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Up to this point we have assumed that membrane potential varies in time but not in space. No cell fits this hypo-
thesis exactly and very few cells even fit it approximately. For most neurons resemble dendritic trees or bushes with
tens or hundreds of fine thin branches. As each branch resembles, both geometrically and electrically, Lord Kelvin’s
RC model of the transatlantic telegraph cable, the mathematical study of dendritic branches has come to be called
“cable theory”. The electrical analogy to Kelvin however only holds in the subthreshold, in fact passive, regime. For
Kelvin’s cables possessed nothing like our ion channels. In this chapter, our first step into space is softened by the fact
that we limit ourselves to uniform, unbranched, passive cables. This permits us to develop analytical and numerical
methods with minimal distraction. We will then argue in Chapters 8 and 9 that these survive the extension to active
dendritic trees.

We proceed by first deriving the discrete, or compartmental, passive cable equation. We construct its exact (via an
eigenvector expansion) and approximate (via the trapezoid rule) solution to current injection. As the compartment
size shrinks, and the number of compartments grows, we arrive at the Passive Cable Equation. Methods for studying
partial differential equations of this form have been under continuous development for over 150 years. We construct
and analyze its exact solution (via an eigenfunction expansion) to current injection in a manner that permits us
to reconcile the discrete and continuous formulations. In the final section we consider synaptic input onto a spine
appended to the cable. We reverse the process described above by discretizing in space and pursuing a numerical
attack.

6.1 THE DISCRETE PASSIVE CABLE EQUATION

We consider a cable of length � and radius a. We choose an integer N and divide the cable into N compartments
each of length dx = �/N and surface area 2πadx and cross sectional area πa2. We suppose that each compartment is
isopotential but permit this potential to vary from compartment to compartment (Figure 6.1).

The only new object here is the coupling resistance between compartments. We express it in terms of Ra in k� cm,
the resistivity of the cytoplasm. The circuit elements are then

C = (2πadx)Cm, G = (2πadx)gCl and R = dxRa/(πa2).

Current balance at the first node now reads

Istim = I1 + I2 + I3 = C(φ1 − φ0)
′ + G((φ1 − VCl) − φ0)) + (φ1 − φ2)/R
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FIGURE 6.1 The compartmentalization of a simple cable.

which, in terms of the relative transmembrane potential

vn ≡ φn − φ0 − VCl, n = 1, . . .N

reads

Istim = Cv′
1 + Gv1 + (v1 − v2)/R. (6.1)

On recalling the time constant, τ = C/G, and defining the ‘space constant’

λ ≡
√

a

2RagCl

(6.2)

division of Eq. (6.1) by G produces

τv′
1 + v1 − λ2(v2 − v1)/dx2 = Istim/G. (6.3)

Current balance at the second node requires I4 + I5 = I3 − I6, that is

Cv′
2 + Gv2 = (v1 − v2)/R − (v2 − v3)/R (6.4)

or, on division by G,

τv′
2 + v2 − λ2(v1 − 2v2 + v3)/dx2 = 0.

Similarly, at the nth compartment,

Cv′
n + Gvn = (vn+1 − 2vn + vn−1)/R

or

τv′
n + vn − λ2(vn+1 − 2vn + vn−1)/dx2 = 0. (6.5)

Current balance at the final compartment reads I3N−2 + I3N−1 = I3N−3, that is

Cv′
N + GvN = (vN−1 − vN)/R

or

τv′
N + vN − λ2(vN−1 − vN)/dx2 = 0. (6.6)
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Collecting the potentials in the column vector

v(t) = (v1 v2 . . . vN)T

we may express the above as

v′(t) = Bv(t) + f(t) (6.7)

where

B = (λ2S − I)/τ, (6.8)

S is the second difference matrix

S = 1

dx2

⎛
⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
· · · · · ·
0 · · · 0 1 −2 1
0 · · · 0 0 1 −1

⎞
⎟⎟⎟⎟⎠ (6.9)

and the forcing term is

f = Istim(t)

(2πadx)Cm

ek where ek ≡ (0 0 . . . 0 1 0 . . . 0)T , (6.10)

is associated with current injection into compartment k. Our illustration, Figure 6.1, uses k = 1 but we will be inter-
ested in the general case. We also presume that each compartment starts from rest, i.e.,

v(0) = 0. (6.11)

As in the previous chapter, we solve (6.7) both exactly, via eigenvectors of B, and approximately, via Euler’s method.

6.2 EXACT SOLUTION VIA EIGENVECTOR EXPANSION

The second difference matrix, S, is symmetric, i.e., obeys, S = ST , and negative semi-definite, i.e., obeys uT Su ≤ 0
for every u ∈ R

N . As such, its eigenvalues are real and nonpositive (Exercises 1–3). It is also noninvertible and so 0 is
an eigenvalue. We may therefore order the eigenvalues as

0 = θ0 ≥ θ1 ≥ · · · ≥ θN−1

and denote the corresponding eigenvectors by

q0, q1, . . . , qN−1.

Together they obey

Sqn = θnqn (6.12)

and we note that regardless of whether or not these eigenvalues are distinct (they are) every N -by-N symmetric
matrix has an orthonormal basis of N eigenvectors (Exercise 4). That is, the qn obey

qT
mqn = δmn, (6.13)

where δmn is the Kronecker delta of Eq. (1.4). As B (recall (6.8)) is simply an affine function of S it follows that its
eigenvalues are

zn = (λ2θn − 1)/τ, (6.14)
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FIGURE 6.2 The first four eigenvectors of S for N = 20 (A) and N = 40 (B) on a cable of length � = 0.1 cm. These eigenvectors appear to
approximate (scalar multiples of) 1, cos(x/�), cos(2x/�) and cos(3x/�) while the associated eigenvalues of S are very close to integer multiples of
(π/�)2 . (evecS.m)

and that its eigenvectors remain qn (Exercise 5). Recalling Eq. (5.19) it remains to solve Qc(t) = f(t) where

Q = (q0 q1 · · · qN−1) (6.15)

is the N -by-N matrix composed of the orthonormal eigenvectors of S. Now by orthonormality we note (Exercise 6)
that Q−1 = QT and so, recalling the f of (6.10),

c(t) = Istim(t)

2πadxCm

QT ek = Istim(t)

2πadxCm

(q0,k q1,k · · · qN−1,k)
T .

