Class 13

- Final: Wednesday May $11^{\text {th }}$
- Projects write ups due Friday May $13^{\text {th }}$, noon.

What is information?

What does the response of a neuron tell us about a stimulus?
(e.g. orientation, color, facial identity...)

Vs.
How much does the response of a neuron tell us about a stimulus?
(e.g. $20 \%, 50 \%, 3$ bits ...'information capacity')

Information Theory

Claude Elwood Shannon 1916-2001

- A Mathematical Theory of Communication (1948). Bell Labs.

Information \Leftrightarrow Communication

- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point".
- The information content of a message consists of the number of 1 s and 0 s it takes to transmit it.
- But...: The goal of the nervous system is not just to transmit information

Entropy

Hypothesis: Neural response (spike train) constitute a (noisy) code.
Entropy: measure of the capacity of the 'code'.

- Response characterized by firing rate (e.g. Nb spikes/Trial length)
- Shannon Entropy = measure of how 'surprising/interesting' a response is.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{r})=\text { probability of getting response } \mathrm{r} \\
& \mathrm{~h}(\mathrm{P}(\mathrm{r}))=\text { entropy of } \mathrm{r}=\text { measure of 'surprise/interest' }
\end{aligned}
$$

Properties:
$-\mathrm{h}(1) \rightarrow 0, \quad \mathrm{~h}(0) \rightarrow$ large positive

- Surprise/interest for 2 independent neurons: $\mathrm{h}(\mathrm{p} 1 . \mathrm{p} 2)=\mathrm{h}(\mathrm{p} 1)+\mathrm{h}(\mathrm{p} 2)$
$h(P(r))=-\log _{2}(P(r))$

$$
H=\sum_{r} W_{r} h(P(r))=-\sum_{r} W_{r} \log _{2}(P(r))
$$

Entropy

$$
H=\sum_{r} W_{r} h(P(r))=-\sum_{r} W_{r} \log _{2}(P(r))
$$

Constraints on W_{r} :

- Responses with very small (0) probability should contribute 0 'surprise'.
- Responses with very large probability (1) should contribute 0 'surprise’.

$$
H=-\sum_{r} P(r) \log _{2}(P(r))
$$

- If a neuron responds reliably only 1 way with rate r : $\mathrm{H}=0$
- If a neuron responds in only one of 2 ways $\mathrm{r} 1, \mathrm{r} 2$:

$$
\mathrm{p}(\mathrm{r} 1)+\mathrm{p}(\mathrm{r} 2)=1 \text { and }
$$

$H=-(1-p(r 1)) \log _{2}(1-p(r 1))-p(r 1) \log _{2}(p(r 1))=H(x=r 1)$
A code consisting of only 2 responses has maximum entropy when both responses are equally likely: 1 bit entropy.

Mutual Information

- Entropy is a measure of general response variability (all stimuli/response together).
- There is information about a particular stimulus if the variability in response to repeated presentation of that stimulus is smaller than the variability in response to repeated presentations of all-different stimuli.

Entropy of the responses due to s (only):

$$
H_{s}=-\sum_{r} P(r \mid s) \log _{2}(P(r \mid s))
$$

Need to measure 'surprise/variability' not due to stimulus variation? :

$$
\begin{aligned}
\sum_{s} P(s) H_{s} & =\text { noise entropy }=\mathrm{H}_{\mathrm{n}} \\
M & =H-H_{n}^{\text {Aboutr }} \quad H^{\text {Abouts }}
\end{aligned} \quad H=-\sum_{r} W_{r} \log _{2}(P(r))
$$

$\mathrm{M}=$ Mutual Information: How much entropy is actually used. How much knowing r reduces the uncertainty about s having occurred.

Mutual Information

$$
\begin{aligned}
M & =H-H_{n} \\
M & =-\sum_{r} P(r) \log (P(r))-\sum_{s} P(s) H_{s} \\
& =-\sum_{r} P(r) \log (P(r))+\sum_{s, r} P(s) P(r \mid s) \log (P(r \mid s)
\end{aligned}
$$

By definition of conditional probability $\quad P(r)=\sum_{s} P(s) P(r \mid s)$

$$
M=\sum_{r, s} P(s) P(r \mid s) \log \left(\frac{P(r \mid s)}{P(r)}\right)
$$

Mutual Information

$$
P(r)=\sum_{s} \underbrace{P(s) P(r \mid s)}_{\mathrm{P}(\mathrm{r}, \mathrm{~s})={ }^{\prime} \text { joint probability'}=\mathrm{P}(\mathrm{r}) \mathrm{P}(\mathrm{~s} \mid \mathrm{r})}
$$

$\mathrm{P}(\mathrm{r}, \mathrm{s})=$ probability of stimulus s appearing and response r being evoked.

$$
M=\sum_{r, s} P(r, s) \log _{2}\left(\frac{P(r, s)}{P(r) P(s)}\right)
$$

Note: Information that a set of responses conveys about a set of stimuli $=$ Information that a set of stimuli conveys about a set of responses.

