
Class 13

- Final: Wednesday May 11th

- Projects write ups due Friday May 13th, noon.



What is information?

What does the response of a neuron tell us about a stimulus?
(e.g. orientation, color, facial identity…) 

Vs.

How much does the response of a neuron tell us about a stimulus?
(e.g. 20%, 50%, 3 bits …’information capacity’)

Stimulus

Need family of stimuli, many trials

…
processing processing



- A Mathematical Theory of Communication (1948). Bell Labs.

- “The fundamental problem of communication is that of reproducing at one 

point either exactly or approximately a message selected at another point”.

- The information content of a message consists of the number of 1s and 0s it 

takes to transmit it. 

- But…: The goal of the nervous system is not just to transmit information

Claude Elwood Shannon

1916-2001

Information Theory

Information  Communication



Entropy

Entropy: measure of the capacity of the ‘code’.

Hypothesis: Neural response (spike train) constitute a (noisy) code.

- Response characterized by firing rate (e.g. Nb spikes/Trial length)

- Shannon Entropy = measure of how ‘surprising/interesting’ a response is.

P(r)= probability of getting response r

h(P(r)) = entropy of r = measure of ‘surprise/interest’

Properties:

- h(1) → 0,      h(0) → large positive

- Surprise/interest for 2 independent neurons: h(p1.p2)=h(p1)+h(p2)
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Entropy

Constraints on Wr: 

- Responses with very small (0) probability should contribute 0 ‘surprise’.

- Responses with very large probability (1) should contribute 0 ‘surprise’.
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- If a neuron responds reliably only 1 way with rate r: H=0

- If a neuron responds in only one of 2 ways r1, r2:

p(r1)+p(r2)=1  and
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A code consisting of only 2 responses has 

maximum entropy when both responses are 

equally likely: 1 bit entropy.

H

P(r1)



Mutual Information
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M= Mutual Information: How much entropy is actually used. How much 

knowing r reduces the uncertainty about s having occurred.

- Entropy is a measure of general response variability (all stimuli/response 

together).

- There is information about a particular stimulus if the variability in response 

to repeated presentation of that stimulus is smaller than the variability in 

response to repeated presentations of all-different stimuli.

−=
r

s srPsrPH ))|((log)|( 2

nHentropy noise )( ==
s

sHsP

Entropy of the responses due to s (only):

Need to measure ‘surprise/variability’ not due to stimulus variation? :
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Mutual Information
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Mutual Information
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P(r,s) = ‘joint probability’ = P(r)P(s|r)

P(r,s) = probability of stimulus s appearing and response r being evoked.

 







=

sr sPrP

srP
srPM

,

2
)()(

),(
log),(

Note: Information that a set of responses conveys about a set of stimuli = 

Information that a set of stimuli conveys about a set of responses.



Mutual Information: Fun facts
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- If each stimulus s reliably produces a different response rs

P(rs)=P(s) P(r|s)=1 only if r=rs.
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Mutual Information: Fun facts

- Case when there are only 2 responses (r1 and r2) to 2 stimuli (s1 and s2). 

The probability of incorrect response is Pi (< 0.5). If s1 and s2 are presented 

with equal probability.

Prob to be correct:   P(r1|s1)=P(r2|s2)=1-Pi

Prob to be wrong:   P(r1|s2)=P(r2|s1)=Pi

P(s1)=P(s2)=1/2

M=1+(1-Pi)log2(1-Pi)+Pilog2(Pi)

Pi

Pi=0 →M=1 bit 

Pi=1/2 (random) →M=0

(Pi=1 →M=1bit)

(Note: Pi > ½ : swap 1 and 2!)
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Mutual Information

- Neurons are used for decoding: what is the probability of having s1 if r1 is 

observed?

P(s1|r1) = P(r1|s1)P(s1)/P(r1) Bayes theorem

= 1-Pi

1/2 1-Pi

Before measurement: the expectation of getting s1 is 1/2. After measurement 

the expectation becomes 1-Pi.

There is an increase in probability.

There is an increase in certainty.

There is a decrease in uncertainty = M.

M

Pi



Mutual Information: KL
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- Addendum

Kullback-Leibler (KL) divergence is a kind of statistical ‘distance’ 

between 2 distributions:
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M=D(P(r,s),P(s)P(r))

M is the KL divergence (‘distance’) between the actual probability distribution 

and the probability distribution if stimuli and responses were independent 

from each other.



Synchrony and information

Delay Movement

~0.5s 1-1.5 s

CHT

- Can synchrony (potentially) carry information about movement direction? 

Is it related to firing rate?

M1

(Hastopoulos et al, 1998)

Experiment timeline



Synchrony and information

Cross-correlograms

(1ms bin)

PSTH

Data 0-lag

Shuffled 0-lag

(Hastopoulos et al, 1998)

mvt onset

(all mvt directions)

(single mvt direction)

Autocorrelograms

(1ms bin)

neuron1 neuron2

pair1 pair2

Spikes from 0-lag bin 

- Synchrony log-linearly decreases with cortical distance

>1 



Information and Synchrony

X-correlogram

Vs. time

Nb pairs with 

synchrony peaks

Sliding (100 ms) 

x-correlations

at 0-lag

Firing rates

Synchrony varies with

movement direction: 

i.e. potentially carries 

information

Time when synchrony 

occurs (/mvt onset)

Pair 1-2

Pair 1-3

(Hastopoulos et al, 1998)

Synchrony 

does not 

depend on 

firing rate

Same cell, different 

pairs → Different 

patterns of synchrony



Information and Synchrony

Movement:
Oscillations

Firing rate

direction tuning

for n1 and n2

Significant

Synchrony tuning

0-lag

‘synchrony tuning’ –

‘firing rate tuning’

- Directional tuning in synchrony is different from direction tuning in firing rate

(Hastopoulos et al, 1998)

X-Cor

Bin=Synchrony ‘time scale’



Information and Synchrony
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- Mutual information between synchronous 

(coincident) neurons and movement direction
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P(dir) = probability of a movement direction = set by experimenter (= stimulus).