We see that QT ek is comprised of the kth component of each of the eigenvectors. Now, following the lead of Eq. (5.21),
we conclude that

v(t) = N

2πa�Cm

N−1∑
n=0

qnqn,k

∫ t

0
Istim(s) exp((t − s)zn) ds. (6.16)

Although cumbersome in appearance, this expression is the sum of elementary objects that should be familiar from
our isopotential work back in Chapter 3. More precisely, Eq. (6.16) states that v(t) is a weighted sum of convolutions,
Istim 
 exp(tzn), that differ from the isopotential case, Eq. (3.2), only in the sense that the membrane time constant,
τ , has been replaced with −1/zn. This difference in fact permits us to interpret the N eigenvalues, zn, as a sequence
of decay rates for the N -compartment cable. These rates however are not specific to individual compartments but
instead to individual eigenvectors, qn, for these (together with the signature, qn,k , of the stimulus location) serve as
the weights for the individual convolutions. We will soon derive exact expressions for the zn and qn. For now, we
invoke eig in Matlab and illustrate in Figure 6.2 the first few eigenvectors as “functions” of cable length.

As a concrete application of (6.16) let us consider the cable

� = 1 mm, a = 1 µm, Cm = 1 µF/cm2, gCl = 1/15 mS/cm2, Ra = 0.3 k� cm (6.17)

and suppose that Istim(t) takes the constant value I0. In this case, (6.16) reduces to

v(t) = I0N

2πa�Cm

N−1∑
n=0

qnqn,k

zn

(eznt − 1)

which, as t → ∞, converges to

v∞ = −I0N

2πa�Cm

N−1∑
n=0

qnqn,k

zn

(6.18)

as illustrated in Figure 6.3A.
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FIGURE 6.3 A. The steady-state solution, Eq. (6.18), for the cable parameters in (6.17), I0 = 1 nA, N = 41 and a stimulus at compartments k = 1,
black, or k = 21, red. (steady.m) B. Dynamic response, Eq. (6.20), of the same cable to the stimulus of Eq. (6.19), I0 = 10 nA, t1 = 1 and t2 = 2 ms
at x = 0.06 cm, with N = 100. (eigcab.m)

As a second example, if we inject the pulse

Istim(t) = I01(t1,t2)(t) (6.19)

at compartment k then Eq. (6.16) takes the form

v(t) = −I0N

2πa�Cm

N−1∑
n=0

qnqn,k

zn

(emax(t−t2,0)zn − emax(t−t1,0)zn) (6.20)

as presented in Figure 6.3B. We will establish below that the attenuation in the steady response away from the site of
stimulation is of the form exp(−x/λ). In other words, the response drops by factor of 1/e within one space constant,
λ, from the stimulus. Note that λ = 0.05 cm for the cable specified in Eq. (6.17).

6.3 NUMERICAL METHODS

We formulate three straightforward marching schemes for the

stimulus fj = f((j − 1)dt) and response vj ≈ v((j − 1)dt)

associated with the discrete cable equation, Eq. (6.7). The forward Euler scheme reads

(vj − vj−1)/dt = Bvj−1 + fj−1, i.e., vj = (I + dtB)vj−1 + dtfj−1 (6.21)

while the backward Euler scheme requires

(vj − vj−1)/dt = Bvj + fj , i.e., (I − dtB)vj = vj−1 + dtfj (6.22)

and the trapezoid scheme that

vj − vj−1 = B(vj + vj−1)dt/2 + (fj + fj−1)dt/2

or

(I − (dt/2)B)vj = (I + (dt/2)B)vj−1 + (dt/2)(fj + fj−1). (6.23)

At first sight it appears that (6.23) requires one additional (over Backward Euler) matrix-vector product per iteration.
To see that this is not the case note that (6.23) is equivalent to

set r2 = (dt/2)(f2 + f1)
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FIGURE 6.4 Response of the cable of Eq. (6.17), as revealed by the Trapezoid Scheme (dx = 1 µm, dt = 0.05 ms), Eq. (6.24), to the double
stimulation in Eq. (6.25), I0 = 100 pA, x1 = 0.06 cm, t1,1 = 1, t2,1 = 2 ms and x2 = 0.04, t1,2 = 3, t2,2 = 4. The proximity of the two stimuli, in both
space and time, leads to significant boosting of the latter response. A. The full space–time response. B. The response in time at the early site, x1
(black), and the late site, x2, (red). (trapcab.m)

and for j = 2,3, . . .,

solve (I − (dt/2)B)vj = rj and set rj+1 = 2vj − rj + (dt/2)(fj+1 + fj ). (6.24)

Regarding implementation, we note that both (6.22) and (6.24) require the solution of a linear system of equations
at each step in time. As the matrix in each case does not depend on j we may decompose it, once and for all, into
lower and upper triangular factors. This provides significant acceleration of the associated time marching scheme.
Matlab constructs these factors (recall Exercise 4.2) via [L,U] = lu(speye(N) − (dt/2)B) and so the solution of (6.24)
is reduced to two triangular solves, vj = U\(L\rj ). We have coded this in trapcab.m and illustrate it in Figure 6.4
in the case of dual injection

Istim(t) = I0{ec11(t1,1,t2,1) + ec21(t1,2,t2,2)} (6.25)

at compartments c1 and c2. These compartment indices are computed from the specified cable length, �, space-step,
dx, and stimulation locations x1 and x2 via ci = round(xi/dx).
We next compare the accuracy of the Trapezoid and Backward Euler schemes, under the assumption that

f(t) = e−t − e−2t

10Cm2πa
q1.

