
Unit 2: Surrogate datasets

Class/NeuralData

Psych 4/596L – University of Arizona

Neural Data Analyses

Neural Data Analyses

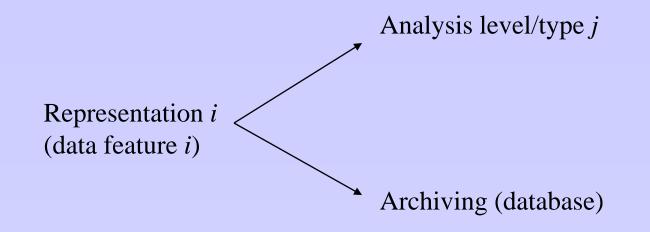
- Analyses results can suggest new analyses: Branching process

Analysis 1	
Analysis 2 →	Analysis 2-1
Analysis 3	Analysis 2-2
•••	Analysis 2-3
Analysis N	•••
	Analysis 2-P


<u>Compromise between depth/breadth first</u> <u>Combinatorial explosions (analyses for ever!)</u>

- Analyses results can suggest new experiments: Long time scales

Analysis 1 Analysis 2 Analysis 3 ... Analysis N Analysis 1.1 Analysis 2.1 Analysis 3.1 ... Analysis 0 A


> <u>Careful planning/design of the initial experiment(s)</u> (controls, alternative hypotheses...)

Data Representation

Information loss

Data Representation

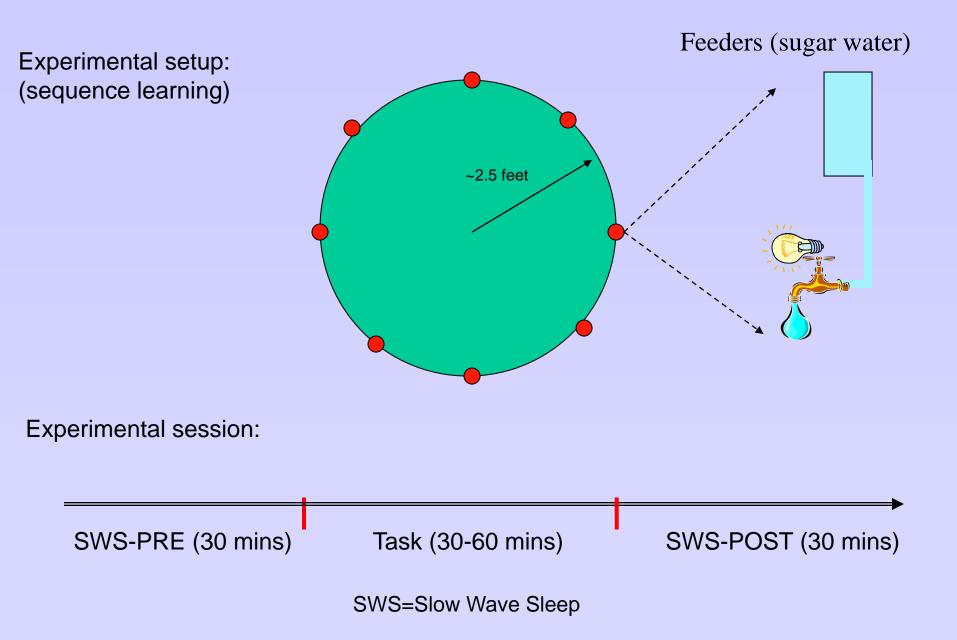
Backups Strategy

- Raw data (permanent, multiple copies)
- Various representations (depends on amount of processing from raw data)
- Code (permanent, multiple copies)

Showing Data Analyses: The typical progression

- 1- Analysis method. Use surrogate dataset, simulation data set, cartoon.
- 2- Show typical single cell examples (raw data): voltage traces, rasterplots.
- 3- Show a single cell analysis: Extract interesting feature(s) from step 2.
- 4- Show population results: statistical analyses, population features, controls.
- 5- Propose an interpretation (explanation), prediction(s): Use a (conceptual or computational) model.

Good examples: Reinagel and Reid, J Neuroscience, 2002 Usrey, Sceniak Chapman, J Neurophys, 2003


Example

Place cells: Basic facts

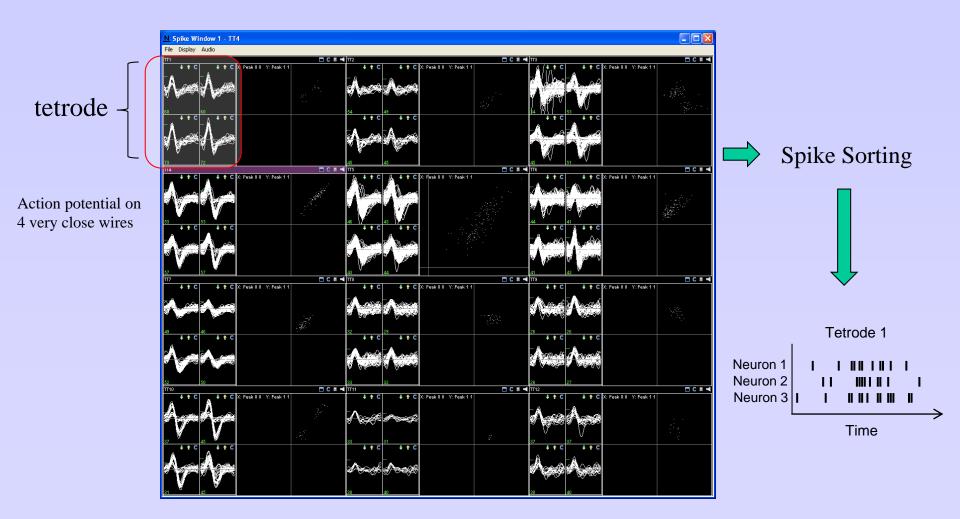
- Excitatory cells in the hippocampus (memory structure of the temporal lobes).
- Fire action potentials when the animal is at a particular spatial location (place field).
- Form in 20 minutes, persist in the dark.
- Depend on visual, and idiothetic (self-motion) cues.
- Place fields form sometimes at 'significant' locations.

