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As we observed at the outset of Chapter 6, the straight cable is an idealization. In reality, neurons exhibit an
incredible variety of branching patterns. We offer six representatives in Figure 8.1 and note that though they vary
greatly in both size and number of dendritic branches, each cell is a tree (no closed loops) with a well defined cell
body, or soma. In this chapter we append a soma and a pair of branches to the simple passive cable of Chapter 6. We
demonstrate that each of the mathematical and computational tools developed for the cable have natural extensions
to the tree. We proceed to investigate synaptic integration and attenuation, with particular attention to the role played
by tree eigenfunctions. We also specify and analyze the conditions under which the response of the tree may be well
approximated by that of a simple straight cable.

8.1 THE DISCRETE PASSIVE TREE

We work in the concrete context of Figure 8.2 on the way to a more general understanding. We have indexed the
compartments, following an observation of Hines, in a manner that leads to minimal fill-in in the LU factorization,
Exercise 5.2, of the resulting linear system associated with the backward Euler and trapezoid schemes. The physical
lengths and radii of the 3 fibers are

�1, �2, �3 and a1, a2, a3

respectively, while the length of each compartment, except the soma, is dx. The soma is presumed to have surface
area As and is not typically further compartmentalized.

If we inject Istim at the soma then Kirchhoff’s Current Law, at the node with potential v3,4, requires

Istim = CmAsv
′
3,4 + gClAsv3,4 + a2

3π(v3,4 − v3,3)/(dxRa) (8.1)

while at the branch point (v3,1) we find

πa2
3(v3,2 − v3,1)

Radx
= πa2

2(v3,1 − v2,4)

Radx
+ πa2

1(v3,1 − v1,4)

Radx
+ 2πa3dx(Cmv′

3,1 + gClv3,1).
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FIGURE 8.1 Dendritic diversity. A. A neuron of the vagal motor pathway, part of the autonomic nervous system. B. A neuron of the olivary
body in the brainstem. C. A pyramidal cell of the cortex, from layer 2/3. D. A pyramidal cell of the cortex, from layer 5. E. A Purkinje cell from
the cerebellum. F. An α-motoneuron from the spinal cord. Each scale bar is 100 µm long. From Segev (1998).

Current balance at the remaining nodes proceeds exactly as before, recall Eq. (6.5). In particular, with λ2
j ≡

aj/(2RagCl), the squared space constant of branch j , we find

τv′
1,1 + v1,1 − λ2

1(v1,2 − v1,1)/dx2 = 0

τv′
1,2 + v1,2 − λ2

1(v1,3 − 2v1,2 + v1,1)/dx2 = 0

τv′
1,3 + v1,3 − λ2

1(v1,4 − 2v1,3 + v1,2)/dx2 = 0

τv′
1,4 + v1,4 − λ2

1(v3,1 − 2v1,4 + v1,3)/dx2 = 0

τv′
2,1 + v2,1 − λ2

2(v2,2 − v2,1)/dx2 = 0

τv′
2,2 + v2,2 − λ2

2(v2,3 − 2v2,2 + v2,1)/dx2 = 0

τv′
2,3 + v2,3 − λ2

2(v2,4 − 2v2,3 + v2,2)/dx2 = 0

τv′
2,4 + v2,4 − λ2

2(v3,1 − 2v2,4 − v2,3)/dx2 = 0

τv′
3,1 + v3,1 + a2λ

2
2(v3,1 − v2,4) − a3λ

2
3(v3,2 − v3,1) + a1λ

2
1(v3,1 − v1,4)

a3dx2
= 0

τv′
3,2 + v3,2 − λ2

2(v3,3 − 2v3,2 + v3,1)/dx2 = 0

τv′
3,3 + v3,3 − λ2

3(v3,4 − 2v3,3 + v3,2)/dx2 = 0

τv′
3,4 + v3,4 − (A3/As)λ

2
3(v3,3 − v3,4)/dx2 − Istim/(gClAs) = 0

(8.2)

where A3 = 2πa3dx. We write this collection of equations as the linear system

v′(t) = Bv(t) + f(t), B = (H − I)/τ, f(t) = Istim(t)e12/(CmAs) (8.3)

and H is the Hines matrix
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FIGURE 8.2 The compartmentalization of a branched cell with soma, and its associated circuit diagram.