In this case, the exact solution, recall Eq. (6.16), is

v(ex)(t) = ez1t − e−t (z1 + 2) + e−2t (z1 + 1)

10Cm2aπ(z1 + 1)(z1 + 2)
q1

and so, with sc denoting either the Backward Euler or Trapezoid scheme, we compute the maximum absolute error
by

E(dt, sc) ≡ max
j

max
n

|vj
n(sc) − v(ex)

n ((j − 1)dt)|

and illustrate our findings in Figure 6.5.

6.4 THE PASSIVE CABLE EQUATION

We have examined the role of the time step dt in our resolution of the voltage response of the discrete passive
cable. We now investigate the role of the space step, dx. To begin, we let the number, N , of compartments approach
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FIGURE 6.5 Illustration of the fact that Backward Euler is accurate to O(dt) while Trapezoid is accurate to O(dt2). Number of compartments,
N = 100. (cndrive.m, cnpfib.m)

∞. As dx = �/N this limit is equivalent to dx → 0. In this limit we will pass from a spatially discrete set of po-
tentials, v(t) = (v1(t) v2(t) · · · vN(t))T , to a continuous set of potentials, v(x, t), 0 ≤ x ≤ �. For small dx we expect
v((n − 1/2)dx, t) to be the potential at the center of the nth compartment, i.e., vn(t). To begin, we will suppose that
current is injected into the first compartment. Discrete current balance at the left end, Eq. (6.1), in terms of our ap-
proximation v((n − 1/2)dx, t) ≈ vn(t), takes the form

Cm(2πadx)
∂v

∂t
(dx/2, t) + gCl(2πadx)v(dx/2, t) − πa2

Ra

v(3dx/2, t) − v(dx/2, t)

dx
= Istim(t). (6.26)

As dx approaches zero this takes the form

∂v

∂x
(0, t) = − Ra

πa2
Istim(t), 0 < t. (6.27)

By identical reasoning at the cable’s far end, we find

∂v

∂x
(�, t) = 0, 0 < t. (6.28)

Now at an interior point, x, we deduce from Eq. (6.5) that

τ
∂v

∂t
(x, t) + v(x, t) − λ2 v(x + dx, t) − 2v(x, t) + v(x − dx, t)

dx2
= 0 (6.29)

which, as dx approaches zero becomes (Exercise 10)

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) = 0, 0 < x < �, 0 < t. (6.30)

Finally, if the entire cable is initially at rest then

v(x,0) = 0 0 < x < �. (6.31)

The cable equation, (6.30), together with its boundary conditions, (6.27)–(6.28), and initial condition, (6.31), is an
instance of a well studied class of partial differential equations.

The steady-state solution to end-point stimulus. To begin, we suppose a constant current stimulus, Istim(t) = I0,
and search for the steady-state solution v∞(x) ≡ v(x, t → ∞). In this limit we may ignore the time-derivative in the
cable equation, (6.30), and so find that v∞ must obey the ordinary differential equation

λ2v′′∞(x) = v∞(x), (6.32)
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subject to the boundary conditions,

v′∞(0) = − Ra

πa2
I0, v′∞(�) = 0. (6.33)

In Exercise 11 the reader will construct the solution

v∞(x) = I0Raλ cosh((� − x)/λ)

πa2 sinh(�/λ)
(6.34)

and contrast it to the discrete steady-state, (6.18), computed in the previous section. This function takes its maximum
value at the site, x = 0, of stimulation, and so it is natural to define the associated input resistance

Rin(0) ≡ v∞(0)

I0
= Raλ cosh(�/λ)

πa2 sinh(�/λ)
. (6.35)

We note that this decreases with cable length �.

The transient solution to end-point stimulus. We now return to the full cable equation and derive an eigenrepre-
sentation of v reminiscent of (6.16). The basic idea is to separate variables, i.e., to suppose that v may be written as a
product of univariate functions of space and time. Note that if we substitute the guess

v(x, t)
?= q(x)p(t) (6.36)

into the cable equation, Eq. (6.30), we find

τq(x)p′(t) + q(x)p(t) = λ2q ′′(x)p(t).

If we now divide this through by qp we arrive at

τp′(t)/p(t) + 1 = λ2q ′′(x)/q(x).

Now note that the function on the right depends solely on x while that on the left depends solely on t . Taking then
an x derivative of each side we find that q ′′(x)/q(x) must be constant. We write this constant as ϑ and so arrive at

q ′′(x) = ϑq(x), 0 < x < �. (6.37)

This eigenvalue problem will be the infinite dimensional analog of the matrix eigenvalue problem, (6.12), once we
prescribe the domain of permissible q . More precisely, it remains to translate the top and bottom rows of S into
boundary conditions on (6.37). Recalling (6.28) it seems ‘natural’ to prescribe q ′(�) = 0. At the near end, where Istim

is applied, the correct prescription is less obvious. If q is however to be an eigenfunction of d2/dx2 we expect it
to be independent of the stimulus. An indication of the ‘right’ way forward can be glimpsed from Figure 6.2. The
‘cosinesque’ functions indeed suggest the prescription q ′(0) = 0. Appending

q ′(0) = q ′(�) = 0 (6.38)

to (6.37) we arrive, via Exercise 12, at the eigenvalues and eigenfunctions

ϑ0 = 0, q0(x) = 1/
√

�,

ϑn = −n2π2/�2, qn(x) = √
2/� cos(nπx/�), n = 1,2, . . .