Experimental paradigm

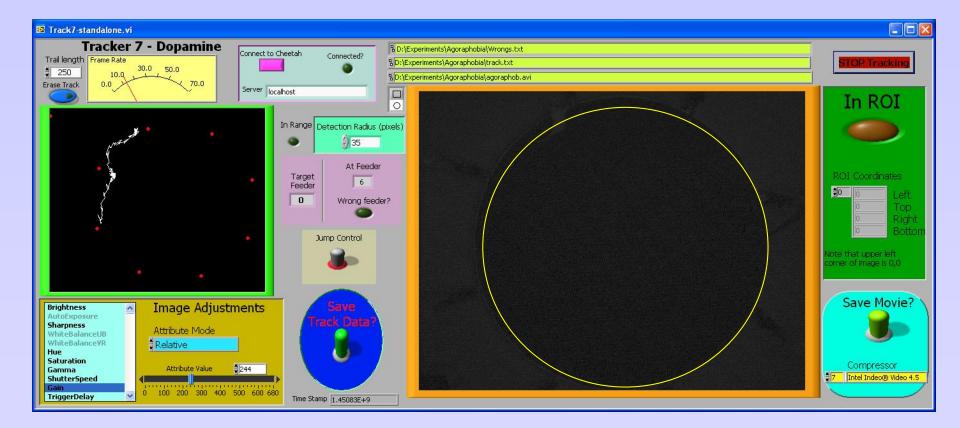
Methods: Hyperdrive

Bifunctional Optogenetic and Electrophysiological Recording Device

CENL - University of Arizona


Kawahara et al, 2003

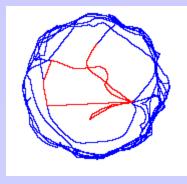
The Data


Question: How do we define/characterize a place field ?