H = 1

dx2

⎛
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λ2
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0 λ2
1 −2λ2

1 λ2
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0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0 0 0

0 0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0 0

0 0 0 0 0 0 λ2
2 −2λ2

2 λ2
2 0 0 0

0 0 0 r1λ
2
1 0 0 0 r2λ

2
2 −c λ2

3 0 0

0 0 0 0 0 0 0 0 λ2
3 −2λ2

3 λ2
3 0

0 0 0 0 0 0 0 0 0 λ2
3 −2λ2

3 λ2
3

0 0 0 0 0 0 0 0 0 0 ρλ2
3 −ρλ2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

r1 = a1/a3 r2 = a2/a3 c = r1λ
2
1 + r2λ

2
2 + λ2

3 and ρ = A3/As.

The genius of H is at least double – it factors easily and is similar to a symmetric matrix. Regarding the former,
we note that, as in the tridiagonal S of Chapter 6, Gaussian Elimination applied to this matrix requires only one
elimination per column.

8.2 EIGENVECTOR EXPANSION

We now describe the solution of Eq. (8.3) in terms of a series expansion in the eigenvectors of B. Our expansion
in the single fiber case made great use of the symmetry of S and the resulting orthonormality of its eigenvectors.
We recognize that although the soma and the branch point have rendered H asymmetric it is nonetheless similar
to a symmetric matrix. Let us unpack that last remark in the slightly more general context in which fiber j has Nj

compartments and the soma represents an additional compartment attached to the mother. We note that

dx = �j /Nj and N ≡ N1 + N2 + N3 + 1,
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FIGURE 8.3 The first nine (non-constant) eigenvectors, wn, and associated eigenvalues, μn, of the Hines matrix H for the cell described by
Eqs. (8.7)–(8.8) and dx = 1 µm. Here the mother, branch 3, is depicted in red over the initial 250 µm segment and the daughters, branch 1 in
black and branch 2 in dashed red, are plotted over the second 250 µm. These eigenvectors appear in two varieties. Either the two daughters are
equal and opposite and the mother silent, or the daughters coincide and the mother plays along (in which case her slope at the soma is nonzero).
(bevec.m)

define the diagonal matrix

D= diag([a1ones(N1,1) a2ones(N2,1) a3ones(N3,1) a3/ρ])
and note that DH = (DH)T = HT D. This implies (Exercise 1) that

A ≡ D1/2HD−1/2 (8.4)

is symmetric. It follows, (Exercise 2), that if {μn,qn}Nn=1 is the sequence of eigenpairs of A, i.e., Aqn = μnqn then

Hwn = μnwn where wn = D−1/2qn (8.5)

and so the eigenvectors of H are orthonormal in the weighted sense,

wT
n Dwm = δmn. (8.6)

We illustrate, in Figure 8.3, the first nine non-constant eigenvectors for the symmetric fork with

a1 = a2 = a3 = 1 µm, �1 = �2 = �3 = 250 µm and As = 400π µm2 (8.7)

and passive cable parameters

Cm = 1 µF/cm2, gCl = 1/15 mS/cm2 and Ra = 0.3 k	 cm. (8.8)

Regarding the representation of f in terms of w, we write

f(t) =
N−1∑
n=0

cn(t)wn = D−1/2
N−1∑
n=0

cn(t)qn

and so find that c = WT Df. Hence, with zn = (μn − 1)/τ , and f(t) = Istim(t)eN/(CmAs), it follows from Eq. (5.21) that

v(t) = 1

2πdxCm

N−1∑
n=0

wnwn,N

∫ t

0
Istim(s) exp((t − s)zn)ds (8.9)
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FIGURE 8.4 The strength as a function of input location for the cell described by Eqs. (8.7)–(8.8). Compartments 1 to 250 correspond to daughter
1, 251 to 500 to daughter 2, and 501 to 750+1 to the mother and soma. We see that the strongest interactions occur for proximal (close to soma)
inputs. For a fixed choice of c1 the strength increases as c2 approaches the soma. A. The full strength, Eq. (8.11). B. The strength computed by
retaining only the n = 0 and n = 1 terms. We see that the leading order strength indeed captures all of the important detail of the full strength, and
hence the first non-constant eigenvector, w1, is seen as the arbiter of synaptic integration. (bevec.m)

is the solution of the discrete passive dendrite equation, Eq. (8.3), with current injection at the soma. If we instead
inject Im(t) at compartment cm, where m = 1, . . . ,M , then the above takes the form

v(t) = 1

2πdxCm

N−1∑
n=0

wn

M∑
m=1

wn,cm

∫ t

0
Im(s) exp((t − s)zn) ds.

With this we investigate the interaction of pairs of simple inputs. In particular if we place the pair of equal impulses