(6.39)

We note that these qn are orthonormal in the sense that

∫ �

0
qn(x)qm(x)dx = δmn. (6.40)
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Finding many q we modify our naive guess, (6.36), to

v(x, t) =
∞∑

n=0

qn(x)pn(t) (6.41)

and proceed to determine the pn. First, thanks to orthonormality, we may multiply each side of (6.41) by an eigen-
function, integrate, and arrive at

pn(t) =
∫ �

0
qn(x)v(x, t) dx. (6.42)

We now use the cable equation to derive an ordinary differential equation for each of the pn.

τp′
n(t) = τ

∫ �

0
qn(x)

∂v

∂t
(x, t) dx =

∫ �

0
qn(x)

(
λ2 ∂2v

∂x2
(x, t) − v(x, t)

)
dx

= λ2
∫ �

0
qn(x)

∂2v

∂x2
(x, t) dx − pn(t). (6.43)

We unravel the remaining integral by twice integrating by parts. Namely,

∫ �

0
qn(x)

∂2v

∂x2
(x, t) dx = qn(x)

∂v

∂x
(x, t)

∣∣∣∣
�

x=0
−

∫ �

0
q ′
n(x)

∂v

∂x
(x, t) dx

= −qn(0)
∂v

∂x
(0, t) −

∫ �

0
q ′
n(x)

∂v

∂x
(x, t) dx

= −qn(0)
∂v

∂x
(0, t) − q ′

n(x)v(x, t)
∣∣�
x=0 +

∫ �

0
q ′′
n(x)v(x, t) dx

= qn(0)R2Istim(t)/(πa2) + ϑnpn(t).

It follows that each pn(t) obeys the initial value problem

τp′
n(t) + (1 − λ2ϑn)pn(t) = λ2qn(0)RaIstim(t)/(πa2), pn(0) = 0. (6.44)

We note that the time varying stimulus now appears as a driving term in the time varying component of v. This
equation is exactly the one we derived back in Chapter 2 for the isopotential cell. Recalling Eq. (3.2), we find

pn(t) = qn(0)

2πaCm

∫ t

0
Istim(s) exp((t − s)ζn) ds

where

ζn = (λ2ϑn − 1)/τ

and so, returning to Eq. (6.41), we conclude that

v(x, t) =
∞∑

n=0

qn(0)qn(x)

Cm2aπ

∫ t

0
Istim(s) exp((t − s)ζn) ds. (6.45)

This is identical in structure to the solution, Eq. (6.16), of the discrete passive cable. We will investigate in Exercise 13
the sense in which this sum converges.

The transient solution to interior-point stimulus. In the case that we deliver the stimulus at x = xs the discrete
current balance there takes the form

(2πadx)

(
Cm

∂v

∂t
(xs, t) + gClv(xs, t)

)
− πa2

Ra

v(xs + dx, t) − 2v(xs, t) + v(xs − dx, t)

dx
= Istim(t),
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or, after division by 2πadx,

τ
∂v

∂t
(xs, t) + v(xs, t) − λ2 v(xs + dx, t) − 2v(xs, t) + v(xs − dx, t)

dx2
= Istim(t)

2πadxgCl

.

As we pass to the limit we see that the spatial “footprint” of the injection is of length dx and magnitude 1/dx.
Recalling our work in Chapter 3, in particular Eq. (3.6), we see that this footprint converges to the delta function
centered at xs . It follows that our cable equation now takes the form

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) = Istim(t)δ(x − xs)/(2πagCl) (6.46)

and that both ends are now sealed, i.e.,

∂v

∂x
(0, t) = ∂v

∂x
(�, t) = 0.

To solve (6.46) we retrace each of the steps in our previous derivation and find that (6.45) retains its form but shifts
its attention from qn(0) to qn(xs). That is, the solution to (6.46) is

v(x, t) =
∞∑

n=0

qn(xs)qn(x)

Cm2aπ

∫ t

0
Istim(s) exp((t − s)ζn) ds, (6.47)

where qn and ζn are exactly as above.

The steady-state solution given interior-point current injection. If Istim is held constant at I0 then the potential will
approach the solution of the steady-state equation

v∞(x) − λ2v′′∞(x) = I0δ(x − xs)/(2πagCl), (6.48)

subject to v′∞(0) = v′∞(�) = 0. Arguing as in Exercise 11 we find that v∞ is proportional to cosh(x/λ) for x < xs and
proportional to cosh((� − x)/λ) for x > xs . The ambiguity is resolved by enforcing continuity of v∞ and current
balance at xs . The latter follows from integrating Eq. (6.48) in a vanishingly small interval about xs . More precisely,

−λ2(v′∞(x+
s ) − v′∞(x−

s )) = I0/(2πagCl).

These observations lead us to

v∞(x) = I0

2πaλgCl

1

sinh(�/λ)

{
cosh(x/λ) cosh((� − xs)/λ) if 0 ≤ x ≤ xs

cosh(xs/λ) cosh((� − x)/λ) if xs ≤ x ≤ �.
(6.49)

This attains its maximum at xs , the site of stimulation, and so the associated input resistance takes the form

Rin(xs) ≡ v∞(xs)

I0
= 1

2πaλgCl

cosh(xs/λ) cosh((� − xs)/λ)

sinh(�/λ)
. (6.50)

We graph this in Figure 6.6 for the cable at hand.

