Class 12

Cross-correlation

Autocorrelation: Is one spike of a spike train correlated with another spike of the same spike train (t' sec later/sooner)?
Cross-correlation: Is one spike of **neuron1** correlated with another spike of **neuron2** (t' sec sooner or later)?

 \rightarrow Need: reference neuron **and** common time scale (simultaneous recordings, or stimulus locking) **and** time bin.

Cross-correlation

$$C_{1,2}(t') = \left\langle \frac{1}{T} \int_{0}^{T} x_{1}(t) x_{2}(t+t') dt \right\rangle_{trials}$$

Absolute spike-spike correlation. Problem if mean firing rates are very different

Cross-covariance

- Cross-covariance: How deviation from mean firing rate in **neuron1** is correlated with deviation from mean firing rate in **neuron2**.

$$Cov_{1,2}(t') = \left\langle \frac{1}{T} \int_{0}^{T} (x_{1}(t) - \mu_{1}(t))(x_{2}(t+t') - \mu_{2}(t+t'))dt \right\rangle_{trials}$$

Time varying mean rate (across trials)
$$Cov_{1,2}(t') = \frac{1}{T} \int_{0}^{T} \langle x_{1}(t)(x_{2}(t+t')) \rangle dt - \frac{1}{T} \int_{0}^{T} \mu_{1}(t)\mu_{2}(t+t')dt$$

Problem: the variation of firing within a trial may be very different between **neurons1** and **neuron2**.

Cross-correlation

- Cross correlation coefficients

$$h(t') = \frac{Cov_{1,2}(t')}{\sigma_1 \sigma_2}$$
$$\sigma_1^2 = \left\langle \frac{1}{T} \int_0^T (x_1(t) - \mu_1(t))^2 dt \right\rangle$$

h(t) is the firing 'probability' of 2, given that 1 has fired. In [-1 1].

- problem: time varying mean firing rate needs to be estimated

$$Cov_{1,2}(t') = \frac{1}{T} \int_{0}^{T} \langle x_{1}(t)(x_{2}(t+t')) \rangle dt - \frac{1}{T} \int_{0}^{T} \mu_{1}(t)\mu_{2}(t+t')dt$$

Cross-Correlation – in practice

- Measure the inter-spike-interval between any two spikes in the two spike trains.
- Build a histogram of these values between –TimeLag and +TimeLag.
- - Cross-correlogram

Pure shift

100 ms

Cross-correlation

Pure shift + jitter

100 ms

Cross-correlation

Independent spike trains

100 ms

Cross-correlation: Corrections and significance

- Correction for random correlations:

1- Compare with 2 Poisson trains with same mean firing rate.

2- Shuffle the ISIs of the original trains.

Compute the (shuffled) cross-correlation.

Subtract from original cross-correlation.

- Scale correction: Divide each bin by binSize (\rightarrow Hz)

Cross correlation uses the time average of all correlations. What if the correlations are not stationary? Are there fluctuations in 'effective connectivity'?
Joint peristimulus (spike) time scatter diagram:

Multiple trials for neurons 1 and neurons 2 OR 2 simultaneous recordings of 2 neuronal populations

- 2 independent neurons/populations

🛃 Figure 1	
<u>File Edit View Insert Tools Desktop Window H</u> elp	Ľ
🗅 🛥 🖬 🎒 💊 🔍 🏵 🐙 🔲 📰 🔲 🗔	
(s) efficiency (s)	

📣 Figure 2

8

<u>File Edit View Insert Tools Desktop Window H</u>elp

👠 🔍 🔍 🕲 🐙 🔲 📰 💷 🗆

- From scatter plots to histograms: JPSTH. Bin the scatterplot.

- From scatter plots to histograms: Near coincidence Histogram

- From scatter plots to histograms: Cross-correlation

- \rightarrow divide by nb bins

- Building the JPSTH, PSTHs and Cross-correlogram

JPSTH: contains mixture of stimulus and neuron interaction effects

- Separating the stimulus effect from the neural interaction effects: Shift predictor

Averaging across all shifts ⇔ Cross-products of PSTHs (PSTprod).
 Estimate of:

(Aertsen et al. 1989)

- problem: Firing rate modulations (due to the stimulus) may not be stationary

- Normalization (due to chance)

 \rightarrow Divide by the standard deviation of the shift predictor:

(Aertsen et al. 1989)

Conclusion: Effective/significant neural interactions dynamics

Coherence / Coherency

Cross-correlation coefficients:
$$h(t') = \frac{Cov_{1,2}(t')}{\sigma_1 \sigma_2}$$

- problem: What if there are intrinsic correlations within each spike train?

→ Coherence, Coherency

$$\gamma(w) = \frac{fft(Cov_{1,2}(t'))}{\sqrt{fft(Cov_{1,1}(t')fft(Cov_{2,2}(t'))}} = \frac{XPower_{1,2}(w)}{\sqrt{PS_1(w)PS_2(w)}}$$

'removes' contribution of internal spike train structure (e.g. bursts)

Zebra Finch

- Social animals monogamous
- Males learn specific songs
- Songs elicit very precise firing (away from sensory neurons)

Song learning and production circuit

Coherency

⁽Kimpo et al, 2003)

Coherency

- Extracting 'true', stimulus-independent, correlations

⁽Kimpo et al, 2003)

- Different ways to measure population behavior

Local Field Potential

Typically: filtered 1-200 Hz

- Measuring relationships between 1 cell and 1 population: STA of the LFP

Problem: what if the LFP's frequency is non-stationary or non-unimodal?

- Understanding Spike-Field Coherence: Toy example

- Step 2

- Step 3

Spike-Field Coherence: amount of synchrony at each particular frequency

- Spike Field coherence is a linear measure of synchrony

- Visual attention: Directing visual processing toward particular visual objects

Eye Movements of Reading

Viewing a Face

- What happens to visually-responsive cells during attention ?

- Data

→ More gamma synchrony during stim presentation, if attended

- Distracter close to the receptive fields: Same effects and suppression of firing rate when attention is just outside the RF \rightarrow Attention is competitive.

- Attention-mediated changes of height of peak in SFC for (L)ow frequency, (G)amma frequency, Vs. Firing (R)ate change

Effect of Attention:

Delay: decrease SFC at low freq., increase SFC at gamma freq.

Stim: same, plus increase in Firing Rate

- Poststimulus Firing rate and LFP (Visual Evoked Potentials)

- First 100 ms after stimulus onset: gamma synchrony is modulated by attention