Mutual Information: Fun facts

- If responses are unrelated to the identity of the stimulus

$$
\mathrm{P}(\mathrm{r} \mid \mathrm{s})=\mathrm{P}(\mathrm{r})
$$

$$
\begin{aligned}
& M=\sum_{r, s} P(s) P(r \mid s) \log _{2}\left(\frac{P(r \mid s)}{P(r)}\right) \\
& M=\sum_{r, s} P(r, s) \log _{2}\left(\frac{P(r, s)}{P(r) P(s)}\right)
\end{aligned}
$$

$$
\mathrm{M}=0
$$

- If each stimulus s reliably produces a different response r_{s}

$$
\mathrm{P}\left(\mathrm{r}_{\mathrm{s}}\right)=\mathrm{P}(\mathrm{~s}) \quad \mathrm{s}^{2}(\mathrm{r} \mid \mathrm{s})=1 \text { only if } \mathrm{r}=\mathrm{r}_{\mathrm{s}} .
$$

$$
\begin{aligned}
M & =\sum_{r, s} P(s) P(r \mid s) \log _{2}\left(\frac{P(r \mid s)}{P(r)}\right)=P(s) \log _{2}\left(\frac{1}{P\left(r_{s}\right)}\right) \\
M & =-P(s) \log _{2}(P(s)) \Leftrightarrow \mathrm{M}=\text { Entropy of the stimulus }
\end{aligned}
$$

Mutual Information: Fun facts

- Case when there are only 2 responses (r1 and r2) to 2 stimuli (s1 and s2). The probability of incorrect response is $\mathrm{P}_{\mathrm{i}}(<0.5)$. If s 1 and s 2 are presented with equal probability.

Prob to be correct: $P(r 1 \mid \mathrm{s} 1)=P(\mathrm{r} 2 \mid \mathrm{s} 2)=1-\mathrm{P}_{\mathrm{i}}$
Prob to be wrong: $\mathrm{P}(\mathrm{r} 1 \mid \mathrm{s} 2)=\mathrm{P}(\mathrm{r} 2 \mid \mathrm{s} 1)=\mathrm{P}_{\mathrm{i}}$

$$
\mathrm{P}(\mathrm{~s} 1)=\mathrm{P}(\mathrm{~s} 2)=1 / 2
$$

$$
\mathrm{M}=1+\left(1-\mathrm{P}_{\mathrm{i}}\right) \log _{2}\left(1-\mathrm{P}_{\mathrm{i}}\right)+\mathrm{P}_{\mathrm{i}} \log _{2}\left(\mathrm{P}_{\mathrm{i}}\right)
$$

and ...

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{i}}=0 \rightarrow \mathrm{M}=1 \text { bit } \\
& \mathrm{P}_{\mathrm{i}}=1 / 2(\text { random }) \rightarrow \mathrm{M}=0 \\
& \left(\mathrm{P}_{\mathrm{i}}=1 \rightarrow \mathrm{M}=1 \mathrm{bit}\right)
\end{aligned}
$$

Mutual Information

- Neurons are used for decoding: what is the probability of having s1 if r1 is observed?

$$
\begin{aligned}
\mathrm{P}(\mathrm{~s} 1 \mid \mathrm{r} 1) & =\mathrm{P}(\mathrm{r} 1 \mid \mathrm{s} 1) \mathrm{P}(\mathrm{~s} 1) / \mathrm{P}(\mathrm{r} 1) \longleftarrow \text { Bayes theorem } \\
& =1-\mathrm{P}_{\mathrm{i}}
\end{aligned}
$$

Before measurement: the expectation of getting s1 is $1 / 2$. After measurement the expectation becomes 1- P_{i}.

$$
1 / 2 \longrightarrow 1-\mathrm{P}_{\mathrm{i}}
$$

There is an increase in probability.
There is an increase in certainty.
\Rightarrow There is a decrease in uncertainty $=\mathbf{M}$.