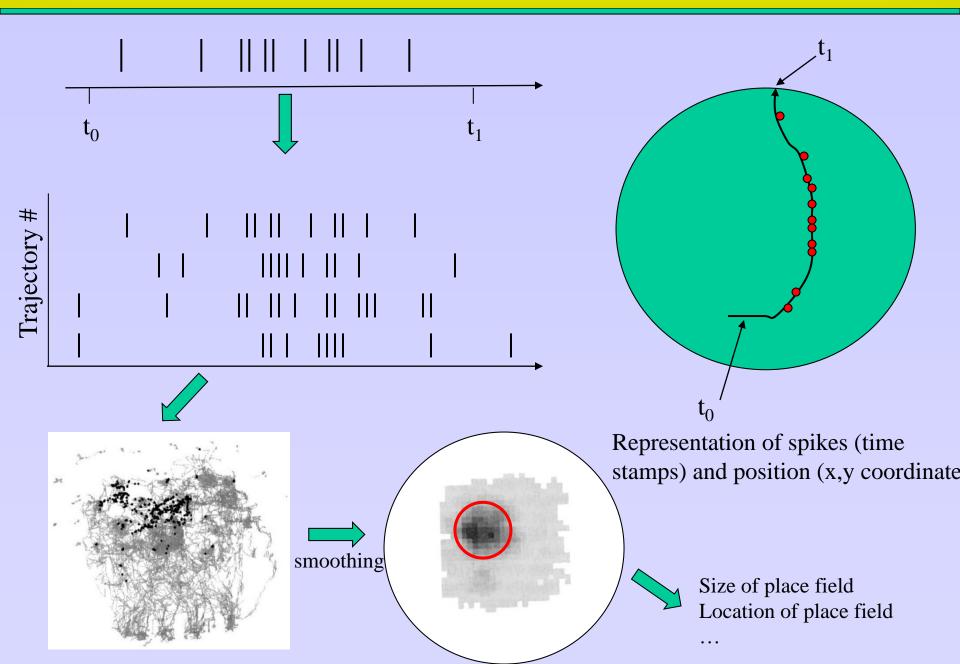
Raw Data: Spike data

Data

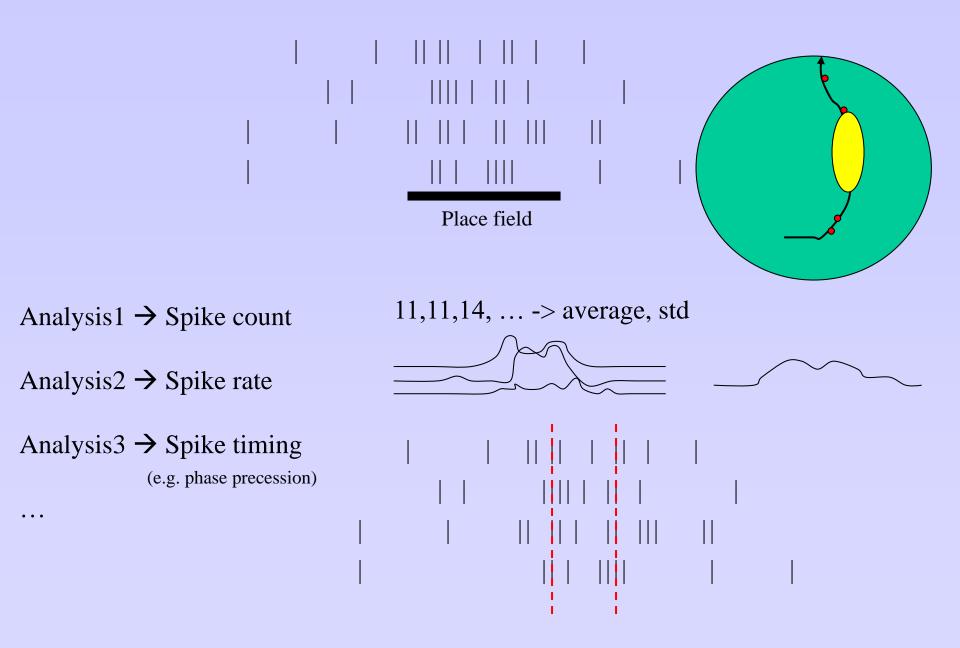
Raw data: Position


Data

Re-coding: Spike cutting, position smoothing



12.05 (secs) 13.45 13.95 14.20 14.35 14.65 14.65 14.80 15.90 16.21 17.50 time stamped rat location


11.1 s: (100,45) (pixels) 11.2 s:(120,58) 12.1 s:(156,71) 12.3 s:(130,79) 13.4 s:(137,121) 13.8 s:(145,150) 14.2 s:(129,170) 14.7 s:(133,180) 15.1 s:(120,201) 15.6 s:(116,230) 16.4 s:(100,290)

Data Visualization

Data Analyses

Surrogate Data Set(s)

How do we know that:

- the analysis algorithm 'really' works
- the result is not due to chance

Construct a surrogate data set

- → Use a biophysical model (detailed neuron)
 - □ Use a phenomenological model (abstract neuron(s): integrate and fire)
- \rightarrow **u** Use a random process

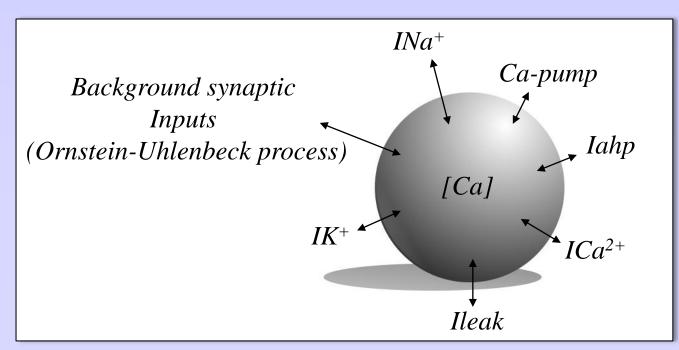
Surrogate datasets I: A Simple Biophysical Model

Goal: get (fake but realistic) data!

Install in default directories Run 'NEURON Demo'

Use NEURON: www.neuron.yale.edu

https://neuron.yale.edu/neuron/docs


NEURON Demo	
NEURON Release 7.4 (1370:16a7055d4a86) 2015-11-09 Duke, Yale, and the BlueBrain Project Copyright 1984–2015 See http://www.neuron.yale.edu/neuron/credits	E
loading membrane mechanisms from c:/nrn/demo/release/nrnmech.dll Additional mechanisms from files cabpump.mod cachan1.mod camchan.mod capump.mod invlfire.mod khhchan.mod m d nacaex.mod nachan.mod release.mod oc>_	icna.mo

Note: we will not use Python in this class

- Simulate the spontaneous activity of a neuron (sub and super threshold).
- Accept arbitrary patterns of stimulation.
- Output (fake but realistic) spike times.

The model (SimpleNeuron.zip)

- Single compartment ('ball neuron').
- Generic cortical neuron tuning/parameters
- Multiple currents
 - Passive properties (Ileak, capacitance)
 - Action potential currents (INa⁺, IK⁺)
 - Spike frequency adaptation: Ca-dependent K⁺ current (I_{ahp})
 - Calcium dynamics (ICa²⁺, Ca-pump)
 - In vivo-like background/noise synaptic currents (inhibitory and excitatory)

The model

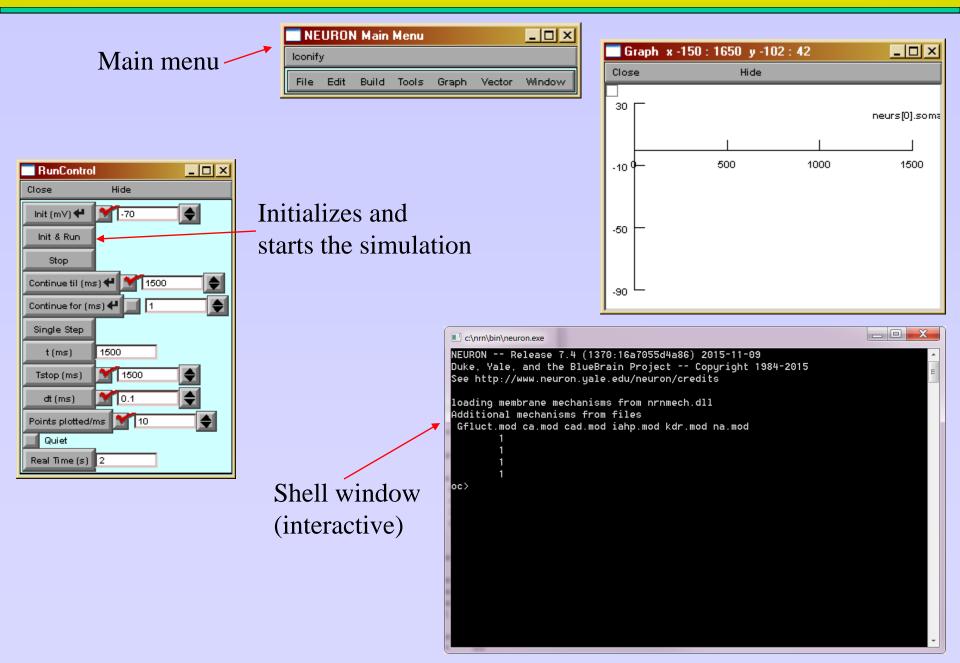
Step1: Compile the currents (.mod files) – mknrndll.exe

