
TECHNOLOGY REPORT
published: 19 September 2019
doi: 10.3389/fninf.2019.00063

Frontiers in Neuroinformatics | www.frontiersin.org 1 September 2019 | Volume 13 | Article 63

Edited by:

Arjen van Ooyen,

VU University Amsterdam,

Netherlands

Reviewed by:

Anders Lansner,

Stockholm University, Sweden

Thomas Nowotny,

University of Sussex, United Kingdom

*Correspondence:

Felix Schürmann

felix.schuermann@epfl.ch

Received: 01 June 2019

Accepted: 04 September 2019

Published: 19 September 2019

Citation:

Kumbhar P, Hines M, Fouriaux J,

Ovcharenko A, King J, Delalondre F

and Schürmann F (2019)

CoreNEURON : An Optimized

Compute Engine for the NEURON

Simulator. Front. Neuroinform. 13:63.

doi: 10.3389/fninf.2019.00063

CoreNEURON : An Optimized
Compute Engine for the NEURON
Simulator
Pramod Kumbhar 1, Michael Hines 2, Jeremy Fouriaux 1, Aleksandr Ovcharenko 1,

James King 1, Fabien Delalondre 1 and Felix Schürmann 1*

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland, 2Department of Neuroscience,

Yale University, New Haven, CT, United States

The NEURON simulator has been developed over the past three decades and is

widely used by neuroscientists to model the electrical activity of neuronal networks.

Large network simulation projects using NEURON have supercomputer allocations that

individually measure in themillions of core hours. Supercomputer centers are transitioning

to next generation architectures and the work accomplished per core hour for these

simulations could be improved by an order of magnitude if NEURON was able to better

utilize those new hardware capabilities. In order to adapt NEURON to evolving computer

architectures, the compute engine of the NEURON simulator has been extracted and

has been optimized as a library called CoreNEURON. This paper presents the design,

implementation, and optimizations of CoreNEURON. We describe how CoreNEURON

can be used as a library with NEURON and then compare performance of different

network models on multiple architectures including IBM BlueGene/Q, Intel Skylake, Intel

MIC and NVIDIA GPU. We show how CoreNEURON can simulate existing NEURON

network models with 4–7x less memory usage and 2–7x less execution time while

maintaining binary result compatibility with NEURON.

Keywords: NEURON, simulation, neuronal networks, supercomputing, performance optimization

1. INTRODUCTION

Simulation in modern neuroscientific research has become a third pillar of the scientific method,
complementing the traditional pillars of experimentation and theory. Studying models of brain
components, brain tissue or even whole brains provides new ways to integrate anatomical and
physiological data and allow insights into causal mechanisms crossing scales and linking structure
to function. Early studies covered for example the levels from channels to cell behavior accounting
for detailed morphology (e.g., De Schutter and Bower, 1994; Mainen and Sejnowski, 1996) and
integrating this detail into models of networks (e.g., Davies, 1992). More recently, studies have been
accounting for increased electrophysiological detail and diversity in the tissuemodel (e.g., Markram
et al., 2015; Arkhipov et al., 2018), giving a glimpse at functional importance of the underlying
connectome (e.g., Gal et al., 2017; Reimann et al., 2017) allowing for example the reinterpretation of
aggregate brain signals such as LFP (e.g., Anastassiou et al., 2015). At the same time, computational
studies have strived to look even deeper into the biochemical workings of the cell, studying the
role of intracellular cascades in neuromodulation (e.g., Lindroos et al., 2018) or metabolism (e.g.,
Jolivet et al., 2015), and to abstract some of the detail while maintaining cell type diversity (e.g.,

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00063
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00063&domain=pdf&date_stamp=2019-09-19
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:felix.schuermann@epfl.ch
https://doi.org/10.3389/fninf.2019.00063
https://www.frontiersin.org/articles/10.3389/fninf.2019.00063/full
http://loop.frontiersin.org/people/571889/overview
http://loop.frontiersin.org/people/396/overview
http://loop.frontiersin.org/people/311/overview

Kumbhar et al. CoreNEURON

Izhikevich and Edelman, 2008; Potjans and Diesmann, 2012;
Dahmen et al., 2016), or tomove the integrated andmodeled data
all the way to fMRI (Deco et al., 2008).

