Class 13

- Final: Wednesday May 11t
- Projects write ups due Friday May 13t™, noon.



What iIs information?
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What does the response of a neuron tell us about a stimulus?

(e.g. orientation, color, facial identity...)
Vs.

How much does the response of a neuron tell us about a stimulus?
(e.g. 20%, 50%, 3 bits ... information capacity’)

2> Need family of stimuli, many trials




Information Theory

Claude Elwood Shannon
1916-2001

- A Mathematical Theory of Communication (1948). Bell Labs.

Information < Communication

- “The fundamental problem of communication is that of reproducing at one

point either exactly or approximately a message selected at another point™.

- The information content of a message consists of the number of 1s and Os it
takes to transmit It.

- But...: The goal of the nervous system is not just to transmit information



Entropy

Hypothesis: Neural response (spike train) constitute a (noisy) code.
Entropy: measure of the capacity of the ‘code’.

- Response characterized by firing rate (e.g. Nb spikes/Trial length)
- Shannon Entropy = measure of how ‘surprising/interesting’ a response is.

P(r)= probability of getting response r
h(P(r)) = entropy of r = measure of ‘surprise/interest’

Properties:
-h(1) > 0, h(0) - large positive
- Surprise/interest for 2 independent neurons: h(pl.p2)=h(pl)+h(p2)
2?7?

(PO =—log,(P(T)  H =S W) :—z@ogm(r»

(across a set of responses)



Entropy

H => W.h(P(r)) =-> W, log , (P(r))

Constraints on W,:
- Responses with very small (0) probability should contribute 0 ‘surprise’.
- Responses with very large probability (1) should contribute 0 ‘surprise’.

H =-> P(r)log,(P(r))

- If a neuron responds reliably only 1 way with rate r: H=0
- If a neuron responds in only one of 2 ways rl, r2:
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p(rl)+p(r2)=1 and
H =—(1- p(r1))log,(d— p(rl)) — p(rl)log,(p(rd) = H(x=rl)

A code consisting of only 2 responses has H
maximum entropy when both responses are -
equally likely: 1 bit entropy.
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Mutual Information

- Entropy Is a measure of general response variability (all stimuli/response
together).

- There Is information about a particular stimulus if the variability in response
to repeated presentation of that stimulus is smaller than the variability in
response to repeated presentations of all-different stimuli.

Entropy of the responses due to s (only):

H, == P(r|s)log,(P(r|s))

Need to measure ‘surprise/variability’ not due to stimulus variation? .

> P(s)H, =noise entropy =H,

Aboutr  Abouts

M=H-H, H =-3"W, log,,(P())

M= Mutual Information: How much entropy is actually used. How much
knowing r reduces the uncertainty about s having occurred.



Mutual Information

M=H-H,
M =—>"P(r)log( P(r))— Y P(s)H,
=—> P(r)log(P(r))+ >_P(s)P(r | s) log( P(r s)

By definition of conditional probability P(r) =) P(s)P(r|s)

M =S P(S)P(r|s) Iog[P(rls)]

P(r)




Mutual Information

P(r)= 2 P(s)P(r|s)

Y
P(r,s) = ‘joint probability’ = P(r)P(s|r)

P(r,s) = probability of stimulus s appearing and response r being evoked.

P(r)P(s)

M :ZP(r,S)Iog{ P(r, ) j

Note: Information that a set of responses conveys about a set of stimuli =
Information that a set of stimuli conveys about a set of responses.



Mutual Information: Fun facts

- If responses are unrelated to the identity of the stimulus

M =>"P(s)P(r|s)log 2(

= P(l9=P() =) M=0 ERETAREE

P(r|s)
P(r)

- If each stimulus s reliably produces a different response r,

=) P(r)=P(s) mmm) P(rs)=1only if r=r,.

M = Z P(s)P(r|s)log 2( Pér(l;)j = P(s) log z[ P(lr )J

M =-P(s)log,(P(s)) ¢=) M =Entropy of the stimulus



Mutual Information: Fun facts

- Case when there are only 2 responses (rl and r2) to 2 stimuli (s1 and s2).
The probability of incorrect response is P; (< 0.5). If s1 and s2 are presented
with equal probability.

& Prob to be correct: P(rl|s1)=P(r2|s2)=1-P;
Prob to be wrong: P(rl|s2)=P(r2|s1)=P;
P(s1)=P(s2)=1/2
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M=1+(1-P;)log,(1-P;)+P;log,(P;)

and ...
P.=0 - M=1 bit
P.=1/2 (random) - M=0
(P=1 - M=1Dbit)

1 1 1 1 1. 1 1 1 1
1] 0.1 02 03 04 05 06 07 08 02 1

(Note: P; > % : swap 1 and 2!) P,




Mutual Information

- Neurons are used for decoding: what is the probability of having sl if rl is
observed?

P(s1|rl) = P(r1|s1)P(s1)/P(rl) «— Bayes theorem
- l'PI

Before measurement: the expectation of getting sl is 1/2. After measurement
the expectation becomes 1-P;.

1/2 1-P

v

There iIs an increase in probability.

M There Is an increase in certainty.

B> There is a decrease in uncertainty = M.