					X
🗲 💭 🖵 👢 « Neuron Models 🔸 mor	no-cell 🕨 modfiles	✓ ⁴ → Search m	odfiles		P
File Edit View Tools Help					
Organize 🔻 Include in library 👻 Sł	nare with 🔻 New folder		-		0
Name	Date modified	Туре	Size		
🔳 ca.mod	8/29/2018 9:00 AM	Movie Clip		3 KB	
🚊 cad.mod	8/29/2018 9:01 AM	Movie Clip		4 KB	
I Gfluct.mod	8/29/2018 9:02 AM	Movie Clip		5 KB	
🔳 iahp.mod	8/29/2018 9:02 AM	Movie Clip		3 KB	
🛋 kdr.mod	8/29/2018 9:02 AM	Movie Clip		1 KB	
💻 na.mod	8/29/2018 9:03 AM	Movie Clip		2 KB	

the last last		
🔁 🕘 🗢 👢 « mono-cell 🕨 modfiles 👘 🧃	Search modfiles	٩
File Edit View Tools Help		1000
	. 8==	
Organize ▼ Include in library ▼ Share with	h ▼	• 🗌 🚷
Name	Date modified	Туре
a.c	8/29/2018 9:07 AM	C Source
ca.mod	8/29/2018 9:00 AM	Movie Clip
ca.o	8/29/2018 9:07 AM	O File
ad.c	8/29/2018 9:07 AM	C Source
🚊 cad.mod	8/29/2018 9:01 AM	Movie Clip
cad.o	8/29/2018 9:07 AM	O File
Gfluct.c	8/29/2018 9:07 AM	C Source
🚊 Gfluct.mod	8/29/2018 9:02 AM	Movie Clip
Gfluct.o	8/29/2018 9:07 AM	O File
📄 iahp.c	8/29/2018 9:07 AM	C Source
🔳 iahp.mod	8/29/2018 9:02 AM	Movie Clip
iahp.o	8/29/2018 9:07 AM	O File
📄 kdr.c	8/29/2018 9:07 AM	C Source
💻 kdr.mod	8/29/2018 9:02 AM	Movie Clip
kdr.o	8/29/2018 9:07 AM	O File
imod_func.c	8/29/2018 9:07 AM	C Source
mod_func.o	8/29/2018 9:07 AM	O File
ina.c	8/29/2018 9:07 AM	
🛋 na.mod	8/29/2018 9:03 AM	Movie Clip
na.o	8/29/2018 9:07 AM	O File
inrnmech.dll	8/29/2018 9:07 AM	Application exten

Choose directory (containing .mod files) for creating nrnmech.dll
Recent directories
Choose directory Quit
mknrndil
Warning: Default 0.00024 of PARAMETER cai will be ignored and set by NEURON.
Thread-Safe x86_64-w64-mingw32-gcc -DDLL_EXPORT -DPIC -I/cygdrive/c\Programs\nrn/src/scopmat
h -I/cygdrive/c\Programs\nrn/src/nrnoc -I/cygdrive/c\Programs\nrn/src/oc -c iah
p.c nocmodl kdr
Translating kdr.mod into kdr.c
x86_64-w64-mingw32-gcc -DDLL_EXPORT -DPIC -I/cygdrive/c\Programs\nrn/src/scopmat
h -I/cygdrive/c\Programs\nrn/src/nrnoc -I/cygdrive/c\Programs\nrn/src/oc -c kdr
.c nocmodl na
Translating na.mod into na.c
Thread Safe x86_64-w64-mingw32-gcc -DDLL_EXPORT -DPIC -I/cygdrive/c\Programs\nrn/src/scopmat
h -I/cygdrive/c\Programs\nrn/src/nrnoc -I/cygdrive/c\Programs\nrn/src/oc -c na.
c x86_64-w64-mingw32-gcc -shared -o nrnmech.dll mod_func.o Gfluct.o ca.o cad.o ia
hp.o kdr.o na.o \
-L/cygdrive/c\Programs\nrn/bin -lnrniv -lpthread #rebase -b 0x64000000 -v nrnmech.dll
nrnmech.dll was built successfully. Press Return key to exit

Move 'nrnmech.dll' one folder up ...


A Simple Biophysical Model: simpleneuron.hoc

load_file("nrngui.hoc") // load default NEURON interface nrnmainmenu() nrncontrolmenu() // Global simulation settings dt=0.1 tstop = 1500runStopAt = tstop steps_per_ms = 10celsius = 36v init = -70//number of neurons Nneurons=1 load_file("neuron.tem") // load the template for a single neuron objectvar neurs[Nneurons] // declare how many neurons will be created for i=0, Nneurons-1{ neurs[i]=new neuron() // create the neurons xopen("graphprocs.hoc") // load basic graphic procedures xopen("inout.hoc") // load basic input/output procedures: InsertStim(), InsertVStim(), ReadStimVec(), RecordAP(), SaveAP() addgraph("neurs[0].soma.v(0)",-90,30)// plot the membrane voltage of neurs[0] measured at the soma.

