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Dendrites are much more than passive neuronal components.

Mounting experimental evidence and decades of

computational work have decisively shown that dendrites

leverage a host of nonlinear biophysical phenomena and

actively participate in sophisticated computations, at the level

of the single neuron and at the level of the network. However, a

coherent view of their processing power is still lacking and

dendrites are largely neglected in neural network models. Here,

we describe four classes of dendritic information processing

and delineate their implications at the algorithmic level. We

propose that beyond the well-known spatiotemporal filtering of

their inputs, dendrites are capable of selecting, routing and

multiplexing information. By separating dendritic processing

from axonal outputs, neuron networks gain a degree of

freedom with implications for perception and learning.
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Introduction
Ever since the drawings of Santiago Ramon y Cajal [1],

the dendritic arborization has become the most recogniz-

able feature of neurons. When images of neurons are

placed side by side, the striking diversity of patterns

suggests an equally vast diversity of computational func-

tions. Variants and invariants of dendritic properties—

beyond their mere morphologies—may unveil new prin-

ciples of neural information processing. Much is known

about the basic input–output function of the cell body [2

,3], yet we know just enough about dendrites to be

bewildered and to have to rethink some fundamental

questions: What is the nature of the information proces-

sing performed by the neuron as a whole? How do
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dendrite-bearing neurons allow neural networks to imple-

ment computations not achievable by point-neuron net-

works? For what algorithmic benefit?

These questions have been particularly challenging to

frame within a tractable experimental framework. His-

torically, initial progress has largely relied on the theoret-

ical work of Wilfrid Rall [4], who pioneered the use of

digital computers in neuroscience. Rall demonstrated

how the biophysical properties of membranes are at odds

with an isopotential neuron. Other theoretical arguments

leveraged features of inhibition [5] and NMDA receptor

biophysics [6] to begin highlighting the rich repertoire of

information processing strategies of dendrites. Since, the

development of dendritic recordings and of several opti-

cal methods provided unprecedented abilities to interro-

gate dendritic properties [7,8]. These studies revealed a

myriad of nonlinear dendritic responses including volt-

age-gated sodium and calcium channels, calcium-induced

calcium release and NMDA spikes [7,9–11]. Accumulat-

ing evidence suggests that these dendritic events are

active parts of network dynamics and are operant in vivo
[12–17]. As a result, questions are now shifting from

whether dendrites have a role in information processing

to how identified dendritic processing features imple-

ment defined algorithms [14,15,17,18,19,20�].

Here we review recent contributions to our understand-

ing of how dendritic processing gives rise to specific

computations and coding principles. We delineate four

broad types of dendritic information processing (Figure 1):

i) spatiotemporal filtering, ii) information selection, iii)

information routing, and iv) information multiplexing.

For each category, we highlight recent contributions that

connect subcellular integration mechanisms and algorith-

mic-level function, connections that can be further

explored and expanded with updated single-neuron mod-

els (Figure 2).

Class I - Spatiotemporal filtering
A first step in characterizing dendritic computation is to

determine the operation that transforms synaptic inputs

into currents flowing into the soma. In the simplest case, a

distant synaptic input will be attenuated and lowpass

filtered before reaching the cell body [4]. However, the

presence of both voltage-gated and ligand-gated ion

channels in dendrites means that synaptic integration is

inherently nonlinear, and jointly active synapses can thus

combine in nontrivial ways. But this does not imply that

the essence of dendritic integration cannot be captured by

a linear process. As an example, the subthreshold somatic

dynamics are well represented by a linear process despite
www.sciencedirect.com
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Figure 1

Four classes of dendritic information processing. In all panels, discretized spike trains appear above or near their respective axons, where lighter

shading indicates more distant past. Class I: A spike arriving at a distal synapse evokes a local postsynaptic potential (red). Propagation results in

a filtered voltage response at the soma (orange). Class II: Two independent distal dendritic branches (red and green) each receive synaptic inputs.