As the biochemical and biophysical processes of the brain
span many orders of magnitudes in space and time, different
simulator engines have been established over time incorporating
the appropriate idioms, computational representations and
numerical methods (e.g., at the biochemical level—STEPS Wils
and De Schutter, 2009, at the detailed cellular level - NEURON
Migliore et al., 2006, using simplified neuron representations—
NEST Gewaltig and Diesmann, 2007, or even more abstract—
TVB Sanz-Leon et al., 2015 to name a few).

The more detail is included in these models and the larger the
models become, the larger are the computational requirements
of these simulation engines, making it necessary to embrace
advanced computational concepts and faster computers (Hines
et al., 2011; Hepburn et al., 2016; Ippen et al., 2017). Table 1
shows exemplarily five different network models used in this
paper for benchmarking and indicates their size and complexity.

A single-column thalamocortical network model (Traub et al.,
2005) is used to better understand population phenomena
in thalamocortical neuronal ensembles. It has 3,560 multi-
compartment neurons with soma, branching dendrites and a
portion of axon. It consists of 14 different neuron types, 3,500
gap junctions and 1.1 million connections. The neurons were
connected together by chemical synapses (using AMPA and
NMDA receptors) and gap junctions that were non-rectifying
and voltage-independent. This model uses standard repertoire
of 11 active conductances in all of the cells. A scaled-down
variant of the full-scale dentate gyrus model (Dyhrfjeld-Johnsen
et al., 2007) developed in the (Soltesz Lab, 2019) is used to
understand hippocampal spatial information processing and field
potential oscillations. It consists of 5,143 multi-compartment
neurons and 4,121 Poisson spike sources, and includes 6
different cell types, 1.2 million connections and about 600 gap
junctions. This model uses 9 classes of active conductance
mechanisms such as sodium, potassium, calcium channels, and
calcium-dependent potassium channels. A synthetic model with
specific computational characteristics is often needed to evaluate
target hardware based on number of cells, branching patterns,
compartments per branch etc. For this purpose, a multiple
ring network model of branching neurons and minimal spike
overhead is used (Hines, 2017a). The Blue Brain Project has
published a first-draft digital reconstruction of the microcircuitry
of somatosensory cortex in 2015 (Markram et al., 2015). This
model contains about 219,000 neurons, with 55 layer-specific

TABLE 1 | Summary of network models.

Model name Summary #Neurons #Compartments #Synapses

Traub A single column thalamocortical network model 3,560 465,740 1,099,820

Dentate Dentate Gyrus model including Granule cells with dendritic compartments 5,137 175,719 1,199,988

Ring Ring network of branching cells 32,768 9,535,488 33,280

Cortex + Plasticity Somatosensory cortex model with synaptic plasticity 219,422 99,581,138 872,922,040

Hippocampus Rat Hippocampus CA1 model 789,595 565,495,731 361,937,388

morphological and 207 morpho-electrical neuron subtypes. The
neurons in this model employ up to 13 different Hodgkin-
Huxley conductance classes, with up to 8 of those classes used
in the dendrites. Together with other partners in the European
Human Brain Project, this group is also working on a full-
scale model of a rat hippocampus CA1 (Human Brain project,
2018). A first draft of this model contains about 789,000 neurons
with 13 morphological types and 17 morpho-electrical types.
The neurons in this model employ up to 11 active conductance
classes, with up to 9 of those classes used in the dendrites.