I1(t) = I2(t) = γ δ(t − t1)

at compartments c1 and c2 then

v(t) = γ1(t1,∞)(t)

2πdxCm

N−1∑
n=0

wn(wn,c1 + wn,c2) exp((t − t1)zn). (8.10)

We quantify their interaction by considering the strength of the soma response

S(c1, c2) ≡
∫ ∞

0
vN(t) dt = −γ

2πdxCm

N−1∑
n=0

wn,N

zn

(wn,c1 + wn,c2). (8.11)

We see that the strength at the soma, associated with simultaneous impulsive current injections, is a weighted aver-
age of the individual eigeninteractions, wn,N(wn,c1 + wn,c2), of the input, c1 and c2 and output, N , elements. We can
“see” these terms, for small n, in the eigenvectors plotted in Figure 8.3. Note that the N th component, corresponding
to the soma, appears at the far left in each plot. As w2,N = w5,N = w8,N = 0 and the other wn,N are small compared to
w1,N we may be able to capture the salient interactions by retaining only the w0 and w1 terms in Eq. (8.11). This sur-
mise is further supported by the fact that the interactions are scaled by zn = (μn − 1)/τ where the μn are eigenvalues,
see Figure 8.3, increase rapidly in magnitude. It follows that w1,N/z1 is more than 20 times its next term, w3,N/z3.
We exploit these observations in Figure 8.4 where we contrast the full strength, Eq. (8.11), with the leading order
strength associated with retaining the n = 0 and n = 1 terms.

8.3 NUMERICAL METHODS

We may solve Eq. (8.3) via the trapezoid rule, precisely as in Eq. (6.24). As an application we investigate the
integration of 10 current pulses at distinct times and places. More precisely, we suppose that our right hand side
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FIGURE 8.5 The somatic response, in B, of the cell described by Eqs. (8.7)–(8.8) to current injection of the form Eq. (8.12) of amplitude
I0 = 100 pA at the sites and times indicated in A and C. We observe smooth integration of distal early inputs punctuated by sharp increases
immediately following proximal input. (trapfork.m)

takes the form

f(t) = I0

2πa1dxCm

10∑
k=1

eck
1(tk,tk+1)(t) (8.12)

where ck denotes the compartment number of the kth stimulus, eck
is defined as in Eq. (6.10), and compute, see

Figure 8.5, the response at the cell body.
If rather than multi-site current injection we suppose polysynaptic input then we must solve

v′(t) +
K∑

k=1

csyn,k(t)(v(t) − vsyn)eck
= Bv(t) (8.13)

where, with abk
denoting the radius of the branch that receives the kth input,

csyn,k(t) = gsyn,k(t)

2πabk
dxCm

.

We solve this via the trapezoid rule precisely as we did in §6.5. In particular, we implement Eq. (6.56) where, now,
B = (H − I)/τ , and gsyn,k(t) is an alpha function

gsyn,k(t, tk) = gsyn((t − tk)/τα) exp(1 − (t − tk)/τα)1(tk,∞)(t)

that commences from tk . We illustrate our findings in Figure 8.6.
We observe, in Figure 8.6, that the early stimulus into branch 1 indeed depolarizes branch 2 and that the combined

response attenuates as it approaches the soma. We investigate, in Figure 8.7, the difference between peak synaptic
and peak somatic potentials as the synapse moves away from the soma.