Reconciling the discrete and the continuous. Given the eigenfunctions, Eq. (6.39), of the cable we might guess that
the j th component of the nth eigenvector of the discrete cable (neglecting the normalization constant) is the value
that the nth eigenfunction takes at the center of the j th compartment. That is,

qn,j = qn((j − 1/2)dx) = cos(nπ(j − 1/2)/N). (6.51)

This indeed agrees with the eigenvectors of Figure 6.2 and, on substituting Eq. (6.51) into Eq. (6.12) we indeed find
equality so long as the associated compartmental eigenvalues obey

θn = −4(N/�)2 sin2(nπ/(2N)). (6.52)
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FIGURE 6.6 The input resistance, Rin, Eq. (6.50), as a function of stimulus site, xs , for the cable described by Eq. (6.50). We see a marked
increase in Rin as the stimulus moves away from the center and toward a sealed end. (Rinxs.m)

FIGURE 6.7 The eigenvalues of the discrete, θn, and continuous, ϑn, cable of length � = 1 mm for N = 100 and dx = 10 µm (A), and N = 1000
and dx = 1 μm (B). (thvsvth.m)

This is welcome news in that we now have exact knowledge of every term in the solution, Eq. (6.16), to the discrete
cable equation. In addition, by contrasting θn and ϑn we see that the eigenvalues of the discrete cable accurately
capture only the lowest N/3 of the true eigenvalues, as illustrated in Figure 6.7.

6.5 SYNAPTIC INPUT

If rather than current injection we instead have synaptic input, with conductance gsyn (in units of mS) and reversal
potential Vsyn (in mV), at xs then the cable equation, Eq. (6.46), takes the form

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) + csyn(t)(v(x, t) − vsyn)δ(x − xs) = 0 (6.53)

where

vsyn ≡ Vsyn − VCl and csyn(t) ≡ gsyn(t)

2πagCl

.

The time dependence of gsyn here defeats the separation of variables that led to our clean representations in (6.45)
and (6.47). We turn therefore to approximate means. We choose a spatial step, dx, and a time step, dt , and build a
consistent linear system for the discrete potentials

vj
n ≈ v((n − 1/2)dx, (j − 1)dt), n = 1,2, . . . ,N (6.54)
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FIGURE 6.8 Response to α-function synaptic input with gsyn = 100 nS, τα = 1/2 ms at x = 0.06 cm at t1 = 1 ms and x = 0.04 at t1 = 3.
(trapcabsyn.m)

where N = �/dx is the number of compartments and (n−1/2)dx is the midpoint of the nth compartment. With regard
to Eq. (6.53) we approximate the second space derivative via action of our second difference matrix, S, and the time
derivative by the trapezoid rule. If the synapse is located at compartment k then our discrete system takes the form

2τ
vj

n − vj−1
n

dt
+ vj

n + vj−1
n − λ2v

j

n+1 − 2vj
n + vj

n−1

dx2
− λ2v

j−1
n+1 − 2vj−1

n + vj−1
n−1

dx2

+ (cjvj
n + cj−1vj−1

n )δnk = (cj + cj−1)vsynδnk (6.55)

where cj = csyn((j − 1)dt)/dx. Here 1/dx denotes the height of the discrete Dirac delta associated with the synaptic
footprint at compartment k. We express Eq. (6.55) more compactly as

((2τ/dt)I − B + cj ekeT
k )vj = ((2τ/dt)I + B − cj−1ekeT

k )vj−1 + (cj + cj−1)vsynek (6.56)

where B = λ2S − I and vj = (vj

1 v
j

2 · · · vj
N )T . We solve Eq. (6.56) by setting v1 = 0 and then

rj ≡
{

(c1 + c2)vsynek if j = 2,
2(2τ/dt)vj−1 − rj−1 + (cj + cj−1)vsynek if j > 2,

and ((2τ/dt)I − B + cj ekeT
k )vj = rj .

We note that this procedure generalizes easily to the polysynaptic case

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) =

M∑
m=1

csyn,m(t)(vsyn,m − v(x, t))δ(x − xs,m) (6.57)

where csyn,m(t) is the normalized conductance change associated with a synapse at xs,m with relative reversal poten-
tial vsyn,m. We have coded its solution in trapcabsyn.m and illustrate its use in Figure 6.8.

On cortical pyramidal cells and several other neuron types, the vast majority of excitatory synaptic contacts are
made not onto the soma or dendrites but onto the heads of small spines, as illustrated in Figure 6.9.

We suppose that the spine head is isopotential, with transmembrane potential W , and we describe the spine
geometry in terms of �sn, the spine neck length, asn, the spine neck radius, and Ash, the surface area of the spine
head. We adopt the typical values

�sn = 1 µm, asn = 0.1 µm, Ash = 1 µm2. (6.58)

The spine neck presents an axial resistance while the spine head sports both a membrane capacitance and conduc-
tance and a synapse. In particular,

Rsn = �snRa/(πa2
sn), Gsh = gClAsh and gsyn = gsyn(t)ρsynAsh
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FIGURE 6.9 A schematic of synaptic contact onto the head of a spine emanating from compartment k of our discrete cable, and its associated
circuit diagram. The red circles are synaptic vesicles. Depolarization of the presynaptic bouton causes one or more of these vesicles to fuse with
the plasma membrane and deliver their payload of neurotransmitter to the synaptic cleft. Upon diffusion across the cleft the neurotransmitter
then gates ion channels on the spine head.

where gsyn is in mS and ρsyn is the number of conductances per unit area. With w ≡ W − VCl and

csyn(t) = gsyn(t)/Gsh, and γ1 = 1/(RsnGsh) and γ2 = 1/(Rsn2πagCl)

current balance at the spine head reads

τw′(t) + w(t) + csyn(t)(w(t) − vsyn) = γ1(v(xs, t) − w(t)) (6.59)

while the associated cable equation reads

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) = γ2(w(t) − v(x, t))δ(x − xs). (6.60)

To solve this coupled cable/spine system we first apply the trapezoid rule to the spine equation, Eq. (6.59), finding

wj = (2τ/dt − 1 − c
j−1
syn − γ1)wj−1 + vsyn(c

j−1
syn + c

j
syn) + (vj−1

k + vj
k )γ1

2τ/dt + 1 + c
j
syn + γ1

(6.61)

and then apply the trapezoid rule to the cable equation, Eq. (6.60), bringing

((2/dt)I − B + γ2ekeT
k )vj = ((2/dt)I + B − γ2ekeT

k )vj−1 + γ2(wj + wj−1)ek. (6.62)

The latter suggests that we compile

wj + wj−1 = (4τ/dt + c
j
syn − c

j−1
syn )wj−1 + vsyn(c

j−1
syn + c

j
syn) + (vj−1

k + vj
k )γ1

2τ/dt + 1 + c
j
syn + γ1

.