The number of neurons and synapses, however, is not always
the best indicator of the computational complexity of a model. In
themodel ofMarkram et al. (2015) each neuron averages to about
20,000 differential equations to represent its electrophysiology
and connectivity. To simulate themicrocircuit of 31,000 neurons,
it is necessary to solve over 600 million equations every 25 ms of
biological time–a requirement far beyond the capabilities of any
standard workstation. It is necessary to utilize massively parallel
systems for such simulations but fully exploiting the capabilities
these systems is a challenging task for a large number of scientific
codes, including NEURON. Significant efforts are necessary to
prepare scientific applications to fully exploit themassive amount
of parallelism and hardware capabilities offered by these new
systems (Ábrahám et al., 2015).

In this paper we present our efforts to re-engineer the
internal computational engine of the NEURON simulator,
CoreNEURON, to adapt to emerging architectures while
maintaining compatibility with existing NEURON models
developed by the neuroscience community. Our work was guided
by the goal to leverage the largest available supercomputers for
neuroscientific exploration by scaling the simulator engine to
run on millions of threads. A key design goal was to reduce
the memory footprint compared to NEURON as total memory
and memory bandwidth are scarce and costly resources when
running at scale. Lastly, for this capability to be easily usable
by the normal NEURON community, we endeavored to tightly
integrate CoreNEURON with NEURON.

2. NEURON SIMULATION ENVIRONMENT

NEURON is a simulation environment developed over the last 35
years for modeling networks of neurons with complex branched
anatomy and biophysical membrane properties. This includes
extracellular potential near membranes, multiple channel types,
inhomogeneous channel distribution and ionic accumulation. It
can handle diffusion-reaction models and integrating diffusion

Frontiers in Neuroinformatics | www.frontiersin.org 2 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

functions into models of synapses and cellular networks.
Morphologically detailed models simulated using NEURON are
able to represent the spatial diversity of electrical and biophysical
properties of neurons.

Individual neurons are treated as a tree of unbranched
cables called sections. Each section can have its own set of
biophysical parameters, independently from other sections, and
is discretized as a set of adjacent compartments (see e.g., Hines,
1993). Compartmental models of neurons take into account not
only the connectivity between neurons but also the individual
morphologies and inhomogeneities of each neuron. The electrical
activity of neurons is modeled using the cable equation (see
e.g., Tuckwell, 2005) applied to each section, where the quantity
representing the state of a neuron at a given point in space and
instant in time is themembrane potential. The general form of the
cable equation for a section, in the case of constant parameters
and conductance based synapse modeling, is given by:

d

4Ra

∂2v

∂x2
= cm

∂v

∂t
+ Ipas + Iion + Isyn (1)

where

• d [µm] ,Ra [�cm] , cm

[

µF

cm2

]

, Ipas

[

mA

cm2

]

are biophysical

parameters contributing to the passive component of the
cable equation (unit conversion factors are not shown but
each term has the units ofmA/cm2).

• Iion

[

mA

cm2

]

is the active contribution arising from ion

channels along the section, whose conductances gi and
resting potentials ei might depend in a non-linear fashion
upon a set of state variables representing those channels.

• Isyn

[

mA

cm2

]

is the contribution from the synapses placed at

positions xj, whose conductances gj and resting potentials
ej might depend in a non-linear fashion upon a set
of state variables and which take effect in a strongly
localized manner. Individual synapses have units of nA
and conversion to mA/cm2 involves a Dirac delta function,
δ(x−xj), with units 1/µm, and the diameter; i.e., conversion
of absolute current to current per unit area implies division
by the compartment area where the synapse is located.

One needs to couple (1) to a set of additional differential
equations that describe the evolution of the states of ion channels
and synapses, thus giving rise to a system of PDEs/ODEs as
the final problem. Spatial discretization of the PDEs results in
a tree topology set of stiff coupled equations which is most
effectively solved by implicit integration methods. In particular,
direct Gaussian elimination with minimum degree ordering
is computationally optimum in the sense that the number of
arithmetic operations is identical to direct Gaussian elimination
of a non-branching cable with the same number of nodes
(Hines and Carnevale, 1997; Hines et al., 2008). The general
structure of a hybrid clock-event driven algorithm (Hines, 1993)
in NEURON can be divided into a set of operations that are

performed at every integration time step and an interprocess
spike exchange operation where a list of spike generation
times and identifiers are synchronized across all processors
every minimum spike delay interval. The per integration step
operations are:

• Event-driven spike delivery step where the callback function
of each synapse activated by a spike at a given timestep
is executed.