A Simple Biophysical Model: The ball neuron

begintemplate neuro public soma, apc, no		insert iahp cac_iahp = 0.025 beta_iahp = 0.03	// insert a calcium-dependent K current
bjref apc, noise		taumin_iahp = 0.05 ek=EK	
proc init(){		$gkbar_iahp = 0.5$	
EK=-80			
ENa=55		insert ca	// insert a calcium current
create soma		$gbar_ca = 0.4$	
soma{ nseg=1	// only one compartment, the soma.	insert cad cainf_cad=2.4e-4	// insert a calcium pump
diam=70	// actually a cylinder	caini=2.4e-4	
L=70	5	$kd_cad = 1e-4$	
Ra=250		$kt_{cad} = 1e-4/5$	
}		$depth_cad = 1$	
		$taur_cad = 1e10$	
access soma		decay_cad=0.7	
insert pas	// leak current		// insert background synaptic noise
$e_{pas} = -70$ $g_{pas} = 4e-5$		noise = new Gfluct2(0.5)
cm=1		noise.std_ $e = 0.008$	// standard deviation excitatory
		noise.std_ $i = 0.02$	// standard deviation inhibitory
insert Na // inse	ert the sodium Channels	noise.g_e0=0.002	// mean excitatory
ena= 55		noise.g_i0=0.05	// mean excitatory
g_Na= 0.03			
		apc = new APCount(.5)	// insert an action potential detector
insert Kdr // inse	ert the potassium Channels		
ek= -90		}	
g_Kdr= 0.005		endtemplate neuron	

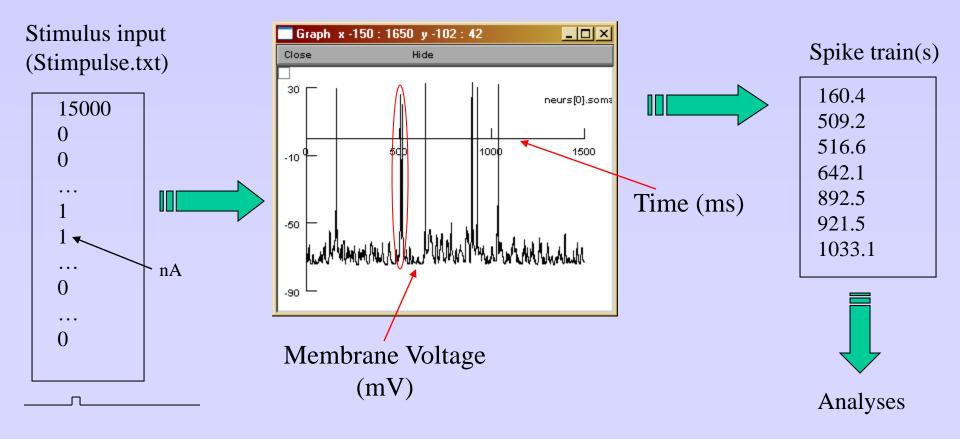
Surrogate datasets I: A Simple Biophysical Model

Surrogate datasets I: A Simple Biophysical Model

 // Example session: Double click on simpleneuron.hoc (this file)

 // in the shell window, create and initialize a stimulation electrode with variable stimulation

 // InsertVStim(0)
 // when prompted enter (for ex.) Stimpulse.txt (just a 1nA 20ms-long pulse at t=500ms)

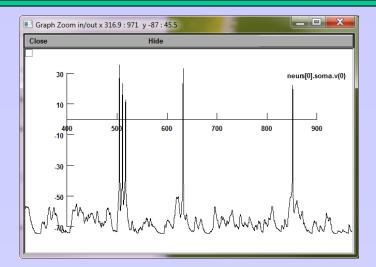

 // then type
 // to indicate that you want to record the actions potentials of neuron 0

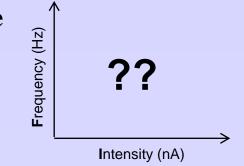
 // Click 'Init&Run' in the RunControl panel. You should see the membrane voltage fluctuate, and some spikes

 // in the shell window type

 //
 SaveAP()

 // and give a file name when prompted. This will save the spike times currently recorded.




Let's practice a bit...

- Zoom the voltage around 500ms

(right click, View, Zoom in/out)

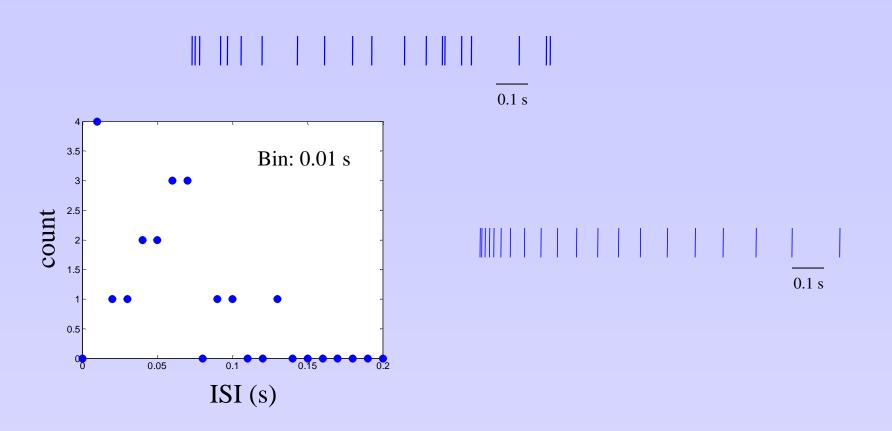
- Run the simulation ~10 times. What do you see ?
- Now increase the stimulus pulse a bit to, say, 1.2nA (Shell window: oc> vec.mul(1.2))
- Run the simulation ~10 times. What do you see?
- Challenge...optional, home practice: Build the **IF curve** of this neuron (1 second pulse)
 - See README.txt regarding the format of the stimulus file *Stimpulse.txt*You can certainly do 'everything' in Matlab, but hand counting and Excel are also just fine...