This now permits us to write Eq. (6.62) as

((2/dt)I − B + ξj ekeT
k )vj = ((2/dt)I + B − ξj ekeT

k )vj−1 + fj (6.63)

where

ξj = γ2 − γ1γ2

2τ/dt + 1 + c
j
syn + γ1

and fj = γ2
(4τ/dt + c

j
syn − c

j−1
syn )wj−1 + vsyn(c

j−1
syn + c

j
syn)

2τ/dt + 1 + c
j
syn + γ1

ek.
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FIGURE 6.10 Response of the passive cable to two α-function synaptic inputs at spines with gsyn = 100 nS, τα = 1/2 ms at x = 0.06 cm at
t1 = 1 ms and at x = 0.04 cm at t1 = 3 ms. A. The full space–time response. B. The time response at the early site, x = 0.06 cm (black), and the late
site, x = 0.04 cm, (red). The solid curves depict the cable potential, v(xs , t), at that site while the dashed ones depict spine head potential, w(t). The
spine increases the input resistance at xs and so amplifies w over v. This may have important consequences for active channels in the spine head.
(trapcabspine.m)

Arguing as above, we initialize v1 = w1 = 0, evaluate f2, set r2 = f2 and solve

((2/dt)I − B + ξ2ekeT
k )v2 = f2

for v2. We then evaluate Eq. (6.61) for w2, set

rj ≡ ((4/dt)I + (ξ j−1 − ξj )ekeT
k )vj−1 − rj−1 + fj , j = 3,4, . . .

and solve

((2/dt)I − B + ξj ekeT
k )vj = rj j = 3,4, . . .

Finally, we solve Eq. (6.61) for wj and repeat. We have coded this in trapcabspine.m and illustrate it in Figure 6.10.

6.6 SUMMARY AND SOURCES

We derived the discrete passive cable equation and expressed its solution, when driven by current injected at a
single compartment, in terms of the eigenvalues and eigenvectors of the associated second difference matrix. The ex-
pression is simply a weighted sum of convolutions familiar from our single compartment work – where the weights
are eigenvectors and the constituents of the convolutions are the current stimulus and exponentials with decay rates
parametrized by the eigenvalues. This representation persists as the number of compartments grows. In fact, it is
the limiting case that permits exact, closed form, solution. In the case that input is delivered through changes in
conductance rather than direct current injection our analytical techniques become unwieldy and we return to the
trapezoid rule to build a time marching approximation scheme. This scheme permitted us to explore the interaction
of synaptic input onto distinct spines.

Dendritic Cable Theory was developed by Wilfrid Rall, see Rall and Agmon-Snir (1998) for a modern survey and
Segev et al. (1994) for the original papers. We have argued that the eigenvectors of the second difference matrix, S,
and eigenfunctions of the second order differential operator, ∂xx , permit us to represent the response of the cable to
current stimuli. We will see in Exercise 16, that these eigenvectors, and values, also permit us to analyze the perfor-
mance of the associated approximation schemes. The separation of space and time variables executed in §6.4 was
pioneered by Fourier, Sturm and Liouville. We will hear more from Fourier in Chapter 7. Redheffer and Port (1992)
provides an excellent introduction to Sturm–Liouville theory. The cable equation is an instance of the well studied
heat, or diffusion, equation. As such, there exist a number of alternate approaches, for example Green’s functions,
that have been exploited by neuroscientists. We recommend Strauss (2007) for the mathematics and Tuckwell (1988b)
for the applications. The spine model of §6.5 is drawn from Baer and Rinzel (1991). For a rigorous presentation of
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the perturbation argument invoked in Exercise 4 to prove that every symmetric matrix in R
N×N has N orthonormal

eigenvectors, see §17.3 in Redheffer and Port (1992). For a deeper look at the Cholesky Decomposition of Exercise 5
see Golub and van Loan (1996). The Weierstrass M-test for uniform convergence, Eq. (6.75), is proven in Redheffer
and Port (1992). The determination of the cable parameters in Exercise 9 from moments of the end potential and
current is drawn from Cox (1998). The summation identities, Eqs. (6.67), (6.70) and (6.73) are consequences of the
Residue Theorem, see Spiegel et al. (2009).

6.7 EXERCISES

1. Show that the N -by-N second difference matrix, S, is negative semidefinite by confirming the identity

uT Su = −
N−1∑
j=1

(uj − uj+1)
2/dx2.

2. Prove that the eigenvalues of a real symmetric matrix are real by following these steps. Suppose A = AT is real
and that

Au = zu. (6.64)

(i) Take the complex conjugate of each side and arrive at

Au∗ = z∗u∗. (6.65)

(ii) Multiply (6.64) by uH ≡ (u∗)T and (6.65) by uT , and take the difference of the two resulting products and use
the symmetry of A to reduce this difference to 0 = z − z∗.

3. †Prove that the eigenvalues of a symmetric negative semidefinite matrix are nonpositive. Hint: write Au = zu
and multiply each side by uT .

4. †(i) Prove that the eigenvectors, associated with distinct eigenvalues, of a symmetric matrix are orthogonal to
one another by following these steps. Write Au1 = z1u1 and Au2 = z2u2 and suppose that z1 �= z2. Now as above,
multiply the former by uT

2 and the latter by uT
1 , take the difference of the products and conclude that 0 = (z1 −

z2)uT
1 u2.

(ii) In the case that A does not possess distinct eigenvalues we note A must be very close to a symmetric matrix
that does possess distinct eigenvalues. For example, the double eigenvalue of the 2 × 2 identity matrix stems
from the degenerate characteristic polynomial (1 − z)2 and is easily split by perturbing I to

Iε ≡
(

1 ε

ε 1

)
.