Two coincident input spikes in either the red branch or the green branch can successfully contribute to a spiking output. The same number of

input spikes distributed on different branches only causes a small depolarization that does not reach the soma, but that information can be

important for local processing. Class III: Routing is schematically depicted by a switch circuit symbol on the green branch. Even though both the

green and red branches receive equivalent input signals, a modulating input (orange) prevents the transmission of the information from the green

branch. Class IV: Two contextually different input streams impinge on opposite poles of the neuron. When activated by the perisomatic (blue)

stream alone, a single spike is fired by the postsynaptic neuron (blue 1 in bottom spike train). When present, the apical input (red) modulates the

postsynaptic response by transforming a single spike into a burst (purple = blue + red). Short-term facilitation (STF) and depression (STD) and

disynaptic inhibition (blue square synapse) can decode the multiplexed information.
the high density of ion channels [2,3]. In dendrites, just as

in the cell body, nonlinearities can be either kept in check

by the linearizing effect of background noise [21�] or they

can be captured by an equivalent linear process [22].

Thus, the combined effect of multiple synapses can

result, at least approximately, in a linear sum at moderate

noise. Such location-dependent attenuation and filtering

combined with linear summation confers to dendrites the

characteristics of a spatiotemporal filter (Figure 1a).

Importantly, within the class of spatio-temporal filters
www.sciencedirect.com 
one can distinguish distinct dynamic modes such as low-

pass filters or resonance [22,23].

Spatiotemporal filtering can contribute to powerful [24]

and behaviourally relevant [25,26�] computations. As an

illustrous example, spatiotemporal filtering tunes the

input delays in order to give rise to selectivity for inter-

aural time difference (ITD) [25,27��]. Thus our ability to

perform azimuthal sound localization arises in part from

the spatiotemporal class of dendritic computation.
Current Opinion in Neurobiology 2019, 58:78–85
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Figure 2

A hierarchy of Generalized Linear Models (GLMs). Only excitatory inputs are illustrated and postspike currents (e.g., afterhyperpolarization

currents) are omitted to avoid cluttering the schematics. Their design was purposefully selected to enforce a link with Figure 1. (a) In the

“classical” GLM, input spike trains are convolved with linear filters and added together. The result is then fed to a pointwise nonlinearity and

spikes are generated according to an inhomogeneous Poisson process. This model explicitly utilizes the spatiotemporal filtering of input spikes.

(b) The hierarchical GLM is the model from Ref. [21�] with an added random spike generator. (c) An extension of the hierarchical GLM can

represent routing, for instance if a modulating input alters the nonlinearity of a dendritic branch. (d) The burst-multiplexed GLM involves two

segregated integration zones. The bottom spike generator (illustrated by the black disk representing the soma) produces spikes randomly.

Whenever such a spiking event occurs, the top spiking generator (black rectangle) is interrogated. A burst (purple 1’s) is fired when the dendritic

generator outputs 1, which loosely corresponds to the occurrence of a calcium spike.
Recently, Remme and colleagues have shown that den-

dritic filtering properties are tuned to optimize this ele-

mental computation without ostensibly increasing the

metabolic energy expenditure [26�]. This finding illus-

trates how dendritic ion channels densities must be

tightly regulated to preserve spatiotemporal filtering

despite the metabolic costs. Another recent study in

crustacean somatogastric ganglia (STG) brings a comple-

mentary case forward [28��]. Otopalik and colleagues

have shown that the strong dendritic tapering observed

in STG neurons curbs massively the electrotonic attenu-

ation along the cable, to the extent that a dendritic tree

obeying some morphological constraints becomes approx-

imately isopotential. Together, these studies suggest two

important principles for dendritic integration: first that

even simple dendritic processing comes with a metabolic

cost and second that attenuation is not an unavoidable

consequence of dendritic structures.
Current Opinion in Neurobiology 2019, 58:78–85 
At the algorithmic level, spatiotemporal filtering by den-

drites can be substituted by other molecular mechanisms

shaping the amplitude and time course of postsynaptic

potentials. In this sense, this class of dendritic computa-

tion is captured by point-neuron models of input integra-

tion such as the linear-nonlinear Poisson (LNP) or gen-

eralized linear models (GLM; Figure 2a) [29,2].

Class II - Information selection
Cortical neurons amalgamate information from thousands

of spike trains into a single sequence of discharges. Thus,

from the vast amount of electrical and chemical informa-

tion impinging on the cell surface, only a very small

portion is selected for communication (Figure 1b). Most

of this information is lost in the act of pooling: by giving

up knowledge on which postsynaptic potential came from

which synapse, pooling discards information about the

interspike intervals of individual presynaptic spike trains.
www.sciencedirect.com
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Are there neural strategies to exploit some of the infor-

mation lost to pooling?