8.4 THE PASSIVE DENDRITE EQUATION

As we pass to the limit of infinitely many infinitely short compartments we arrive (precisely as in §6.4) at 3 cable
equations

τ
∂vj

∂t
(x, t) + vj (x, t) = λ2

j

∂2vj

∂x2
(x, t), 0 < x < �j , j = 1,2,3,
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FIGURE 8.6 The response of the cell described by Eqs. (8.7)–(8.8) to alpha synaptic input onto the two daughter branches, with gsyn = 1 nS,
τα = 0.5 ms, t1 = 1 and t2 = 3 ms and reversal potential vsyn,k = 70 mV. Both inputs are located 100 µm from the branch ends. A. Full space–time
response. The response of the mother (branch 3) is plotted in red over the first 250 µm. The response of the two daughters is plotted over the
second 250 µm with the response of branch 1 in black and that of branch 2 in red. B. The response in time at the two sites of stimulation, with
black and red denoting branches 1 and 2 respectively, as in A. (trapforksyn.m)

FIGURE 8.7 Peak somatic and synaptic potentials for the cell described by Eqs. (8.7)–(8.8), as a function of the distance from the soma to the
site of a single alpha synapse, with gsyn = 0.5 nS and τα = t1 = 1 ms. The steep decrease in peak soma potential as the synapse travels away from
the soma diminishes as the synapse enters a daughter branch and the peak synaptic potential grows as the synapse approaches the sealed end.
We have seen such “end effects” before in Figure 6.3A. (trapforksyngain.m)

for the three space–time potential functions, v1, v2 and v3. The two daughters are sealed at their distal ends, i.e.,

∂v1

∂x
(0, t) = ∂v2

∂x
(0, t) = 0.

The mother’s proximal end reflects the soma condition

τ
∂v3

∂t
(�3, t) + v3(�3, t) + a3λ

2
3(2π/As)

∂v3

∂x
(�3, t) = Istim(t)/(gClAs).

At the junction where the three branches meet we enforce current balance

a1λ
2
1
∂v1

∂x
(�1, t) + a2λ

2
2
∂v2

∂x
(�2, t) = a3λ

2
3
∂v3

∂x
(0, t),

and continuity of potential

v1(�1, t) = v2(�2, t) = v3(0, t).

It can be advantageous to work in the non-dimensional variables

X ≡ x/λj , Lj ≡ �j /λj , T ≡ t/τ, h ≡ a3λ3(2π/As). (8.14)
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For then the associated response and stimulus,

uj (X,T ) ≡ vj (x, t), J (T ) ≡ Istim(t)

obey

∂uj

∂T
(X,T ) + uj (X,T ) = ∂2uj

∂X2
(X,T ), 0 < X < Lj (8.15)

subject to the two sealed end conditions

∂u1

∂X
(0, T ) = ∂u2

∂X
(0, T ) = 0, (8.16)

the soma condition

∂u3

∂T
(L3, T ) + u3(L3, T ) + h

∂u3

∂X
(L3, T ) = J (T )/(gClAs), (8.17)

and the junction conditions

a
3/2
1

∂u1

∂X
(L1, T ) + a

3/2
2

∂u2

∂X
(L2, T ) = a

3/2
3

∂u3

∂X
(0, T )

u1(L1, T ) = u2(L2, T ) = u3(0, T ).

(8.18)

Before proceeding to solve this general problem we pause to consider an important special case.

8.5 THE EQUIVALENT CYLINDER∗

We observe that the fork can be collapsed to a single cable, or cylinder, under a pair of simple geometric assump-
tions. We assume, for ease of presentation, that the only stimulus is current into the soma.

(EC1) If the two daughters have equal electrotonic lengths, i.e., L1 = L2, we may define

U(X,T ) =
⎧⎨
⎩

a
3/2
1 u1(X,T )+a

3/2
2 u2(X,T )

a
3/2
1 +a

3/2
2

, 0 < X < L1

u3(X − L1, T ), L1 < X < L1 + L3

(8.19)

and note that it obeys, with L ≡ L1 + L3,

∂U

∂T
(X,T ) + U(X,T ) = ∂2U

∂X2
(X,T ), 0 < X < L1, L1 < X < L

U(L−
1 , T ) = U(L+

1 , T )

(a
3/2
1 + a

3/2
2 )

∂U

∂X
(L−

1 , T ) = a
3/2
3

∂U

∂X
(L+

1 , T )

∂U

∂X
(0, T ) = 0,

∂U

∂T
(L,T ) + U(L,T ) + h

∂U

∂X
(L,T ) = J (T )/(gClAs).

