent variability

- In most sensory-related circuits, it is assumed that information processing is 'deterministic'.
- The variability of a response (e.g. noise in spike production) limits the extent to which it can be 'decoded', and hence perceived.

Stimulus A $\leftarrow \rightarrow$ Response A (i.e. spike train A)

- In higher cognitive circuits (e.g. decision making, face-perception, memory) information processing is generally not deterministic (?).
 Phenomena of adaptation, learning, memory (re)consolidation
- The neural code for a specific item changes, from presentation to presentation.

- Measure of reliability (variability) of a response *across* multiple presentations of a stimulus.

(Kara et. al. 2000)

Overlapping Receptive fields

Variability of spike count across trials?

Stimulus-evoked Fano Factor across trials. →The 'bin' is the trial T=Trial length=250 ms

(Kara et. al. 2000)

Fano factor increases from retina to cortex More irregularity in response to the same stimulus More 'information'/'processing' Fano factor Firing rate

→ 'Quick' way to estimate information content

Variance Vs. mean spike count in sliding 50ms windows, 25ms overlap (all cells)

RGC close to minimum variance, bursts (FF>1) > diagonal

(Kara et. al. 2000)

 $1.8 \rightarrow 2.4$ mean spike count in a 50 ms window $\rightarrow \sim 40$ Hz (gamma oscillations, STDP)

More irregular (i.e. meaningful?) 40Hz events from RGC to V1

Fano factor does depend on the width of the counting window (but qualitatively the same)

Stimulus Dependent Activity

-What kind of stimulus? Experimentally tractable Vs Natural stimuli

- Ex: Vision: moving bars/gratings Vs Natural scenes Audition: pure tone Vs human voice Olfaction: one chemical Vs one odor
- How long does the response of a neuron depends on a stimulus? Stimulus <u>driven</u> Vs. Stimulus <u>triggered</u>

Vs.

(Reinagel)

Simple?

Complex?

Stimulus Driven Activity: Vision

- What visual stimulus makes a neuron fire?
- How reproducible (reliable) is the response?

Neuron in cat LGN (Reinagel, UCSD)

Problem: is it really what the cat would 'see' !?

H1: Motion sensitive neuron of the blowfly: Procedure
 Record flight → infer what fly sees → record from a fly watching movie

H1: Motion sensitive neuron of the blowfly: Recording flight → reconstructing visual inputs

- Record from a fly watching a (simple) movie: Apparatus

Recording from a fly watching a movie: The data

2 H1 neurons (left + right speakers)

... more soon....see Homework 3...

- The 'spike' as a stimulus....

- Is there anything in the <u>membrane potential</u> that 'predicts' or 'follows' a spike. I.e. is a spontaneous spike 'truly' a random occurrence?

Complex dynamical system... Cannot be solved analytically...

→ Spike triggered average of the membrane potential

e.g. 100 ms window, Simple neuron model, spontaneous activity

- STA= Average of the membrane potential around each spike ('context')
- Assumptions: all spikes are the 'same' -- there is only one type of 'context'

Spike triggered average: In vitro

- In *vitro*
- Stimulus = injected current (random waveform)
- Spike triggered average of the injected current

→ The best way to fire a cell (*in vitro*) is to inhibit it first!

- Is there anything in the stimulus that 'predicts' or 'follows' a spike
- Stimulus = visual inputs/patterns

_ 🗆 🗡 剩 Figure 1 Edit View Insert Tools Desktop Window Help k Q Q 🖑 🖲 🐙 | 🗅 🚅 🔲 🎒 ñ 0.3 0.05 0.2 0.25 0.35 0.5 0.1 0.15 0.40.45 Time (s) 150 100 50 0 -50 -100 -150 0.05 0.15 0.25 0.3 0.1 0.2 0.35 0.4 0.45 0.5 'n Time (s)

White noise visual stimulus (random horizontal velocities)

→ Spike triggered average of stimulus – a.k.a 'Reverse correlation'

⁽R de Ruyter van Steveninck)

- H1 Spike triggered (stimulus) average: \pm 300 ms time window.
- Stimulus = white visual noise movement

- Reconstructed visual stimulus: Natural horizontal velocities. Outdoor extracellular recordings

(R de Ruyter van Steveninck; Lewen et al. 2001)

- Spike triggered (stimulus) average: 300 ms time window. Visual stimulus.

- Note: Confidence interval: \pm standard deviation at each point in the waveform

Multi-Spike Triggered Average

Can N (>1) spikes tell you more about which part of the stimulus is 'important'?
H1 neuron in the fly (velocity triggered neuron)

 $> 2 \text{ X 1 Spike TA!} \rightarrow \text{Extra information}$

2 spikes 10ms apart

- Analyze the firing of a neuron when driven/stimulated at a specific time.

- Peri-Stimulus Time Histogram. 'Peristimulus' = 'around stimulus'
 - \rightarrow Need: time 'zero', multiple trials and a bin size.

Stimulus drives the response

- 'Drift errors in PSTH estimation' - beware of non-stationarity

- Same stimulus: LGN Vs Retinal Ganglion Cell. Stimulus driven PSTH.

Firing 'precision' is ~4.6 ms for Oncenter, ~3ms for off-center.
See more on 'precision' later in the class...
Fourier dominant frequencies of the average firing rate was ~90Hz (A), ~120 Hz (B)
Beware of:

Power spectrum peaks $\leftarrow \rightarrow$ oscillations

See more on this later in the class...

⁽Reich et. al. 1997)

Fano factor/CV – Part 2

- Typical vision experiments: multiple repeated presentations of a stimulus
- Eye movements (every ~200ms) as a source of variability?

 \rightarrow Understanding the cause(s) of variability

Eye Movements of Reading

Fano factor/CV–Part 2

- 6 sweeps of a bar, recordings in monkey V1.
- What is the contribution of eye movements to neural variability?

Fano factor/CV–Part 2

- For single cells: Variance not *apparently* correlated with mean

 \rightarrow CV decreases with mean...

Linear regression/fit

Regression line in log-log plot

- Population analyses (no eye movement epochs)

(because of eye movements)

Regression line

Towards causality..... Due to eye movement?

 \rightarrow Random selection of cells (irrespective of eye movements)

With eye movements: same slope... but greater intercept \rightarrow greater overall variance

Corrected CVs

Conclusions: V1 and LGN are much more reliable/regular than previously thought → contain/carry less information than previously thought
 → Is the goal of eye movements to increase information about the stimulus?