Mutual Information: KL

- Addendum

Kullback-Leibler (KL) divergence is a kind of statistical 'distance' between 2 distributions:

$$
\begin{aligned}
& D(P, Q)=\sum_{r} P(r) \log _{2}\left(\frac{P(r)}{Q(r)}\right) \\
& M=\sum_{r, s} P(r, s) \log _{2}\left(\frac{P(r, s)}{P(r) P(s)}\right) \\
& >\quad \mathrm{M}=\mathrm{D}(\mathrm{P}(\mathrm{r}, \mathrm{~s}), \mathrm{P}(\mathrm{~s}) \mathrm{P}(\mathrm{r}))
\end{aligned}
$$

M is the KL divergence ('distance') between the actual probability distribution and the probability distribution if stimuli and responses were independent from each other.

Synchrony and information

- Can synchrony (potentially) carry information about movement direction? Is it related to firing rate?

Experiment timeline

(Hastopoulos et al, 1998)

Synchrony and information

- Synchrony log-linearly decreases with cortical distance

Information and Synchrony

Synchrony does not depend on firing rate

Synchrony varies with movement direction: i.e. potentially carries information

rightward movement

Nb pairs with synchrony peaks

Time when synchrony occurs (/mvt onset)

Pair 1-2
Same cell, different pairs \rightarrow Different patterns of synchrony

Pair 1-3
(Hastopoulos et al, 1998)

Information and Synchrony

- Directional tuning in synchrony is different from direction tuning in firing rate

Information and Synchrony

- Mutual information between synchronous

$$
M=\sum_{r, s} P(s) P(r \mid s) \log _{2}\left(\frac{P(r \mid s)}{P(r)}\right)
$$ (coincident) neurons and movement direction

$$
M=\sum_{\text {dir }} P(\text { dir }) \sum_{\text {coinc }} P(\text { coinc } \mid \text { dir }) \log _{2}\left(\frac{P(\text { coinc } \mid \text { dir })}{P(\text { coinc })}\right)
$$

$\mathrm{P}(\mathrm{dir})=$ probability of a movement direction $=$ set by experimenter (= stimulus). $\mathrm{P}($ coinc $)=$ probability of finding coincident spikes (= response).

Information and Synchrony

- Temporal variations of mutual information at multiple 'time scales'

Fisher Information and Accuracy

- Case where the stimulus (may) vary continuously
$-\mathrm{p}(\mathrm{r} \mid \mathrm{s})$ is a continuous function of the stimulus.
$-\mathrm{p}(\mathrm{r} \mid \mathrm{s})$ is maximum at the value of s_{r} that gives the response \mathbf{r}.

$\mathrm{P}(\mathrm{r} \mid \mathrm{s})$ NOT very selective (small variation in $\mathrm{s} \rightarrow$ small variations in p)

Small curvature

$\mathrm{P}(\mathrm{r} \mid \mathrm{s})$ very selective
(small variation in $\mathrm{s} \rightarrow$ large variations in p)
\square
Large curvature

> 'rich' information about s

Fisher Information

- Definition

$$
F(s)=\left\langle-\frac{\partial^{2} \log (p(r \mid s))}{\partial^{2} s}\right\rangle_{r}
$$

in most conditions, $F(s)$ can also be written:

$$
F(s)=\left\langle\left(\frac{\partial \log (p(r \mid s))}{\partial s}\right)^{2}\right\rangle_{r}=\sum_{r} p(r \mid s)\left(\frac{\partial \log (p(r \mid s))}{\partial s}\right)^{2}
$$

Note: $F(s) \geq 0$

Fisher Information and accuracy

- Imagine a stimulus is presented many times (i.e. multiple trials).
$\mathbf{S}(\mathrm{s})=$ Estimation of a stimulus, given the responses (whatever the algorithm!)

$$
\mathrm{b}(\mathrm{~s})={ }^{\prime} \text { bias }^{\prime}=\langle\mathbf{S}\rangle_{\text {trials }^{-s}}
$$

$\sigma(\mathrm{s})=$ variance $(\mathbf{S})=$ 'how good one is at estimating the stimulus'

- Fisher Information: A measure of encoding accuracy: limit to the accuracy with which any decoding scheme can extract information about a stimulus.
- Fisher Information is used in 'estimation theory'.
- See also Kanitscheider et al. (2015).