The third condition predicts a break in the slope of U if a
3/2
1 + a

3/2
2 �= a

3/2
3 .
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(EC2) If the cell obeys the “3/2 law,” i.e., a
3/2
1 + a

3/2
2 = a

3/2
3 then U is simply the solution to

∂U

∂T
(X,T ) + U(X,T ) = ∂2U

∂X2
(X,T ), 0 < X < L, 0 < T

∂U

∂X
(0, T ) = 0, 0 < T

∂U

∂T
(L,T ) + U(L,T ) + h

∂U

∂X
(L,T ) = J (T )/(gClAs), 0 < T

U(X,0) = 0, 0 < X < L.

(8.20)

This system, Eq. (8.20), is known as the Equivalent Cylinder Problem. We solve it, as in §6.4, by proceeding from
the hope that U(X,T ) = q(X)p(T ). This hope necessitates

p′(T )/p(T ) + 1 = q ′′(X)/q(X), 0 < X < L

q ′(0) = 0, p′(T )/p(T ) + 1 + hq ′(L)/q(L) = J (T )/(gClAsp(T )q(0))

If, as in §6.4, we label by ϑ the common value of q ′′(X)/q(X) and p′(T )/p(T ) + 1 then we see that it too must appear
in the boundary condition for q . That is, we are compelled to consider

q ′′(X) = ϑq(X), q ′(0) = 0, hq ′(L) + ϑq(L) = 0. (8.21)

This produces only a minor inconvenience, for the eigenfunction must still be of the form

qn(X) = bn cos(
√−ϑnX) (8.22)

and ϑn is chosen to guarantee hq ′
n(L) = −ϑnqn(L). More precisely, ϑn is the negative of the square of each root of

F(z) ≡ z + h tan(zL). (8.23)

We shall demonstrate (in Exercise 5) that these roots are simple and deduce (in Exercise 6) that

(ϑm − ϑn)

(
qm(L)qn(L)/h +

∫ L

0
qm(X)qn(X)dX

)
= 0, (8.24)

and hence that the eigenfunctions are orthogonal with respect to the inner product

〈f,g〉 ≡ f (L)g(L)/h +
∫ L

0
f (X)g(X)dX. (8.25)

We next normalize these eigenfunctions by choosing the bn in Eq. (8.22) such that 〈qn, qn〉 = 1, that is, such that

b2
n

(
cos2(

√−ϑnL)/h +
∫ L

0
cos2(

√−ϑnX)dX

)
= 1. (8.26)

As with the straight cable, the naive guess that U(X,T ) = q(X)p(T ) has led us to the better guess

U(X,T ) =
∞∑

m=0

pm(T )qm(X). (8.27)

On taking the inner product, Eq. (8.25), of each side with qn we deduce from 〈qm,qn〉 = δmn that

〈U,qn〉 = U(L,T )qn(L)/h +
∫ L

0
U(X,T )qn(X)dX = pn(T )〈qn, qn〉 = pn(T ). (8.28)



118 8. THE PASSIVE DENDRITIC TREE

We now differentiate this with respect to time, T , and use Eq. (8.20) to replace time derivatives of U with space
derivatives of U , and arrive at

p′
n(T ) = ∂U

∂T
(L,T )qn(L)/h +

∫ L

0

∂U

∂T
(X,T )qn(X)dX

=
{
J (T )/(gClAs) − U(L,T ) − h

∂U

∂X
(L,T )

}
qn(L)/h +

∫ L

0

{
∂2U

∂X2
(X,T ) − U(X,T )

}
qn(X)dX

=
{
J (T )/(gClAs) − h

∂U

∂X
(L,T )

}
qn(L)/h − pn(T ) +

∫ L

0

∂2U

∂X2
(X,T )qn(X)dX.

To this we apply integration by parts, in Exercise 7, to shift derivatives from U onto qn and so find

∫ L

0

∂2U

∂X2
(X,T )qn(X)dX = ∂U

∂X
(L,T )qn(L) + ϑnpn(T ). (8.29)

It then follows that pn obeys the familiar, Eq. (2.13), ordinary differential equation

p′
n(T ) + (1 − ϑn)pn(T ) = J (T )qn(L)/(gClAsh). (8.30)

Its solution, per Eq. (3.2), is the simple convolution,

pn(T ) = qn(L)

gClAsh

∫ T

0
J (s) exp((T − s)(ϑn − 1)) ds.

On inserting this into Eq. (8.27) we find that

U(X,T ) =
∞∑

n=0

qn(L)qn(X)

gClAsh

∫ T

0
J (s) exp((T − s)(ϑn − 1)) ds (8.31)

solves the equivalent cylinder with soma problem, Eq. (8.20).