• Matrix assembly step where the Iion and Isyn contributions are
computed and included in the matrix.

• Matrix resolution step where the membrane potential for the
current step is obtained by solving a linear system.

• State variables update step where the evolution equations for
the states of ion channels and synapses are solved to advance
to the current timestep.

• Threshold detection step where each neuron is scanned to see
if it has met a particular firing condition, and if so a particular
list of events is updated.

Although the simulator has demonstrated scaling up to
64,000 cores on the IBM Blue Gene/P system (Hines
et al., 2011), with the emerging computing architectures
(like GPUs, many-core architectures) the key challenges
are numerical efficiency and scalability. The simulator
needs to : (1) expose fine grain parallelism to utilize the
massive number of hardware cores, (2) be optimized
for memory hierarchies and (3) fully utilize processor
capabilities such as vector units. To simulate models with
billions of neurons on a given computing resource, memory
capacity is another major challenge. In order to address
these challenges, the compute algorithm of the NEURON
simulator was extracted and optimized into a standalone library
called CoreNEURON.

3. CORENEURON DESIGN AND
IMPLEMENTATION

The integration interval operations (listed in section 2)
consume most of the simulation time (Kumbhar et al., 2016).
The goal of CoreNEURON is to efficiently implement these
operations considering different hardware architectures. This
section describes the integration of CoreNEURON with the
NEURON execution workflows, major data structure changes to
reduce memory footprint, memory transfer between NEURON-
CoreNEURON and a checkpoint-restore implementation to
facilitate long running simulations.

3.1. NEURON to CoreNEURON Workflow
One of the key design goal of CoreNEURON is to be compatible
with the existing NEURONmodels and user workflows.With the
integration of CoreNEURON library, the NEURON simulator
supports three different workflows depicted in Figure 1.

• NEURONmode
• CoreNEURON Online mode
• CoreNEURON Offline mode

Frontiers in Neuroinformatics | www.frontiersin.org 3 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

FIGURE 1 | Different execution workflows supported by NEURON simulator with CoreNEURON : (A) shows the existing simulation workflow where HOC/Python

interface is used for building a model which is then simulated by NEURON; (B) shows the new CoreNEURON based workflow where the in-memory model

constructed by NEURON is transferred using direct memory access and then simulated by CoreNEURON; (C) shows new CoreNEURON based workflow where

NEURON partitions a large network model into smaller chunks, iteratively instantiates each model piece in memory, and copies that subset of model information to

disk. CoreNEURON then loads the whole model in memory and simulates it.

Existing users are familiar with the default NEURON mode.
The model descriptions written in NMODL (Hines and
Carnevale, 2000) are used to build a dynamically loadable
shared library. The HOC/Python scripting interface is
used to build a network model in memory (Model Setup
phase). This in-memory model is then simulated using the
hybrid clock-event driven algorithm described in section 2
(Simulation phase). Users have full control over model structure
and can introspect or record all events, states, and model
parameters using the scripting or graphical user interface
(Result phase).

CoreNEURON Online Mode allows users to run their models
efficiently with minimal changes. After the Model Setup phase,
the in-memory representation is copied into CoreNEURON’s
memory space. CoreNEURON then re-organizes the memory
during Memory Setup phase for efficient execution (see section
4.2). The Simulation phase is executed in CoreNEURON
and spike results are written to disk. Note that the same
NMODL model descriptions are used both in NEURON as well
as CoreNEURON.