Dendrites have now long been recognized to be parcelled

in functional compartments. Such compartmentalization,

however, acts as a double-edged sword: by preserving some

of the information that would be lost to pooling in a point-

neuron, compartmentalization increases the amount of

information held within the cell, but it decreases the

amount of information that makes its way to the cell body.

This apparent paradox can be resolved if nonlinear mecha-

nismsselectpart of thecompartmentalized informationand

transiently facilitate its communication to the cell body

[6,9,10,30,31,32,33,34,35,36�]. Thus by combining

compartmentalization with mechanisms for transient

amplification, dendrites can increase the amount of infor-

mation held within the cell without decreasing the amount

of information that is communicated to the cell body.

Consistent with that view, dendrites can control the degree

of compartmentalization but also the amplification mecha-

nisms by regulating the subcellular density of different

classes of dendritic ion channels [28��,37,38,39,40��,41].
Also consistent with that view, supra-threshold activity

in dendrites and the cell body tends to be correlated [14

,42–44]. In sum, compartmentalization and transientampli-

fication are seen as complementary mechanisms to increase

local information while selecting part of it for

communication.

Nonlinear amplification mechanisms increase the weight

of some inputs at the expense of others and therefore

contributes to a selection of information that ultimately

determine the cell’s output. What is being selected for

communication can be formalized as a two-layer neural

network, as proposed by Mel [6,45]. More recently, time-

dependent extensions of this idea have been elaborated

[21�,46] (Figure 2b). Alternatively, information selection

may depend on bidirectional interactions with parent

compartments. Indeed, as formalized by Senn and Lar-

kum [9,31,47,33], the state of the cell body strongly

affects and enriches feature of dendritic integration. This

second point of view would require a modification to the

model depicted in Figure 2b so as to permit information

back-propagating to the parent dendrites. Importantly,

both cases require a distinction between locally withheld

information, and information that is communicated by the

cell body. This distinction between dendritic (local) and

somatic (communicated) information relies on the pres-

ence of dendritic nonlinearities, as replacing subunit

nonlinearities with a linear function in the hierarchical

model of Figure 2b would collapse the model onto a

spatiotemporal filter (Class I; Figure 2a). While the trans-

mitted information is obviously the most important for

network dynamics, the local information that is not com-

municated can still play a role in local processes, like

plasticity [20�,35,40��,48–53]. For instance, developing

CA1 dendrites are tuned to detect spatially-clustered
www.sciencedirect.com 
and temporally co-active synaptic inputs that generates,

through local calcium amplification, a local form of clus-

tered plasticity [35]. Much recent interest has focused on

the computational role of the type of information that is

withheld from the cell body.

The recent work of Bono and Clopath (2017) [40��]
illustrates this point. First, they note that the decoupling

of somatic and dendritic states is also associated with

different forms of plasticity: a spike-timing dependent

plasticity (STDP) for sodium spikes for perisomatic com-

partments, and a dendritic-spike dependent long-term

potentiation (dLTP) in dendritic compartments [40��,49].
Then, they show that this concerted compartmentaliza-

tion of signal processing and plasticity rules increases the

resilience of associative memories against ongoing activ-

ity. Here a learning-related signal restricted to the den-

drites actively maintained synapses without the need to

reactivate the Hebbian assembly. This mechanism has a

potent network-level function that is difficult to obtain in

the absence of dendrites.

Other recent work [20�,52] (see also Sacramento et al.

(2017) on arXiv) articulates the relevance of dendrites for

representing unit-specific learning signals similar to back-

prop and targetprop algorithms [54,55]. A key attribute in

these approaches is that each unit can represent both a

sensory feature and a learning signal. It is the conjunction

of these signals that regulates plasticity. Spatial segrega-

tion within units with transient synchronization is a

natural solution to this requirement. Therefore, learning

algorithms such as those used in deep learning can be

implemented using dendritic compartmentalization, an

advantage that could go well beyond that provided by

increasing the number of basic units.

Obtaining an adequate understanding of the full compu-

tational role of compartmentalized information poses a

significant theoretical challenge. In this direction, den-

dritic states have been referred to as a teacher or target

[33], a prediction [56,57,43], an error signal [20�,52,58], a

plasticity regulator [59,60], an associative signal [61,14] or

attention signal [62]. We do not expect all dendrites to

have the same function, nor do we believe these inter-

pretations to all be mutually exclusive. Yet, irrespective of

the interpretation, an algorithmic advantage may lie in

dendrites holding information that is different from what

that communicated by the cell body.