Fisher Information and discriminability

- Fisher Information can also be used to measure discriminability

High estimation accuracy

High discriminability

$$
d^{\prime}=\frac{\Delta \mu}{\sigma}\left\{\begin{array}{c}
\text { If unbiased estimator: } \\
\Delta \mu=\Delta s_{e s t}=\Delta s \\
\text { If optimal estimator: } \\
\sigma(s)=\frac{1}{F(s)}
\end{array}\right.
$$

\rightarrow The larger the Fisher information, the larger the (potential) discriminability

Fisher Information of a population of neurons

- Fisher information is additive

For N independent neurons:

$$
F_{t o t}(s)=\sum_{i=1}^{N} F_{i}(s)
$$

- Case where neurons have a tuning curve

$$
F_{t o t}(s)=T \sum_{i=1}^{N} \frac{\left(f_{i}^{\prime}(s)\right)^{2}}{\sigma_{i}^{2}(s)}
$$

Variance of the spike count of neuron in response to s
\rightarrow A neuron contributes the most to the information of a population of neurons for stimuli that make its firing rate change significantly (not for stimuli that elicit maximal firing rates), and/or when spike count variance is small.

Fisher Information

Fun facts:

- Our ability to discriminate sounds is not sensitive to overall sound intensity
- Our encoding of sounds is 'efficient', no matter what sound intensity
- The change in firing rate of Inferior Collicullus neuron is limited to 35 dB (hearing spans 0-120 dB)

How is efficiency achieved?

Fisher Information

- Anesthetized guinea pig with earphones, inferior colliculus.
- Stimuli: 7 min trains of 50 ms white noise bursts sequence of $\sim \mathrm{X} \mathrm{dB}$ each.

Stimuli:

Fisher Information

- Firing rate function shifts towards most probable sound level (never below control).
- Reduction in slope with high sound levels.

Fisher Information

- Do the shift and slope changes improve 'coding accuracy'.
- Nothing is known of the actual way sounds are coded...
$\xrightarrow{\square}$ Use information theory!

Accuracy = 'variance of spike count of the estimate'.
Bounded by $1 / \mathrm{F}(\mathrm{s})$
The bound can in principle be reached (Max Likelihood estimator)

Use Fisher Information as a measure of 'accuracy'

$$
\left.\begin{array}{l}
f_{a}(s)=\sum_{r} P_{a}[r \mid s]\left(\frac{d \ln P_{a}[r \mid s]}{d s}\right)^{2} \\
\mathrm{~s}=\text { sound level } \\
\mathrm{r}=\text { spike count in } 50 \mathrm{~ms}(8 \mathrm{~ms} \text { delay })
\end{array}\right\} F(s)=\sum_{a} f_{a}(s)
$$

Fisher Information

- Peak in Fisher information is at or near the mean stimulus intensity
\rightarrow Highest stimulus coding accuracy

$$
\begin{array}{r}
f_{a}(s)=\sum_{r} P_{a}[r \mid s]\left(\frac{d \ln P_{a}[r \mid s]}{d s}\right)^{2} \\
F_{\text {tot }}(s)=T \sum_{i=1}^{N} \frac{\left(f_{i}^{\prime}(s)\right)^{2}}{\sigma_{i}^{2}(s)}
\end{array}
$$

(Dean et al.2005)

Rate-level function shift

Fisher Information

- Mixed presentations of pairs of sound level distributions - Population Fisher information

$$
F(s)=\sum_{a} f_{a}(s)
$$

Peak 'accuracy' at upper boundary of probability distribution

\rightarrow Adaptation to stimulus level for (potential) maximal accuracy

$\mathrm{F}_{\mathrm{tot}}(\mathrm{s})$

Sound level (dB SPL)

Fisher Information

- Adaptation to stimulus variance?

$\mathrm{F}_{\text {tot }}(\mathrm{s})$
(Dean et al.2005)
\rightarrow Slight adaptation of accuracy to stimulus variance in spite of lack of firing rate adaptation

Fisher Information

- Adaptation to stimulus bimodality?
(Dean et al.2005)

No firing rate-level adaptations

Accuracy adaptation of the population

Note: in general...
high threshold neurons \rightarrow shift towards the high sound-level probability peak low threshold neurons \rightarrow shift towards the low sound-level probability peak