8.6 BRANCHED EIGENFUNCTIONS∗

We return to the full non-dimensional system of §8.4 and pose and solve the eigenproblem for

q(X) = (q1(X) q2(X) q3(X))T .

Each component obeys the elemental branch condition

q ′′
j (X) = ϑqj (X), 0 < X < Lj (8.32)

subject to the joint and seal conditions

q ′
1(0) = q ′

2(0) = hq ′
3(L3) + ϑq3(L3) = 0

q1(L1) =q2(L2) = q3(0)

a
3/2
1 q ′

1(L1)+a
3/2
2 q ′

2(L2) = a
3/2
3 q ′

3(0).

(8.33)

Just as eigenvectors of the Hines matrix were orthogonal in the weighted sense, Eq. (8.6), we find (Exercise 10) that
qm is orthogonal to qn in the weighted inner product

〈(f1 f2 f3), (g1 g2 g3)〉 ≡ a
3/2
3 f3(L3)g3(L3)/h +

3∑
j=1

a
3/2
j

∫ Lj

0
fj (X)gj (X)dX. (8.34)
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Arguing in precisely the same fashion as the previous section, we find that the full solution of the passive dendrite,
subject to somatic current injection, may be expressed as

u(X,T ) =
∞∑

n=0

qn(X)qn,3(L3)

gClAsh

∫ T

0
J (s) exp((T − s)(ϑn − 1)) ds. (8.35)

This is the natural three-dimensional analog of the response, Eq. (8.31), of the equivalent cylinder. To help fix ideas
we now compute these branched eigenfunctions for dendrites whose branches have equal electrotonic lengths, i.e.,
L1 = L2 = L3 = L.

Without soma. We begin, for simplicity, by removing the soma. As As → 0 we find h → ∞ and so q ′
3(L) = 0. In this

case,

q1 = b1 cos(
√−ϑX), q2 = b2 cos(

√−ϑX), and q3 = b3 cos(
√−ϑ(L − X))

and so continuity at the joint requires

b1 cos(
√−ϑL) = b2 cos(

√−ϑL) = b3 cos(
√−ϑL) (8.36)

while Kirchhoff’s Current Law at the joint requires

−a
3/2
1

√−ϑb1 sin(
√−ϑL) − a

3/2
2

√−ϑb2 sin(
√−ϑL) = a

3/2
3

√−ϑb3 sin(
√−ϑL). (8.37)

There now appears a natural splitting. In particular, if cos(
√−ϑL) = 0 then (8.36) holds and the bj are constrained

by (8.37). This is one linear equation in three unknowns and so defines a plane. The upshot is that each eigenvalue
has two linearly independent eigenfunctions. To be precise

ϑn = −n2π2

4L2
, qn(X) = b1

nq1
n(X) + b2

nq2
n(X) n = 1,3,5, . . . (8.38)

where

q1
n(X) =

⎛
⎜⎝

cos(
√−ϑnX)

0

−(a1/a3)
3/2 cos(

√−ϑn(L − X))

⎞
⎟⎠

and

q2
n(X) =

⎛
⎜⎝

0

cos(
√−ϑnX)

−(a2/a3)
3/2 cos(

√−ϑn(L − X))

⎞
⎟⎠ . (8.39)

We note that the continuity equation is satisfied by the vanishing of each term in the second condition of Eq. (8.33).
The analogous satisfaction of current balance at the joint requires sin(

√−ϑL) = 0 in which case continuity requires
b1 = b2 = b3 and we find

ϑn = −n2π2

4L2
n = 2,4,6, . . .

qn(X) = b

⎛
⎜⎝

cos(
√−ϑnX)

cos(
√−ϑnX)

cos(
√−ϑn(L − X))

⎞
⎟⎠

where b is the arbitrary normalization constant. In summary, we note that the eigenvalues are −n2π2/(2L)2 for
n = 0,1,2, . . . and that these are simple for even n and double for odd n.