CoreNEURON Offline mode is intended for large network
models that cannot be simulated with NEURON due to memory
capacity constraints. In this mode, instead of loading the
entire model at once, the Model Setup phase builds a subset
of the model that fits into available memory. That subset
is written to disk, the memory used by the subset is freed,
and the Model Setup phase constructs another subset. After
all subsets are written by NEURON, CoreNEURON reads
the entire model from the disk and begins the Simulation
phase. Because CoreNEURON’s cell and network connection
representations are much lighter weight than NEURON’s, 4-
7x larger models than NEURON can be simulated with
CoreNEURON (see section 5).

Users can adapt existing models to the CoreNEURON Online
Modeworkflowwith the trivial replacement of the psolve function
call with nrncore_run of the (ParallelContext, 2019) class.

3.2. Data Structure Changes
NEURON is used as a general framework for designing
and experimenting with neural models of varying anatomical
detail and membrane complexity. Users can interactively
create cells with branches of varying diameters and lengths,
insert ionic channels, create synapses, and visualize different
properties using a GUI. In order to provide this introspection
capability, NEURON maintains a large number of complex
data structures. Typically, once the users are satisfied with
the behavior of the model, they run larger/longer simulations
on workstations or clusters where those interactivity or
detailed introspection capabilities are often no longer required.
In this type of batch execution, memory overhead from
many large, complex data structures with many mutual
pointers can be significantly reduced by replacing them
with fixed arrays of data structures in which the few
necessary pointers are replaced by integers. For example,
the network connection object (Netcon) and the common
synapse base class (Point_process), which are responsible for
a significant portion of memory usage in NEURON, were
reduced from 56 to 40 and 56 to 8 bytes respectively in
CoreNEURON. Table 2 lists the important data structures
and their memory usage comparison between NEURON and
CoreNEURON. CoreNEURON eliminates the Python/HOC
interpreter and so, datastructures like Node, Section, Object
are no longer needed. The memory usagemprovements from
these optimizations for different network models are discussed
in section 5.

Frontiers in Neuroinformatics | www.frontiersin.org 4 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

TABLE 2 | Memory footprint comparison for different data structures (in bytes).

Data structure Purpose NEURON CoreNEURON

Node Compartment of the

neuron

128 –

Section Unbranched cable of the

neuron

96 –

Object High level HOC object 64 –

Presyn Synapse object at origin 208 64

InputPresyn Similar to Presyn – 24

Point_process Synapse overhead 56 8

Prop Property object in

compartment

48 –

Netcon Connection between

neuron

56 40

Pointer Memory address 8 4

Memb_list List of mechanisms or

channels

56 64

NrnThreadMembList Mechanism list for group

of neurons

34 40

PreSynHelper Helper object for PreSyn – 4

Symbol Token parsed by HOC

interpreter

56 –

3.3. Pointer Semantics
NEURON users can define their own data structures and
allocate memory through the use of POINTER and VERBATIM
constructs of NMODL (Hines, 2019). Many internal data
structures of NEURON use pointer variables to manage various
dynamic properties, connections, event queues etc. As a model is
built incrementally using the scripting interface, various memory
pools are allocated during the Model Setup phase. As data
structures between NEURON and CoreNEURON are different,
serializing memory pools becomes one of the major memory
management challenges of the CoreNEURON implementation.
With serialization, pointer variables need to be augmented with
meta information to allow proper decoding by CoreNEURON.
This meta information indicates the pointer semantics. All data
variables which potentially are the target pointers are grouped
into a contiguous memory pool and pointer variables are
converted to an integer offset into the memory pool. When the
NEURON pointers are copied to CoreNEURON’s memory space,
the semantic type associated with the pointer variable is used
to compute the corresponding integer offset. Different semantic
types with their purpose are listed in Supplementary Material
(see Table S1).

3.4. Checkpoint-Restart Support
The network simulations for studying synaptic plasticity can
run from a week to a month. Enabling such simulations of
long biological time-scales is one of the important use cases
for CoreNEURON. Most of the cluster and supercomputing
resources have a maximum wall clock time limit for a single
job (e.g., up to 24 h). The checkpoint-restart (Schulz et al.,
2004) is commonly used technique to enable long running
simulations and has been implemented in CoreNEURON.