Compute, by hand, its eigenvalues and eigenvectors and show that they converge, as ε → 0, to the eigenvalue,
and two orthogonal eigenvectors, of the 2 × 2 identity matrix.

5. †Given Au = zu and 2 constants, α and β , show that u is also an eigenvector of αI + βA and that α + βz is
the associated eigenvalue. If A is also invertible explain how the eigenvalues and eigenvectors of A−1 may be
determined by those of A.

6. Use Eq. (6.13) to show that the Q defined in Eq. (6.15) indeed obeys QT = Q−1.
7. If A is symmetric and positive definite then its LU factorization, recall Exercise 5.2, simplifies to A = LLT where

L is lower triangular, but not necessarily with ones on its diagonal. A = LLT is known as the Cholesky Factoriza-
tion.
(i) Show that any A may be written A = LDU where L is lower triangular, D is diagonal, U is upper triangular
and both L and U haves ones on their diagonal.
(ii) If A = AT show that LDU = UT DLT and then L−1UT D = DUL−T .
(iii) Observe, in this last equation, that the left is lower while the right is upper and so conclude that each side is
diagonal. Given ones on the diagonals of L and U establish in fact that L−1UT D = D and conclude that U = LT

and A = LDLT .
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(iv) If, in addition, A is positive definite conclude that each element of D is positive and so D = D1/2D1/2 and
A = (LD1/2)(LD1/2)T .

8. †Suppose that A ∈ R
n×n is symmetric and positive definite. If λ1 and λn are its largest and smallest eigenvalues,

respectively, then show that

λnxT x ≤ xT Ax ≤ λ1xT x ∀ x ∈R
n.

9. We now generalize the moment calculations of §3.2 to the cable.
(i) First deduce from Eq. (6.45) that

M0(v(0, ·)) = M0(Istim)

2πaCm

∞∑
n=0

q2
n(0)

ζn

. (6.66)

Next define L ≡ �/λ and use

∞∑
n=1

1

c2 + n2
= π

2c
coth(πc) − 1

2c2
(6.67)

to deduce that
∞∑

n=0

q2
n(0)

ζn

= τ

�
+ 2τ

�

∞∑
n=1

1

1 + n2π2/L2
= τ

λ
coth(L)

and so conclude that

M0(v(0, ·))
M0(Istim)

= coth(L)

2πaλgCl

. (6.68)

(ii) Deduce from Eq. (6.45) that

M1(v(0, ·)) = M1(Istim)

2πaCm

∞∑
n=0

q2
n(0)

ζn

+ M0(Istim)

2πaCm

∞∑
n=0

q2
n(0)

ζ 2
n

(6.69)

and use

∞∑
n=1

1

(c2 + n2)2
= π2c + π cosh(πc) sinh(πc)

4c3 sinh2(πc)
− 1

2c4
(6.70)

to evaluate
∞∑

n=0

q2
n(0)

ζ 2
n

= τ 2

�

{
1 + 2

L4

π4

∞∑
n=1

1

((L/π)2 + n2)2

}
= τ 2

λ

L + cosh(L) sinh(L)

2 sinh2(L)

and so arrive at

M1(v(0, ·))
M0(v(0, ·)) − M1(Istim)

M0(Istim)
= τ

2

(
1 + 2L

sinh(2L)

)
. (6.71)

(iii) Finally, deduce from Eq. (6.45) that

M2(v(0, ·)) = M2(Istim)

2πaCm

∞∑
n=0

q2
n(0)

ζn

+ M1(Istim)

πaCm

∞∑
n=0

q2
n(0)

ζ 2
n

+ M0(Istim)

πaCm

∞∑
n=0

q2
n(0)

ζ 3
n

(6.72)
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and use

∞∑
n=1

1

(c2 + n2)3
= 3π2c + 2π3c2 coth(πc) + (3/2) sinh(2πc)

16c5 sinh2(πc)
− 1

2c6
(6.73)

to evaluate
∞∑

n=0

q2
n(0)

ζ 3
n

= τ 3

λ

3L + 2L2 coth(L) + (3/2) sinh(2L)

8 sinh2(L)
.

Use this expression together with (6.68) and (6.71) to write a single equation for L, namely

F(L) = M2(v0)/M0(v0) − M2(I )/M0(I ) − 2τc(I )(τc(v0) − τc(I ))

(τc(v0) − τc(I ))2

where

F(L) ≡ sinh2(2L)

(sinh(2L) + 2L)2

3L tanh(L) + 2L2 + 3 sinh2(L)

sinh2(L)
.

It follows that the first 3 moments of the stimulus and response uniquely determine L if their combination above
strikes F where it is monotone. Over what interval is F monotone?

10. †Develop both f (x + dx) and f (x − dx) in Taylor series about x. Add these two series and conclude that

f (x + dx) − 2f (x) + f (x − dx)

dx2
→ f ′′(x) as dx → 0.

This justifies our passage from (6.29) to (6.30).
11. To solve the steady-state cable equation, (6.32), we attempt the educated (linear equations are solved by expo-

nentials) guess v∞(x) = eαx .
(i) Insert this guess into (6.32), find that α = ±1/λ, and deduce that v∞(x) = c1ex/λ + c2e−x/λ.
(ii) Determine the values of the two constants c1 and c2 from the boundary conditions, (6.33).
(iii) Confirm that your answer agrees with (6.34) where

sinh(x) = ex − e−x

2
and cosh(x) = ex + e−x

2
.

Plot (6.34) and compare with Figure 6.3.
12. †We approach the eigenvalue problem, (6.37), via the same tack as that of the previous exercise.

(i) Attempt q(x) = exp(αx) and show that q(x) = c1 exp(
√

ϑx) + c2 exp(−√
ϑx).