With soma. If we now attach the soma we find that the eigenfunction of branch 3 must be of the form

q3(X) = b3{cos(
√−ϑ(L − X)) + (

√−ϑ/h) sin(
√−ϑ(L − X))}.
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It follows that continuity at the joint requires

b1 cos(
√−ϑL) = b2 cos(

√−ϑL) = b3{cos(
√−ϑL) + (

√−ϑ/h) sin(
√−ϑL)} (8.40)

while Kirchhoff’s Current Law there requires

−a
3/2
1 b1 sin(

√−ϑL) − a
3/2
2 b2 sin(

√−ϑL) = a
3/2
3 b3{sin(

√−ϑL) − (
√−ϑ/h) cos(

√−ϑL)}. (8.41)

As above, there is a natural splitting. If cos(
√−ϑL) = 0 then (8.40) implies that b3 = 0 and (8.41) then requires that

a
3/2
1 b1 + a

3/2
2 b2 = 0 and so

ϑn = −n2π2

4L2
n = 1,3,5, . . .

qn(X) = b cos(
√−ϑnX)

⎛
⎝ 1

−(a1/a2)
3/2

0

⎞
⎠ .

We recognize these eigenfunctions in panels μ2, μ5 and μ8 in Figure 8.3. The zero in qn (third component) has
interesting consequences for branch to branch communication. In particular, any stimulus of the form

J (X,T ) =
∞∑

m=1

Jm(T )q2m−1(X), (8.42)

with Jm(T ) arbitrary, will be invisible to the mother and therefore the soma. See Exercise 9.
Next, if cos(

√−ϑL) �= 0 then (8.40) implies that

b1 = b2 = b3(1 + (
√−ϑ/h) tan(

√−ϑL))

and (8.41) that

−a
3/2
1 b1 tan(

√−ϑL) − a
3/2
2 b2 tan(

√−ϑL) = a
3/2
3 b3(tan(

√−ϑL) − √−ϑ/h).

Combining these two we find that ϑ is the negative of the square of each root of

F(z) ≡ (1 + (z/h) tan(zL)) tan(zL)(a
3/2
1 + a

3/2
2 ) + a

3/2
3 (tan(zL) − z/h),

the branched analog of Eq. (8.23). The associated eigenfunction is

qn(X) = b

⎛
⎜⎜⎝

cos(
√−ϑnX)

cos(
√−ϑnX)

cos(
√−ϑn(L−X))

1+(
√−ϑn/h) tan(

√−ϑnL)

⎞
⎟⎟⎠

where b is the normalization constant. We recognize these eigenfunctions in panels μ1, μ3, μ4, μ6, μ7 and μ9 in
Figure 8.3.

8.7 SUMMARY AND SOURCES

We have added a soma and a pair of branches to our passive cable and demonstrated that each of the analytical
and computational approaches developed for the cable apply, with little change, to the passive dendrite with soma.
The only real change is the replacement of the second difference matrix with the Hines matrix and the fact that
the eigenvectors of the latter are considerably more complicated than those of the straight cable. We have restricted
attention to the three branched fork solely for reasons of exposition. For each of the fundamental constructs makes
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perfect sense in larger trees. In particular, Hines (1984), solves the compartmental ordering problem for general
trees. Rall, see Segev et al. (1994), solves the Equivalent Cylinder problem for reducible trees and von Below (1988)
establishes the inner product in which the branched eigenfunctions of general trees are orthogonal. Exercise 11 is
drawn from Nicaise (1987).

8.8 EXERCISES

1. Regarding the lead up to Eq. (8.4), show that DH is indeed symmetric and deduce the symmetry of A from this.
Do this by hand (without numbers) by drawing and exploiting the block structure of H.

2. †Show that Eq. (8.5) and Eq. (8.6) indeed follow from Eq. (8.4).
3. †Integrate the response of the soma component to dual simultaneous current impulses and explain how

Eq. (8.11) arises from Eq. (8.10).
4. †Although dendritic cable diameters and branching do not permit one to space-clamp the cell, it is not uncom-

mon for experimentalists to employ voltage clamps at one or more sites. The most common site is the soma.
With regard to our concrete compartmental system, Eq. (8.2), note that if we clamp the soma potential, v3,4, to
the value vc, then the penultimate equation in (8.2) takes the form

τv′
3,3 + v3,3 − λ2

3(−2v3,3 + v3,2) = λ2
3vc/dx2, (8.43)

and that the final equation in (8.2) is no longer a constraint on the system (for v3,4 is already constrained) but is
rather an expression for the current, Ic, that is necessary to hold v3,4 at vc. In particular

Ic = gClAsvc − gClA3λ
2
3(v3,3 − vc)/dx2. (8.44)

The upshot of these 2 equations is that we now remove the last row and column of the Hines matrix, H, and
replace the stimulus vector, f in Eq. (8.3) with

f(t) = (λ3/dx)2vce11/τ.