Surrogates II: Use a Random Process (Matlab)

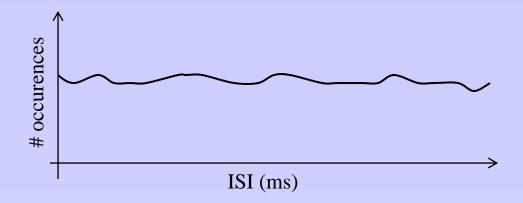
Generate sequences of random numbers between 0 and 1500 ms with certain properties. Neurons are 'point processes' (see Johnson 1996)

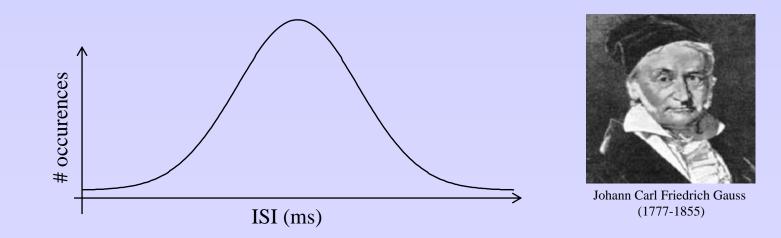
- Absolute refractory period (2 ms)
- Relative refractory period

Probabilistic: p(t_{n+1})=1-exp((t_n-t)/τ), with τ=300 ms.
Activity/history dependent: p(t_{n+1}) = f(ISI_n,ISI_{n-1},...).
(Possible Project: Determine f() for the NEURON model)


- Statistical Distribution of Inter-Spike Intervals (ISIs). Typical ones:

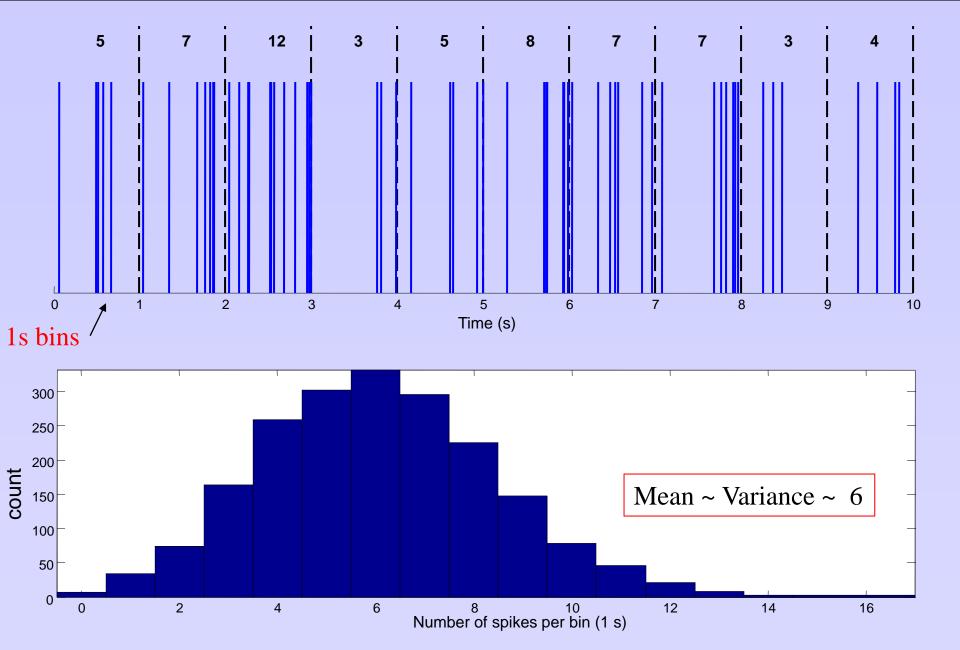
- Uniform
- Gaussian (mean, standard deviation)
- Poisson (given rate)
- Gamma


Inter Spike Interval - ISI


- Characterization of a spike train.

- Note: A spike train has a unique ISI distribution, but many spike trains may have the *same* ISI distributions.

Uniform and Gaussian Distributions

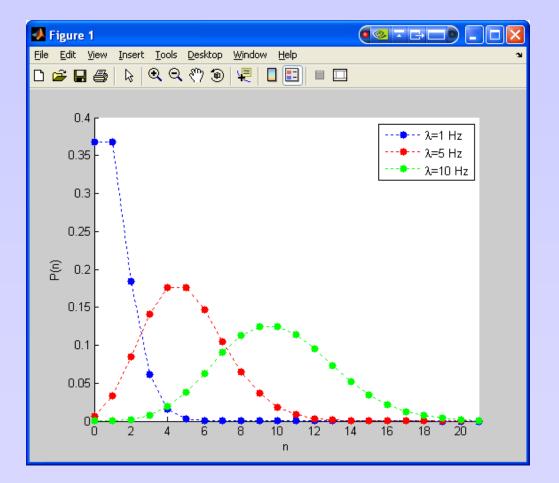


- The time between spikes (ISI) is truly random. No ISI appears more often than any other.

- Some ISIs appear more often than any other. Frequency preference. Also called 'normal' distribution. The most frequent ISI ('mode') is also the mean ISI.