Class III - Information routing
Information routing refers to a modulation of the relative

potency of dendritic subunits, thereby dynamically mod-

ifying the flow of information en route to the cell body.

Figure 1c illustrates a case where the contribution to

somatic activation of a defined dendritic compartment

is adaptively attenuated relative to other active dendrites.

In this illustration, a slow modulation prevents potent
Current Opinion in Neurobiology 2019, 58:78–85
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stimulation of a specific branch to trigger an action

potential in the soma. Not included in the illustration

but included in the class is the possibility that intrinsic

plasticity routes information in the dendritic tree [63,64].

Importantly, routing can involve plasticity, neuromodula-

tion, network state or synaptic inhibition but in all these

cases it must act as a slow modulator rather than a driver of

activity.

The line that separates drivers and modulators can be

hard to draw, particularly for synaptic inhibition. Extend-

ing on the early work of Koch et al. (1983) [5], recent work

[65,66] has shown that inhibition in general is a powerful

mechanism for regulating dendritic activity, such that it

may in principle subserve a conditional routing of infor-

mation in a dendritic tree. However, inhibition–even

when shunting–does not necessarily route information.

To see this, we must distinguish inhibition accompanying

direct excitation from slow inhibition coming from other,

indirect, sources. Since feedforward inhibition is by defi-

nition correlated with excitation, the two effects can

under some conditions be lumped together at the algo-

rithmic level. Therefore, feedforward inhibition in den-

drites will normally participate in information selection,

as shown elegantly in the retina [67].

Specifically addressing the routing of information by

inhibition, Yang and coworkers (2016) studied how the

disinhibitory motif comprising vasointestinal peptide-

positive (VIP) and somatostatin-positive (SOM) cells

could select specific neural pathways by disinhibiting

targeted dendrites on pyramidal neurons [68]. In a related

study mutual inhibition between VIP and SOM neurons

was shown to potently control the distribution of inhibi-

tion along the apical-somatic axis of pyramidal neurons

[69]. Such inhibitory mechanisms are controlled by long-

range feedback, but also by network state and neuromo-

dulation [70–72]. At the algorithmic level, combining

such context-dependent gating [73] with properties of

synaptic consolidation [74] can overcome catastrophic

forgetting in continual learning [75��].

Network state [76�] and neuromodulation [77] differen-

tially engage distinct subcellular compartments. For

instance, the relative potency of subcellular compart-

ments has been shown to be regulated by the amount

of background noise present [36�,37]. Since neuromodu-

lators can trigger the emergence of noisy currents in

cortical neurons [78], such noise-dependent dendritic

routing mechanism provides a powerful means to imple-

ment a dynamic neuromodulatory control of information

processing in cortical networks.

Class IV - Information multiplexing
Dendrites gather information from local and distant

sources, information that is then propagated, selected

and routed according to the mechanisms outlined in
Current Opinion in Neurobiology 2019, 58:78–85 
the previous sections. An intricate mapping is thus at

play in transforming the incoming presynaptic spike

patterns into a postsynaptic output spike train. As a

corollary, one would reasonably expect this output to

carry some visible signatures of the dendritic processing.

One salient feature that may encode such a signature is the

presenceofhigh-frequencyburstsof spikes. Althoughburst

firing is not exclusively dendrite-dependent [79–81], in

many important cases bursts are facilitated by dendritic

events [9,30,82] and show correlations in the behaving

animal with calcium spikes and backpropagating action

potentials [83,84,14]. These bursting mechanisms are con-

junctive, since the co-occurrence of inputs in distinct

compartments facilitates their generation (Figures 1d

and 2 c). Given that apical dendrites largely receive

higher-order cortical and thalamic inputs, conjunctive

bursting constitutes a powerful associative mechanism

between sensory-related inputs impinging on basal-proxi-

mal dendrites and context-related information streams

targeting distal apical dendrites [18].