Please modify trapforksyn.m to permit a somatic voltage clamp and produce results like Figure 8.8.

Hint: Note that the rest potential is nonzero and decreases away from the clamp. To find it, return to Eq. (8.3)
and solve Bvr + f = 0. This nonzero rest also has implications for the initialization of our trapezoid rule. Return
to Eq. (6.23) to get it right.

5. The eigenvalues, ϑn, of the equivalent cylinder with soma are determined by zn, the roots of z/h + tan(zL), via
ϑn = −z2

n. For representative L and h carefully graph the functions f (z) = tan(zL) and g(z) = −z/h and argue
that these two graphs intersect at infinitely many points, 0 = z0 < z1 < z2 < · · · . What number is zn close to for
large n?

6. Establish the orthogonality, Eq. (8.24), of the eigenfunctions of the equivalent cylinder with soma by demon-
strating that

ϑn

∫ L

0
qn(X)qm(X)dX =

∫ L

0
q ′′
n(X)qm(X)dX

= qm(L)qn(L)(ϑm − ϑn)/h + ϑm

∫ L

0
qn(X)qm(X)dX.

7. †Establish the validity of Eq. (8.29).
8. Consider a cell that satisfies the Equivalent Cylinder conditions. Rather than injecting current at the soma, we

now inject equal current into the two daughters. In particular, we suppose

∂uj

∂T
(X,T ) + uj (X,T ) − ∂2uj

∂X2
(X,T ) = Istim(X,T ), j = 1,2

for some function Istim. Derive a system of equations for the U of (8.19).
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FIGURE 8.8 A. Space–time illustration of the potential in the fork with the soma potential clamped at vc = 2 mV, and a distal (400 µm)
α-synapse with gsyn = 1 nS, τα = t1 = 1 ms and vsyn = 70 mV. B. The associated clamp current at the soma, as computed by Eq. (8.44). This a
beautiful signature of the distal excitatory input. On dividing it by the clamp potential we arrive, as in Chapter 4, at an estimate of the time varying
conductance. In particular, in C and D we plot (in black) the “received” conductance g(t) = (Ic(t)−Ic(0))/(vc −vsyn). C corresponds to the synapse
of A while D is the same conductance but placed proximal (50 µm). For comparison purposes we have included the true synaptic conductance,
in red. The figures provide yet another window on the attenuation, or dendritic filtering, of synaptic inputs. (trapforksynclamp.m)

FIGURE 8.9 An example of a stimulus (A) that does not reach the soma, see response in B. Color scheme as in Figure 8.8A. (trapforkd.m)

9. Modify trapfork.m to accept distributed current input. Assume equal electrotonic branch lengths and apply
a stimulus of the form Eq. (8.42) and show that the mother is indeed kept in the dark.

10. †Establish the orthogonality of the branched eigenfunctions, qn obeying Eqs. (8.32)–(8.33), with regard to the
inner product defined in Eq. (8.34).

11. It can be shown under fairly general hypotheses that the eigenvalues of a branched tree fall in two camps,
ϑ = −n2π2 and cos(

√−ϑ) = zj where zj is an eigenvalue, less than 1 in magnitude, of the adjacency matrix
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associated with the tree. For our simple fork, the adjacency matrix is

A = 1√
a

3/2
1 + a

3/2
2 + a

3/2
3

⎛
⎜⎜⎜⎜⎝

0 0 0 a
3/4
1

0 0 0 a
3/4
2

0 0 0 a
3/4
3

a
3/4
1 a

3/4
2 a

3/4
3 0

⎞
⎟⎟⎟⎟⎠ .

Confirm, using, e.g., the symbolic toolbox in Matlab, that 0,0,1,−1 are the eigenvalues of A. Reconcile this
result with our findings in Eqs. (8.38)–(8.39).
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