Homogeneous Poisson Distribution (6 Hz)

Homogeneous Poisson Distribution

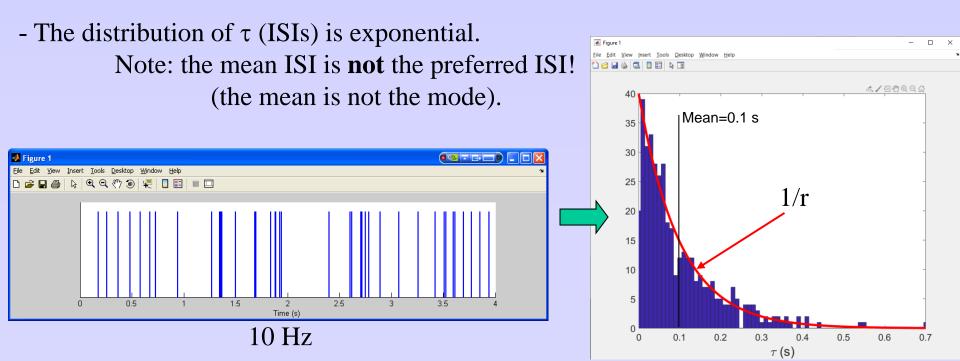

- Spikes are independent from each other. Probability of getting n spikes (in T seconds), when λ are desired on average

$$P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$

(see derivation in Johnson 1996)

Siméon-Denis Poisson. 1781-1840

(T=1 sec)


Homogeneous Poisson Distribution

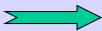
- Mean = λ = variance = σ^2 of the spike count.

The probability (P) of having a spike between τ and τ + Δt
 (i.e. an inter-spike interval τ) is given by:

$$P(\tau) = \Delta t. r e^{-r\tau} \qquad (\text{see Johnson 1996})$$

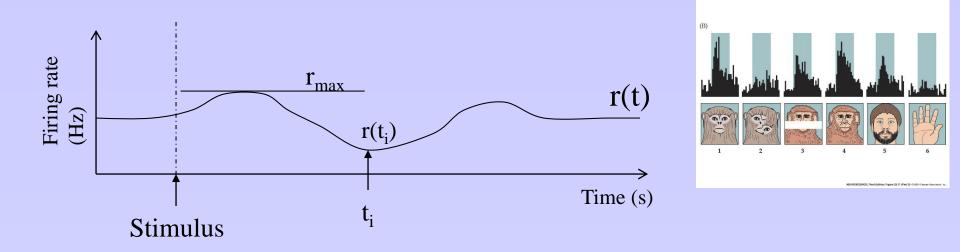
where r is the mean firing rate (Hz). In T seconds, λ =rT.

A practical algorithm...


For a constant firing rate (i.e. 'homogeneous', i.e. 'stationary') spike times can be computed with:

With x uniformly distributed in]0 1[

Problem: if x close to 1


 $t_{i+1} = t_i - \frac{\ln(x)}{r}$

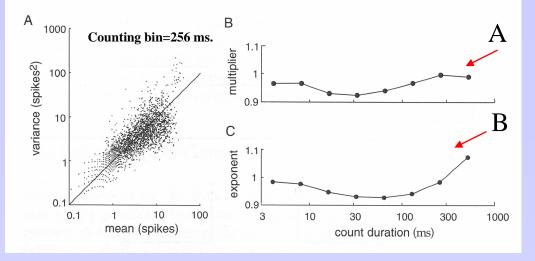
 $t_{i+1} \approx t_i$ (not possible in general)

(i.e. no refractory period)

Inhomogeneous Poisson Distribution

- Generate a homogeneous Poisson process

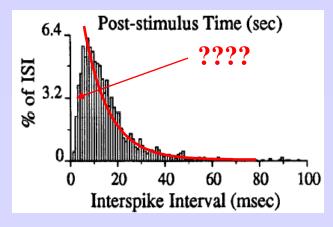
$$t_{i+1} = t_i - \frac{\ln(x)}{r_{\max}}$$
 (Renewal Process)

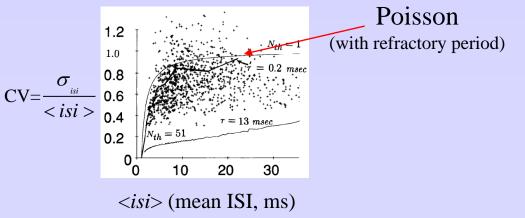

- Rejection sampling ('thinning') method

For each i, estimate r: $r(t_i)$, and get a random number x' in]0 1[If $r(t_i)/r_{max} < x'$, delete spike i (see also Berry and Meister 1998)

- **Project:** How does one decide if a Poisson spike train is stationary or not? (see Johnson 1996)

The real data is (often) not strictly Poisson

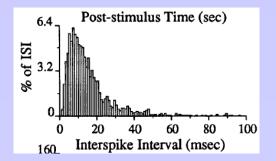

Area MT, awake monkey, moving visual images. (Dayan and Abbott book, p32-)


$$\sigma_n^2 = A \langle n \rangle^{H}$$

In general, A and B are in [0.5 1.5]

Area MT, awake monkey, moving random dots. (Dayan and Abbott book, p33-)

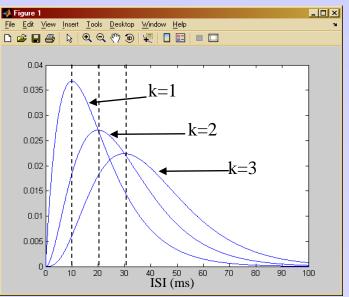
V1 and MT, awake monkey (Softky and Koch 1993)



Gamma Distribution

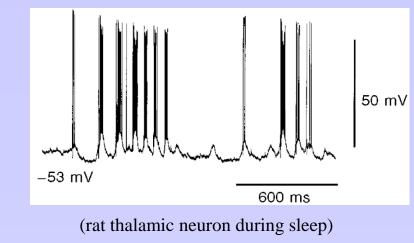
- Distribution of ISI (τ ms) follows a gamma distribution