More generally, a recent theoretical study has shown that

neurons can harness these conjunctive burst mechanisms

and its associative properties to concomitantly represent

multiple inputs into one spiking output, i.e. to multiplex

several information-carrying sources [85��]. Moreover,

neural strategies combining short-term plasticity and

disynaptic inhibition provide downstream networks with

the ability to readily decode this spiking output and

recover the multiple parent encoding streams [85��]. This

information can relate to purely sensory features, as

shown recently in the drosophila [86�]. However, infor-

mation multiplexing should preferably involve input

streams with different semantic contents. In the cortex,

pyramidal cells could use bursts to multiplex feedforward

and feedback information, where feedback relates

to either attention [79,87,62], a binding signal

[79,88,89,14] or a learning signal [19,20�,52]. If multi-

plexing a learning signal with a representation of sensory

features, neurons can communicate sensory evidence up

the cortical hierarchy through the propagation of events

while allowing a top-down credit signal to guide the

plasticity through the modulation of bursting. While

the nature of the information represented this way

remains an open question, it is useful to note that the

same mechanisms required for multiplexing are involved

in learning, namely dendritic spikes [90,49], backpropa-

gating action potentials [7] and bursting [90,16].

Conclusion: The Telegrapher’s Office
Metaphor
If the axon is a telegraph wire, dendritic arborization

makes up the many aisles of the Telegrapher’s building.

External messages entering the office can fight their way

through the building in order to influence the Telegra-

pher’s actions. In this metaphor of dendritic computation,
www.sciencedirect.com
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the Telegrapher perceives either all messages entering

the building (the spatio-temporal filter) or a summary

report of distinct corridors (information selection). The

relative importance the Telegrapher gives to the different

summary reports is either static, or it is allowed to change

(information routing). The Telegrapher could then

decide to communicate one summary report or invent a

double entendre Morse code to communicate both the

Telegrapher’s summary or that of one of the corridors

(information multiplexing). These different modes can

very well be overlapping as, for instance, spatiotemporal

filtering can be performed prior to selection, routing or

multiplexing.

While the capabilities of the Telegrapher’s office are in

the process of being understood, there clearly remains a

number of future challenges, particularly in understand-

ing to what extent distinct classes of dendritic information

processing co-exist in the same cell, mapping out how

these classes are distributed across brain areas, and relat-

ing such sub-cellular mechanisms to network-level

computation.
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37. Bernander Ö, Douglas RJ, Martin KAC, Koch C: Synaptic
background activity influences spatiotemporal integration in
single pyramidal cells. Proc Natl Acad Sci USA 1991, 88:11569-
11573.

38. Kole MHP, Hallermann S, Stuart GJ: Single ih channels in
pyramidal neuron dendrites: properties, distribution, and
impactonaction potentialoutput. JNeurosci2006,26:1677-1687.

39. Harnett MT, Magee JC, Williams SR: Distribution and function of
hcn channels in the apical dendritic tuft of neocortical
pyramidal neurons. J Neurosci 2015, 35:1024-1037.

40.
��

Bono J, Clopath C: Modeling somatic and dendritic spike
mediated plasticity at the single neuron and network level. Nat
Commun 2017, 8:706.

Using a voltage-dependent plasticity rule, the authors show that long-
term plasticity becomes mediated by local NMDA spikes as synapses get
farther from the soma. In contrast to spike-timing-dependent plasticity
occurring more proximally, the distal plasticity protects learned memory
associations by shielding the synapses from deleterious spiking activity.

41. Beaulieu-Laroche L et al.: Enhanced dendritic
compartmentalization in human cortical neurons. Cell 2018,
175:643-651.

42. Seibt J et al.: Cortical dendritic activity correlates with spindle-
rich oscillations during sleep in rodents. Nat Commun 2017,
8:684.

43. Sheffield ME, Adoff MD, Dombeck DA: Increased prevalence of
calcium transients across the dendritic arbor during place
field formation. Neuron 2017, 96:490-504.

44. Beaulieu-Laroche L, Toloza EH, Brown NJ, Harnett MT:
Widespread and highly correlated somato-dendritic activity in
cortical layer 5 neurons. Neuron 2019.

45. Poirazi P, Brannon T, Mel BW: Pyramidal neuron as two-layer
neural network. Neuron 2003, 37:989-999.

46. Breuer D, Timme M, Memmesheimer R-M: Statistical physics of
neural systems with nonadditive dendritic coupling. Phys Rev
X 2014, 4:011053.
Current Opinion in Neurobiology 2019, 58:78–85 
47. Giugliano M, La Camera G, Fusi S, Senn W: The response of
cortical neurons to in vivo-like input current: theory and
experiment: IL. time-varying and spatially distributed inputs.
Biol Cybern 2008, 99:303-318.

48. Bell CC, Caputi A, Grant K, Serrier J: Storage of a sensory
pattern by anti-hebbian synaptic plasticity in an electric fish.
Proc Natl Acad Sci 1993, 90:4650-4654.