(ii) Show that q ′(0) = 0 translates into c1 = c2 while q ′(�) = 0 requires that exp(2
√

ϑ�) = 1. Argue that this requires
2
√

ϑ� = i2πn for n = 0,1,2, . . . and conclude that ϑ = −(nπ/�)2.
13. Regarding the convergence of the infinite sum in Eq. (6.45), suppose that Imax

stim = max{|Istim(s)|;0 ≤ s ≤ ∞} and
show that ∣∣∣∣

∫ t

0
Istim(s) exp((t − s)ζn) ds

∣∣∣∣ ≤ Imax
stim

∫ t

0
exp((t − s)ζn) ds ≤ τImax

stim

1 + (nπ(λ/�))2
. (6.74)

Deduce from Eq. (6.67) that this sequence is summable. Finally, invoke the
Weierstrass M-test: If each vn(x, t) obeys max{|vn(x, t)| : x ∈ [0, �],0 ≤ t} ≤ Mn and Mn is summable then there
exists a function v(x, t) such that given any ε > 0 there exists an index N such that

max
x∈[0,�],0≤t

∣∣∣∣∣v(x, t) −
m∑

n=1

vn(x, t)

∣∣∣∣∣ ≤ ε (6.75)

whenever m ≥ N .
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FIGURE 6.11 The graph of the v in (6.81) using passive parameters defined in Eq. (6.17). (pfibexact.m)

to conclude that the sum in Eq. (6.45) indeed converges. In this case we say that the sum of the vn converges
uniformly to v. As each vn is continuous it then follows that so too is v, and although integrals of the vn will
sum to integrals of v the same cannot be said for derivatives. To see this, differentiate each side of Eq. (6.45) with
respect x and then set x = 0.

14. We now show that our analytical methods are general enough to accommodate an arbitrary spatio-temporal
current stimulus, I (μA/cm). In particular, solve

τ
∂v

∂t
(x, t) + v(x, t) − λ2 ∂2v

∂x2
(x, t) = I (x, t)/(2πagCl), (6.76)

subject to vx(0, t) = vx(�, t) = v(x,0) = 0 by mimicking our separation of variables argument. First show that pn

obeys

τp′
n(t) + (1 + λ2ϑn)pn(t) = In(t)/(2πagCl), pn(0) = 0, (6.77)

where

In(t) =
∫ �

0
I (x, t)qn(x) dx. (6.78)

You should then arrive at

v(x, t) =
∞∑

n=0

qn(x)

Cm2aπ

∫ t

0
In(s) exp((t − s)ζn) ds. (6.79)

Please show that if

I (x, t) = −√
2/� cos(πx/�)(e−t − e−2t )/500 (6.80)

then v is simply

v(x, t) = −
√

2/� cos(πx/�)

Cm2aπ

e−t (ζ1 − 2) + e−2t (1 − ζ1) + e−ζ1t

500(ζ1 − 1)(ζ1 − 2)
. (6.81)

Use meshgrid and mesh to illustrate this solution as in Figure 6.11.
15. We show that our moment methods allow us to ascertain the location of synaptic input from indirect measure-

ments. In particular, we suppose that v obeys Eq. (6.53) with sealed ends and that we have recorded both end
potentials, v(0, t) and v(�, t).
(i) Define the left and right moments

ML(x) ≡
∫ ∞

0
v(x, t) dt, 0 ≤ x ≤ xs and MR(x) ≡

∫ ∞

0
v(x, t) dt, xs ≤ x ≤ �
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and use Eq. (6.53) to conclude that λ2M ′′
L(x) = ML(x) and λ2M ′′

R(x) = MR(x).
(ii) Using known information about ML at x = 0 and MR at x = � show that

ML(x) = M0(v(0, ·)) cosh(x/λ) and MR(x) = M0(v(�, ·)) cosh((� − x)/λ).

(iii) Explain why ML(xs) = MR(xs) and use this to derive the following equation for xs ,

σ(xs) ≡ cosh((� − xs)/λ)

cosh(xs/λ)
= M0(v(0, ·))

M0(v(�, ·)) . (6.82)

Demonstrate that σ is a monotone function of xs and hence that the end moments uniquely determine the site of
synaptic input.

16. Let us investigate the stability of the unforced (i.e., without current or synaptic inputs) forward Euler scheme

vj = (I + dtB)vj−1.

As above, it follows that vj = (I − dtB)j−1v1 and so we look for a condition on dt that will guarantee that
(I − dtB)j−1 remains bounded. We label this forward Euler matrix

F ≡ I + dtB = I + (dt/τ )(λ2S − I)

and deduce from Exercise 5 that Fqn = γnqn where the qn are the eigenvectors of S and

γn = 1 + (dt/τ )(λ2θn − 1).

Show that if � = diag(γ ) then FQ = Q� and moreover that

F = Q�QT . (6.83)

We are now prepared to study powers of F. Use (6.83) to show that

Fj−1 = Q�j−1QT

and note that to raise a diagonal matrix to a power is simply to raise each of its elements to that power. Argue
then that forward Euler is stable so long as |γN−1|, the magnitude of the largest eigenvalue of F, is less than 1.
Use Eq. (6.52) to derive an explicit stability bound for dt .

17. †Few cables are uniform in shape. Most branches taper with distance from their cell body. In the compartmental
case, if the radius of compartment n is an please show that the current balance, Eq. (6.5), takes the form

a2
n−1vn−1 − (a2

n−1 + a2
n)vn + a2

nvn+1

2Radx2
= an(Cmv′

n + gClvn). (6.84)

Next show, that as dx → 0 and n → ∞ this takes the form of the tapered cable equation

∂

∂x

(
a2(x)

∂v

∂x
(x, t)

)
= 2Raa(x){Cm

∂v

∂t
(x, t) + gClv(x, t)}. (6.85)
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