Since the checkpoint operation could take place at anytime
with varying degrees of cell firing activity, it was necessary
to account for generated yet undelivered synaptic events in
addition to saving the in-memory state of the simulator. When
a cell fires, it may have many connections to other cells with
different delivery delays. During the checkpoint operation, any
undelivered messages are collapsed back into the original event
of the firing cell so that a single event can be saved. Once
the network simulation is checkpointed, users have flexibility to
launch multiple simulations with different stimuli or random
number streams in order to explore network stability and
robustness. The execution workflow of such simulations is shown
in Figure 2.

3.5. Spike Communication
In CoreNEURON, the MPI communication and event queue
handling for spike delivery is inherited from NEURON and
remains on the CPU. Performance of those components is
discussed in Kumar et al. (2010), Hines et al. (2011). However,
when GPUs are in use, all the spikes within a time step that
are destined for a specific synapse type are copied to the GPU
to a type specific buffer and thereafter all NET_RECEIVE block
computations take place on the GPU. Conversely, threshold
detection takes place on the GPU as well and spike generation
is buffered until the end of the time step at which point the buffer
spikes are copied to the CPU for MPI transfer and enqueueing
onto the priority queue. The exception to this strategy is that
ARTIFICIAL_CELL instances, which compute and generate
spikes solely by their NET_RECEIVE block response to delivered
events, exist only on the CPU.

3.6. Portability Considerations
CoreNEURON can transparently handle all spiking network
simulations including gap junction coupling with the fixed
time step method. The model descriptions written in NMODL
need to be (THREADSAFE, 2019) to exploit vector units
of modern CPUs and GPUs. A model can be non thread-
safe if a MOD file contains GLOBAL variables which are
used for temporary storage by getting assigned a value in
one procedure and evaluated in another. Such variables need
to be converted from GLOBAL to RANGE. This can be
achieved with the help of NEURON’s mkthreadsafe tool or
the user can manually make the minor change to such MOD
files. New keywords like COREPOINTER and CONDUCTANCE
have been added to NMODL to facilitate serialization and
improve performance optimization respectively. These keywords
are also backported to NEURON so that the models remain
compatible for either NEURONor CoreNEURON execution. For
scalability and portability of random numbers on platforms like
GPUs, CoreNEURON supports the Random123 pseudo-random
generator (Salmon et al., 2011).

4. OPTIMIZATIONS

In order to improve the performance of CoreNEURON
on different architectures, different optimization schemes are
implemented for multi-threading, memory layout, vectorization,

Frontiers in Neuroinformatics | www.frontiersin.org 5 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

FIGURE 2 | Simulation workflow with the checkpoint-restart feature : CoreNEURON loads the model from disk, simulate it and dumps in-memory state back to disk

(SaveState step). CoreNEURON can load checkpoint data (RestoreState step) and continue the simulation on a different machine using the checkpoint data. The user

has flexibility to launch multiple simulations with different stimuli or random number streams (Stim or RNG) in order to explore network stability and robustness.

FIGURE 3 | Dendritic structure and memory layout representation of a neuron: A schematic representation of dendritic structure of a neuron with different

mechanisms inserted into the compartment is shown on the left (A). On the right: (B) shows how NEURON and CoreNEURON groups the mechanism instances of

the same type; (C) shows how NEURON stores properties of individual mechanism in the AoS layout; (D) shows the new SoA layout in CoreNEURON for storing

mechanism properties.

and code generation. These optimizations are described in
this section.