49. Gambino F et al.: Sensory-evoked ltp driven by dendritic
plateau potentials in vivo. Nature 2014, 515:116.

50. Kastellakis G, Silva AJ, Poirazi P: Linking memories across time
via neuronal and dendritic overlaps in model neurons with
active dendrites. Cell Rep 2016, 17:1491-1504.

51. Basak R, Narayanan R: Active dendrites regulate the
spatiotemporal spread of signaling microdomains. PLoS
Comp Biol 2018, 14:e1006485.

52. Körding KP, König P: Supervised and unsupervised learning
with two sites of synaptic integration. J Comput Neurosci 2001,
11:207-215.

53. Dempsey C, Abbott LF, Sawtell NB: Generalization of learned
responses in the mormyrid electrosensory lobe. eLife 2019, 8:
e44032.

54. Rumelhart DE, Hinton GE, Williams RJ: Learning representations
by back-popagating errors. Nature 1986, 323:533-536.

55. Lee D-H, Zhang S, Fischer A, Bengio Y: Difference target
propagation. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer 2015:498-515.

56. Cui Y, Ahmad S, Hawkins J: Continuous online sequence
learning with an unsupervised neural network model. Neural
Comput 2016, 28:2474-2504.

57. Sheffield ME, Dombeck DA: Calcium transient prevalence
across the dendritic arbour predicts place field properties.
Nature 2015, 517:200-204.

58. Schiess M, Urbanczik R, Senn W: Somato-dendritic synaptic
plasticity and error-backpropagation in active dendrites. PLoS
Comp Biol 2016, 12:e1004638.

59. Chen SX, Kim AN, Peters AJ, Komiyama T: Subtype-specific
plasticity of inhibitory circuits in motor cortex during motor
learning. Nat Neurosci 2015, 18:1109-1115.

60. Letzkus JJ, Wolff SB, Lüthi A: Disinhibition, a circuit mechanism
for associative learning and memory. Neuron 2015, 88:264-276.

61. Larkum M, Nevian T, Sandler M, Polsky A, Schiller J: Synaptic
integration in tuft dendrites of layer 5 pyramidal neurons: a
new unifying principle. Science 2009.

62. Womelsdorf T, Ardid S, Everling S, Valiante TA: Burst firing
synchronizes prefrontal and anterior cingulate cortex during
attentional control. Curr Biol 2014, 24:2613-2621.

63. Losonczy A, Makara JK, Magee JC: Compartmentalized
dendritic plasticity and input feature storage in neurons.
Nature 2008, 452:436-441.

64. Legenstein R, Maass W: Branch-specific plasticity enables self-
organization of nonlinear computation in single neurons.
J Neurosci 2011, 31:10787-10802.

65. Wilmes KA, Sprekeler H, Schreiber S: Inhibition as a binary
switch for excitatory plasticity in pyramidal neurons. PLoS
Comp Biol 2016, 12:e1004768.

66. Doron M, Chindemi G, Muller E, Markram H, Segev I: Timed
synaptic inhibition shapes nmda spikes, influencing local
dendritic processing and global i/o properties of cortical
neurons. Cell Rep 2017, 21:1550-1561.

67. Taylor WR, He S, Levick WR, Vaney DI: Dendritic computation of
direction selectivity by retinal ganglion cells. Science 2000,
289:2347-2350.

68. Yang GR, Murray JD, Wang X-J: A dendritic disinhibitory circuit
mechanism for pathway-specific gating. Nat Commun 2016, 7.
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0140
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0140
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0140
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0145
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0150
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0155
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0155
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0155
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0160
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0165
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0165
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0170
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0170
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0170
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0175
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0180
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0185
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0190
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0195
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0200
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0200
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0200
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0205
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0210
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0215
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0220
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0225
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0225
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0230
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0230
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0230
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0235
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0240
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0245
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0250
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0250
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0250
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0255
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0260
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0265
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0265
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0265
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0270
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0275
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0275
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0275
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0280
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0285
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0290
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0295
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0295
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0295
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0300
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0300
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0305
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0305
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0305
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0310
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0310
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0310
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0315
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0315
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0315
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0320
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0320
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0320
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0325
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0325
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0325
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0330
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0330
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0330
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0330
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0335
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0335
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0335
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0340
http://refhub.elsevier.com/S0959-4388(18)30216-2/sbref0340


Classes of dendritic information processing Payeur, Béı̈que and Naud 85
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