Mutual Information: KL

- Addendum

Kullback-Leibler (KL) divergence is a kind of statistical ‘distance’
between 2 distributions:

P(r)
D(P P(r)|
(P,Q) = Z (r) OQZ(Q(r)j

)

m=m)  M=D(P(r,s),P(s)P(M))

M is the KL divergence (‘distance’) between the actual probability distribution
and the probability distribution if stimuli and responses were independent
from each other.



Synchrony and information

- Can synchrony (potentially) carry information about movement direction?

Is it related to firing rate?
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Synchrony and information

- Synchrony log-linearly decreases with cortical distance
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Information and Synchrony
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Information and Synchrony

- Directional tuning in synchrony is different from direction tuning in firing rate
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Information and Synchrony

M = P(s)P(r s) |ogz(P(Ir | S)j

- Mutual information between synchronous P(r)

(coincident) neurons and movement direction

M = P(dir) > P(coinc|dir)log,

dir coinc

(P(coinc| dir)j

P(coinc)

P(dir) = probability of a movement direction = set by experimenter (= stimulus).
P(coinc) = probability of finding coincident spikes (= response).



Information and Synchrony

- Temporal variations of mutual information at multiple ‘time scales’

Trial B @paer I‘
shufflings !

0.05 hits/50ms bin

Synchrony time
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=>» Increase in mutual
Information after mvt onset
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Z score

(Hastopoulos et al, 1998)



Fisher Information and Accuracy

- Case where the stimulus (may) vary continuously
- p(r|s) is a continuous function of the stimulus.
- p(r|s) I1s maximum at the value of s, that gives the response r.

H”S) P(rls
S, S
P(r|s) NOT very selective ~ P(rls) very selective
(small variation in s = small variations in p) (small variation in s - large variations in p)
Small curvature Large curvature
‘poor’ information ‘rich’ information

about s about s




Fisher Information

- Definition

F(s) = <_ 0 Iogg fs(r | s))>

In most conditions, F(s) can also be written:

. <[a oy plr s))] > S o S)(a oy plr s))j

Note: F(s) >0



Fisher Information and accuracy

- Imagine a stimulus Is presented many times (i.e. multiple trials).

S(s) = Estimation of a stimulus, given the responses (whatever the algorithm!)

b(s)= ‘b1as’=<S>yjys- S

o(S) = variance (S) = ‘how good one is at estimating the stimulus’

0(S)>—— <+— ‘Cramer-Rao bound’
F(s)

‘=*1f S(s) is the optimal estimator

- Fisher Information: A measure of encoding accuracy: limit to the accuracy
with which any decoding scheme can extract information about a stimulus.

- Fisher Information is used 1n ‘estimation theory’.
- See also Kanitscheider et al. (2015).



Fisher Information and discriminability

- Fisher Information can also be used to measure discriminability

High estimation accuracy

??L

/If unbiased estimator:

High discriminability

A= As , = AS
A /
d'==t =D d'=As,/F(s)
o If optimal estimator:
1
o(S)=——
_ F(s)

=>» The larger the Fisher information, the larger the (potential) discriminability



Fisher Information of a population of neurons

- Fisher information is additive
For N independent neurons:

rientation (deg)
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—> A neuron contributes the most to the information of a population of neurons
for stimuli that make its firing rate change significantly (not for stimuli that
elicit maximal firing rates), and/or when spike count variance is small.



Fisher Information

Fun facts:

- Our ability to discriminate sounds is not sensitive to overall sound intensity
- Our encoding of sounds is ‘efficient’, no matter what sound intensity

- The change in firing rate of Inferior Collicullus neuron is limited to 35 dB
(hearing spans 0-120 dB)

How is efficiency achieved?
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(Dean et al.2005)



Fisher Information

- Anesthetized guinea pig with earphones, inferior
colliculus.

- Stimuli: 7 min trains of 50 ms white noise bursts
sequence of ~X dB each.

Stimuli:

High probability sound (~63 dB)
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(Dean et al.2005)



Fisher Information
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- Firing rate function shifts towards most probable sound level (never below
control).

- Reduction in slope with high sound levels.



Fisher Information

- Do the shift and slope changes improve ‘coding accuracy’.
- Nothing is known of the actual way sounds are coded...

IE==) Use information theory!

Accuracy = ‘variance of spike count of the estimate’.

Bounded by 1/F(s)
The bound can in principle be reached (Max Likelihood estimator)

im=) Use Fisher Information as a measure of ‘accuracy’
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> F(s) = E_.ﬂ- (s)

s = sound level
r = spike count in 50 ms (8 ms delay) _J




Fisher Information

- Peak in Fisher information is at or near the mean fus) = D Pk (f”“ij_[r's])_
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Fisher Information

- Mixed presentations of pairs
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Fisher Information

- Adaptation to stimulus variance?
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—> Slight adaptation of accuracy to stimulus variance in spite of lack of
firing rate adaptation



Fisher Information

- Adaptation to stimulus bimodality?
(Dean et al.2005)
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Note: in general...

high threshold neurons - shift towards the high sound-level probability peak
low threshold neurons - shift towards the low sound-level probability peak