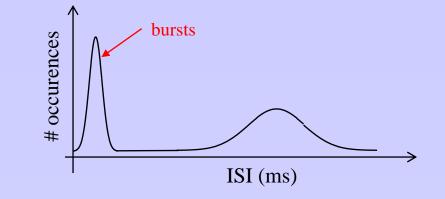
$$p(\tau) = \frac{a(a\tau)^k e^{-a\tau}}{k!}$$

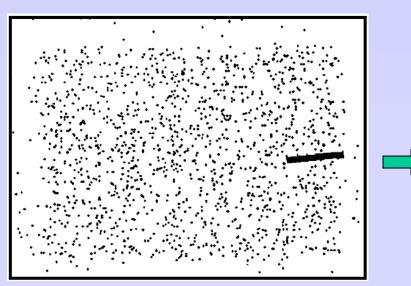


_ 🗆 × 剩 Figure 1 <u>File Edit View Insert Tools Desktop Window Help</u> 🔍 ପ୍ 🥙 🐌 🐙 📘 📰 💷 🗖 n 🚅 🖬 🚳 0.04 0.035 1/a0.03 0.025 0.02 0.015 0.01 0.005 O L O 40 50 ISI (ms) 60 70 90 10 20 30 80 100

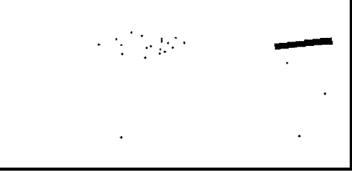
a=0.1, k=1


- Note: Poisson distribution: k=0.

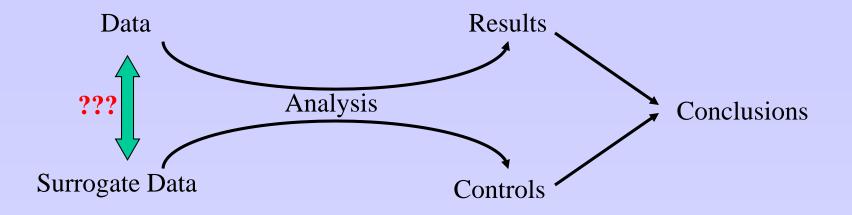

a=0.1


Most frequent ISI= k/a, $\langle ISI \rangle = (k+1)/a$

Special ISI Distributions....Bursting



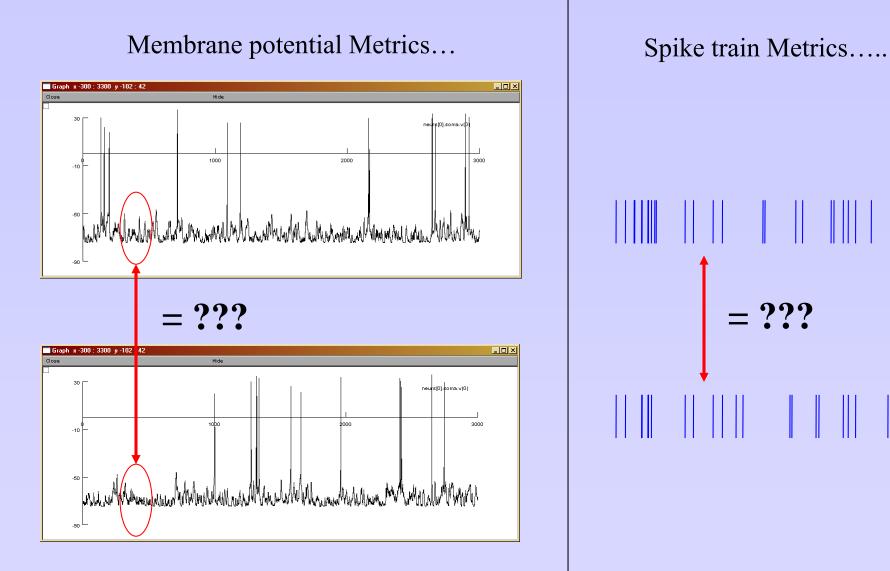
- Are bursts special?



Bursts only (4 spikes 10 ms–1)

(Awake monkey watching a flashing bar, cell in V1)

Assessing the quality/adequacy of the surrogate set


- Data contains features above and beyond those that would be obtained by 'chance'.

- Results do/do not depend on some parameter(s) used to generate the surrogate set.

Need a 'convincing' surrogate set Need to <u>compare</u> real/surrogate datasets

Comparing Neural Responses: An Open Question

More on this soon.....

Interim Summary

- General introduction:
 - Neurons and synapses
 - Basic neuroanatomy
 - Basic neurophysiology (action potential, E/IPSPs, integration)
 - Methods in brain Research
- General Issues in Neural Data Analyses
 - Quantitative Vs Qualitative Analyses
 - Breadth-first Vs Depth-first Analyses
 - Data Representations
- Surrogate Datasets
 - Simulation data (NEURON models)
 - Point processes
 - Refractory period and stationarity
 - Distribution of ISIs (Gaussian, Poisson, Gamma)
 - Comparing Neural responses

Homework1: Due next week

- Write a function that takes N spike trains (response of a neuron to N trials), and display all spikes, all trials in a graphical form (i.e. rasterplot). Note: Each spike train could be a hard-coded MATLAB 'cell' {}.

- Write a function that will return N spike trains, T seconds long, distributed in a homogeneous Poisson manner (rate r). Make sure the spikes have an absolute refractory period of 2 ms (hard-coded). Display 5 such realizations using the function above (N=20, T=2, r=20Hz).

Note about format (1 printout and email a zip file containing): - A word file with screen shots of the results and text/figure caption containing all the parameters you used to obtain the figure.

- Whatever *commented* matlab code necessary to reproduce the figure. The naming convention for file names is:

<your initials (3 letters)><version number (2 digits)><function name>.m

Ex: JMF01DisplaySpikes.m