Class 10

Population code

- Population code: how are units 'functionally' grouped?
- Units working together are 'correlated' $\leftarrow \rightarrow$ during a set of experiments (e.g. multiple stimulations) units are not functionally independent.

Why are two neurons correlated?

- Because of interconnections within the population recorded $(1,2)$
- Because of interconnections through
some un-recorded neuron $(1,4)$
- Because of common inputs $(5,6)$

- Goal: Find groups of neurons such that the correlation within a group is high, and such that the groups are as uncorrelated as possible.

Population

- Goal: Find groups of neurons such that the correlation within a group is high, and such that the groups are as uncorrelated as possible.
- Method 1: Use Clustering

\rightarrow Precise temporal information, short time scales clusters, pair-wise correlations

Principal Component Analysis

- Goal: Find groups of neurons such that the correlation within a group is high, and such that the groups are as uncorrelated as possible.

\Leftrightarrow

Find linear combinations of neurons outputs that give a maximal variance.

- Method 2: Use Principal Component Analysis
- For each experimental condition, each neuron is characterized by one number: Firing rate.

Principal Components Analysis

Collect data: N neurons, E experiments

- Step 1: Form a data structure

F experiment, neuron

	Neuron 1	Neuron 2	Neuron 3	Neuron N
Experiment 1	(F11	F12	F13	F1N
Experiment 2	F21	F22	F23	F2N
.	F31	F32	F33	F3N
\cdot	-	-	-	
-
-	-	-	.	-
Experiment E	FE1	FE2	FE3	FEN

Principal Components Analysis

- Step 2: Compute the correlation matrix C of F. Corrcoef()

$$
\begin{aligned}
& \mu_{i}=\left\langle F_{k, i}\right\rangle \\
& \operatorname{cov}\left(n_{i}, n_{j}\right)=\left\langle\left(F_{k i}-\mu_{i}\right)\left(F_{k j}-\mu_{j}\right)\right\rangle \\
& \text { (average across experiments) }
\end{aligned}
$$

$$
c_{i, j}=\operatorname{cor}\left(n_{i}, n_{j}\right)=\frac{\operatorname{cov}\left(n_{i}, n_{j}\right)}{\sigma_{i} \sigma_{j}}
$$

$$
C=\left(\begin{array}{cc}
1 & 0.99 \\
0.99 & 1
\end{array}\right)
$$

- Step 3: Diagonalize C. eig()
eigenvectors

$$
\begin{array}{l}
C . V=V . D \\
C=V . D . V^{-1}
\end{array} \underbrace{\left(\begin{array}{c}
-0.707 \\
0.707
\end{array}\right.}_{\mathrm{V}_{1}} \begin{array}{l}
0.707 \\
0.707
\end{array})
$$

eigenvalues

$$
D=\left(\begin{array}{cc}
0.004 & 0 \\
0 & 1.99
\end{array}\right)
$$

Principal Components Analysis

- Eigenvalues and Eigenvectors $=$ Principal components

Explained variance (\%)

$$
\mathrm{EV}_{\mathrm{i}}=\frac{\text { Eigenvalue }_{i}}{\sum_{j} \text { Eigenvalue }_{j}}
$$

$$
\mathrm{EV}_{1}=99.9 \%
$$

- Kaiser Criterion: Any eigenvector associated with an eigenvalue less then 1 contains less variance than the original dimensions.
\rightarrow Only keep eigenvectors with eigenvalues > 1

Principal Components Analysis

- Step 4: Sort the PC by their eigenvalue. Project to PC space (keep only the most significant components)

Projections of the Original Data

- Step 5: ‘Analyze' the coordinate of the significant PCs:
\rightarrow do they 'mean' anything?

PCA: More examples

- Example: 2 or more significant PCs

$$
D=\left(\begin{array}{cc}
0.97 & 0 \\
0 & 1.02
\end{array}\right)
$$

$$
V=\left(\begin{array}{cc}
-0.707 & -0.707 \\
-0.707 & 0.707
\end{array}\right)
$$

Principal Components Analysis

- In vivo behaving- recording from barrel cortex. 23 VPM neurons, multiple experimental conditions.