P(coinc) = probability of finding coincident spikes (= response).



Information and Synchrony

Trial 

shufflings

Synchrony time

scale

5 ms

green

=

significant

(all incl.)
1 ms

5 ms

15 ms
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(Hastopoulos et al, 1998)
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- Temporal variations of mutual information at multiple ‘time scales’

Mvt onset

➔ Increase in mutual 

information after mvt onset 

is robust with respect to 

time scale



Fisher Information and Accuracy

- Case where the stimulus (may) vary continuously

- p(r|s) is a continuous function of the stimulus.

- p(r|s) is maximum at the value of sr that gives the response r.

sr

P(r|s)

sr

P(r|s)

P(r|s) very selective

(small variation in s → large variations in p)
P(r|s) NOT very selective

(small variation in s → small variations in p)

Small curvature Large curvature

‘poor’ information

about s
‘rich’ information

about s



Fisher Information
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in most conditions, F(s) can also be written:

Note: F(s) ≥ 0

- Definition



Fisher Information and accuracy

- Fisher Information: A measure of encoding accuracy: limit to the accuracy 

with which any decoding scheme can extract information about a stimulus.

- Fisher Information is used in ‘estimation theory’. 

- See also Kanitscheider et al. (2015).

- Imagine a stimulus is presented many times (i.e. multiple trials). 

S(s) = Estimation of a stimulus, given the responses (whatever the algorithm!)

b(s)= ‘bias’=<S>trials- s

s(s) = variance (S) = ‘how good one is at estimating the stimulus’
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Fisher Information and discriminability
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High estimation accuracy

High discriminability

If unbiased estimator:

ssest ==

??

If optimal estimator:

➔ The larger the Fisher information, the larger the (potential) discriminability

- Fisher Information can also be used to measure discriminability



Fisher Information of a population of neurons

- Fisher information is additive

For N independent neurons:
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- Case where neurons have a tuning curve

( )


=


=

N

i i

i
tot

s

sf
TsF

1
2

2

)(

)(
)(

s

f1(s)

→A neuron contributes the most to the information of a population of neurons 

for stimuli that make its firing rate change significantly (not for stimuli that 

elicit maximal firing rates), and/or when spike count variance is small.

Variance of the spike count of neuron i in response to s

Slope of the rate function



Fisher Information

Fun facts:

- Our ability to discriminate sounds is not sensitive to overall sound intensity

- Our encoding of sounds is ‘efficient’, no matter what sound intensity

- The change in firing rate of Inferior Collicullus neuron is limited to 35 dB 

(hearing spans 0-120 dB)

How is efficiency achieved?

(Dean et al.2005)



Fisher Information

- Anesthetized guinea pig with earphones, inferior 

colliculus.

- Stimuli: 7 min trains of 50 ms white noise bursts 

sequence of ~X dB each.

(Dean et al.2005)

High probability sound (~63 dB)

Stimuli:

50ms

63dB



Fisher Information

Equiprobable (mixed) sound levels

(control rate function)

39 dB

51 dB

63 dB

75 dB

Unimodal

Sound level distributions

- Firing rate function shifts towards most probable sound level (never below 

control).

- Reduction in slope with high sound levels.

(Dean et al.2005)

Cannot adapt to 

sub-control 

levels

→ Neuron FR curve adapts to the statistics of the stimulus



Fisher Information

- Do the shift and slope changes improve ‘coding accuracy’.

- Nothing is known of the actual way sounds are coded…

Use information theory!

Accuracy = ‘variance of spike count of the estimate’.

Bounded by 1/F(s)

The bound can in principle be reached (Max Likelihood estimator)

Use Fisher Information as a measure of ‘accuracy’

s = sound level

r = spike count in 50 ms (8 ms delay)



Fisher Information

fa(s)

Rate-level function

shift

fa(s)

shift

(Dean et al.2005)
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- Peak in Fisher information is at or near the mean 

stimulus intensity

→ Highest stimulus coding accuracy



Fisher Information

Ftot(s)

- Mixed presentations of pairs 

of sound level distributions

- Population Fisher 

information

Peak ‘accuracy’ at upper 

boundary of probability 

distribution

(Dean et al.2005)

(4 mixed levels)

➔Adaptation to stimulus 

level for (potential) 

maximal accuracy



Fisher Information

- Adaptation to stimulus variance?

2x

2x

Ftot(s) (Dean et al.2005)

atypical

typical

→ Slight adaptation of accuracy to stimulus variance in spite of lack of 

firing rate adaptation



Fisher Information

- Adaptation to stimulus bimodality?

Ftot(s)
No firing rate-level adaptations

Accuracy adaptation of 

the population

high threshold neurons → shift towards the high sound-level probability peak

low threshold neurons → shift towards the low sound-level probability peak

(Dean et al.2005)

Note: in general…


