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Population code

6

- Population code: how are units ‘functionally’ grouped?

- Units working together are ‘correlated’ → during a set of experiments 

(e.g. multiple stimulations) units are not functionally independent.

Recorded 

units
- Because of interconnections within the 

population recorded (1,2)

- Because of interconnections through 

some un-recorded neuron (1,4)

- Because of common inputs (5,6)
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- Goal: Find groups of neurons such that the correlation within a group is 

high, and such that the groups are as uncorrelated as possible.

(1,2,4)  (3,4)  (5,6)

Why are two neurons correlated?



Population

- Goal: Find groups of neurons such that the correlation within a group is 

high, and such that the groups are as uncorrelated as possible.

● Method 1: Use Clustering

Reshaping
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➔ Precise temporal information, short time scales clusters, pair-wise correlations



Principal Component Analysis

● Method 2: Use Principal Component Analysis

- For each experimental condition, each 

neuron is characterized by one number: 

Firing rate.
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- Goal: Find groups of neurons such that the correlation within a group is high, 

and such that the groups are as uncorrelated as possible.



Find linear combinations of neurons outputs that give a maximal variance.



Principal Components Analysis
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- Step 1: Form a data structure

F experiment, neuron

Collect data: N neurons, E experiments



Principal Components Analysis

- Step 2: Compute the correlation matrix C of F. Corrcoef()
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- Step 3: Diagonalize C. eig()
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Principal Components Analysis

V2(0.004) V1(1.9)

- Eigenvalues and Eigenvectors = Principal components

- Kaiser Criterion: Any eigenvector associated with an eigenvalue less 

then 1 contains less variance than the original dimensions.

→ Only keep eigenvectors with eigenvalues > 1
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Principal Components Analysis
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- Step 4: Sort the PC by their eigenvalue. Project to PC space (keep only the 

most significant components)

- Step 5: ‘Analyze’ the coordinate of the significant PCs: 

→ do they ‘mean’ anything?



PCA: More examples
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- Example: 2 or more significant PCs

Neuron 1 (Hz)

N
eu

ro
n

 2
 (

H
z)

Neuron 1 (Hz)

N
eu

ro
n

 2
 (

H
z)



Principal Components Analysis

Barrel cortex

- In vivo behaving- recording from barrel cortex. 23 VPM neurons, multiple 

experimental conditions.

Questions: Are the VPM neural population response recorded co-related? If so, to what? 

(Chapin, Nicolelis 1999)

VentralPosteriorMedial

Nucleus Thalamus

?



Principal Components Analysis

(Chapin, Nicolelis 1999)

Simple case: 2 neurons



Principal Components Analysis

(Chapin, Nicolelis 1999)

- All 23 neurons. Interpreting the PCs…

- PC1: non topographical. Global activity of all neurons.

- PC2: rostrocaudal gradient

- PC3: dorso-lateral gradient

- PC4: D2 Vs E2 neurons

- …

PC2

PC3

A
B

C
D

23 neurons

Rostral ------→ Caudal



Principal Components Analysis

- Infero-Temporal cortex – face cells

(Matsumoto et al, 2005)

Large Stimuli variations: 38 stimuli. Identity, expression, human/monkey/objects

Questions: Are population responses indicative of specific aspects of the 

stimuli? Do they selectivity vary in time?



Principal Components Analysis

- For each stimulus: 45 neurons, 50 ms overlapping time windows

(Matsumoto et al, 2005)

45 x 300 Matrix

Note: large overlap between dimensions → redundancy → dimension reduction



Principal Components Analysis

3 Different people

3 Different people

4 Different expressions

(Matsumoto et al, 2005)

Neuron 1

Neuron 2

Neuron 3

Max information across curves 

(i.e. ‘discriminability’)

- IT neurons carry different types of information. 3 examples.

Stim presentation

Note: max discriminability occurs at different times for different features



Principal Components Analysis

(Matsumoto et al, 2005)

- Project on the first 2 PCs.

- Compute the mean vector for global features 

(human, monkey, shape)

- Compute the pair-wise sum of distances between 

centers (human-face, face-shape, 

human-shape) in 50ms windows

- Maximum occurs between 

90 and 140ms

- For fine features (identity, expression, 

shape form), maximum occurred 

between 140 and 190 ms.

- Interpret the PCs. Which neurons 

are contributing?

Not contributing

Contributing

Global features Fine features

Global features Fine features



Principal Components Analysis

(Matsumoto et al, 2005)

- High explained variance with only 

2/45 PCs

- No discrimination in the 1st 50ms

- Shape is never discriminable

- Best global discriminability: 90-

140 ms

- Best fine discriminability: 140-190 

ms

EV=67.7% EV=67.1%EV=34.2%

3 humans

4 monkeys

10 shapes

4 human expressions

4 monkey expressions

5 shape colors

control global fine

➔ Time of maximal 

discriminability in PC space, for 

various features of the stimulus set.



Independent Component Analysis: The basics

Time (s)
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- The ground truth: 2 simultaneous noisy sources of information



Independent Component Analysis: The basics

Joint Density
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Independent Component Analysis: The basics

- The reality: Recording= Ft (Sources) = Mixture

- The sources are not distinguishable from the 

recordings alone.

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

R
ec

o
rd

in
g

 1
R

ec
o

rd
in

g
 2

Time (s)

Cocktail party

Problem



Independent Component Analysis: The basics

- ICA is a statistical method to find the underlying ‘sources’ hidden in a mixed 

set of signals.

- ICA works if sources are non Gaussian, and mutually independent

- ICA works if the sources are mixed linearly

- ICA is more general than PCA (and factor analysis): basis is not orthonormal

- PCA de-correlates (uses second order stats, e.g. variances), ICA de-mixes 

(e.g. uses kurtosis to assess Gaussian shapes)
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- Is ICA always better than PCA?
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Independent Component Analysis: The basics

Step 1: Whitening
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Independent Component Analysis: The basics

( ) ( )XXXY −=
−
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If X is the matrix containing the sources in columns:

Note: in Matlab use: inv(), and sqrtm()

Whitening = making the data ‘spherical’



Independent Component Analysis: The basics
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Independent Component Analysis: The basics

Step 2: Find a rotation of the joint-density that maximizes the non-normality 

of the distribution (i.e. makes them as ‘flat’ as possible, hence ‘independent’)

Central limit theorem: a mixture of independent variables is more 

gaussian than the original variables

→ Fixed point ICA (FastICA)

Rotation (around a fixed point)



Independent Component Analysis: The basics
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Step 3: fastICA (see code for details)

Time (s) Time (s)

De-mix

CD to the code2.5 folder

Execute fasticag.m

Load the data and leave ‘name of variable’ blank.