Barrel cortex

Questions: Are the VPM neural population response recorded co-related? If so, to what?

Principal Components Analysis

Simple case: 2 neurons

(Chapin, Nicolelis 1999)

Principal Components Analysis

A.

Spontaneous behavior 25 ms bins

Neuron receptive field centers (whisker row-column)
Rostral $\leftarrow----->$ Caudal
B.

behavior

 10 ms binsC. Whisker
stimulation
10ms bins 10 ms bins
\rightarrow PC1

- PC2 - +- PC4 - PC5
- All 23 neurons. Interpreting the PCs...
- PC1: non topographical. Global activity of all neurons.
- PC2: rostrocaudal gradient
- PC3: dorso-lateral gradient
- PC4: D2 Vs E2 neurons

(Chapin, Nicolelis 1999)

Principal Components Analysis

- Infero-Temporal cortex - face cells

(Matsumoto et al, 2005)

Large Stimuli variations: 38 stimuli. Identity, expression, human/monkey/objects
Questions: Are population responses indicative of specific aspects of the stimuli? Do they selectivity vary in time?

Principal Components Analysis

- For each stimulus: 45 neurons, 50 ms overlapping time windows

(Matsumoto et al, 2005)
Note: large overlap between dimensions \rightarrow redundancy \rightarrow dimension reduction

Principal Components Analysis

- IT neurons carry different types of information. 3 examples.

Note: max discriminability occurs at different times for different features

Principal Components Analysis

- Project on the first 2 PCs.
- Compute the mean vector for global features (human, monkey, shape)
- Compute the pair-wise sum of distances between
 centers (human-face, face-shape, human-shape) in 50 ms windows
- Maximum occurs between 90 and 140 ms
- For fine features (identity, expression, shape form), maximum occurred between 140 and 190 ms .

- Interpret the PCs. Which neurons are contributing?

Global features

Fine features
[$140 \mathrm{~ms}, 190 \mathrm{~ms}$]

Principal Components Analysis

- High explained variance with only $2 / 45$ PCs
- No discrimination in the $1^{\text {st }} 50 \mathrm{~ms}$
- Shape is never discriminable
- Best global discriminability: 90140 ms
- Best fine discriminability: 140-190 ms
\rightarrow Time of maximal discriminability in PC space, for various features of the stimulus set.

(Matsumoto et al, 2005)

Independent Component Analysis: The basics

- The ground truth: 2 simultaneous noisy sources of information

Independent Component Analysis: The basics

- Cannot be distinguished by amplitude alone

Independent Component Analysis: The basics

- The reality: Recording $=$ Ft (Sources) $=$ Mixture
- The sources are not distinguishable from the recordings alone.

Independent Component Analysis: The basics

- ICA is a statistical method to find the underlying 'sources' hidden in a mixed set of signals.
- ICA works if sources are non Gaussian, and mutually independent
- ICA works if the sources are mixed linearly
- ICA is more general than PCA (and factor analysis): basis is not orthonormal
- PCA de-correlates (uses second order stats, e.g. variances), ICA de-mixes (e.g. uses kurtosis to assess Gaussian shapes)

- Is ICA always better than PCA?

What are the PCs? ICs?

Independent Component Analysis: The basics

Step 1: Whitening
Rescaling to make distribution of values of equal variance and zero cross-covariance

Independent Component Analysis: The basics

Whitening = making the data 'spherical'
If X is the matrix containing the sources in columns:

$$
Y=2(\sqrt{\operatorname{cov}(X)})^{-1} \cdot(X-\langle X\rangle)
$$

Note: in Matlab use: inv(), and sqrtm()

Independent Component Analysis: The basics

\rightarrow equal variance, diagonal covariance matrix (no cross co-variance)

Independent Component Analysis: The basics

Step 2: Find a rotation of the joint-density that maximizes the non-normality of the distribution (i.e. makes them as 'flat' as possible, hence 'independent')

Central limit theorem: a mixture of independent variables is more gaussian than the original variables

Independent Component Analysis: The basics

Step 3: fastICA (see code for details)
CD to the code 2.5 folder
Execute fasticag.m
Load the data and leave 'name of variable' blank.