4.1. Parallelism
Both NEURON and CoreNEURON use the Message Passing
Interface (MPI) to implement distributed memory parallelism.
Although NEURON supports multi-threading based on Pthread
(Nichols et al., 1996), users commonly use pure MPI execution
due to better scaling behavior. But, pure MPI execution will affect
scalability due to MPI communication and memory overhead
of internal MPI buffers when executing at scale (Lange et al.,
2013). To address this scalability and parallelism challenge,
CoreNEURON relies on three distinct levels of parallelism.
First, at the highest level, a set of neurons that have equivalent
computational cost are grouped together and assigned to each

MPI rank on the compute node. Second, within a node, an
individual neuron group is assigned to an OpenMP (Dagum
and Menon, 1998) thread executing on a core. This thread
simulates the given neuron group for the entire simulation
ensuring data locality. Finally, vector units of the core are utilized
for executing groups of channels in parallel. With respect to
MPI and OpenMP, simulations may benefit from fewer MPI
processes per compute node (down to a single process per node).
Based on target architecture, users can choose a number of MPI
ranks and corresponding OpenMP threads per rank to reduce
communication overhead.

4.2. Memory Layout and Vectorization
Processor memory bandwidth is one of the scarce resources
and often the major impediment to improve the performance

Frontiers in Neuroinformatics | www.frontiersin.org 6 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

of many applications including NEURON. The compute kernels
of channels and synapses are bandwidth limited and can
reach close-to-peak memory bandwidth (Kumbhar et al., 2016).
The dendritic structures of a neuron are divided into small
compartments and different membrane channels or mechanisms
are inserted into different compartments (Figure 3A). For
memory locality, both NEURON and CoreNEURON groups the
channels by their type as shown in Figure 3B. But, NEURON
organizes properties of individual mechanisms (like m, h, ena)
in the Array of Structs (AoS) memory layout (Figure 3C). When
a specific property is accessed, for example, m, it results in
strided memory accesses with inefficient memory bandwidth
utilization and hence poor performance. To address this issue,
CoreNEURON organizes channel properties into the Structure of
Arrays (SoA) memory layout (Figure 3D). This allows efficient
vectorization and efficient memory bandwidth utilization for
all channel and synapse computations. For code vectorization,
CoreNEURON is dependent on the compiler’s auto-vectorization
capabilities. To assist the compiler in auto-vectorization, hints
like #pragma ivdep are used. The performance improvements
from this optimization is discussed in Kumbhar et al. (2016).

4.3. NMODL Source-to-Source Translator
NEURON has had support for code generation through the
model description language, NMODL, since version 2 released
in 1989 (Blundell et al., 2018). The code generation program
of NEURON has been modified into a standalone tool called
MOD2C (MOD2C GitHub Repository, 2019). This tool is used
by CoreNEURON to support all NEURON models written in
NMODL. Figure 4 shows the high level workflow of MOD2C.
The first step of source-to-source translator is lexical analysis
where lexical patterns in the NMODL code are detected and
tokens are generated. The syntax analysis step uses those tokens
and determine if the series of tokens are appropriate in the
language. The semantic analysis step make sure if syntactically
valid sentences are meaningful as part of the model description.
Code generation is the step in which a C++ file is created with
compiler hints for auto-vectorization (e.g., #pragma ivdep) and
GPU parallelization with the OpenACC programming model
(Wikipedia, 2012). MOD2C also takes care of code generation
for AoS and SoAmemory layouts. MOD2C uses open source flex
and bison tools (Levine and John, 2009) for this implementation.
More information about the NMODL code generation pipeline
can be found in Blundell et al. (2018).

4.4. GPU Porting
Prior to the CoreNEURON project, a substantial effort was
made to port NEURON to the GPU architecture using
the CUDA programming model (Wikipedia, 2006; NVIDIA
Corporation, 2006–2017). One of the two major components
of this implementation was the extension of the NMODL
source-to-source compiler to emit CUDA code. The other major
component managed an internal memory transformation from
NEURON’s thread efficient AoS memory layout to a more GPU
memory efficient SoA layout. For generating CUDA code, there
was a separate version of the NMODL source-to-source compiler.
NEURONmaintains complex data structures of section, segment

for interactive use. The memory management of these non-
POD type (Plain Old Data) data structures between CPU
and GPU was quite complex as memory allocations were not
contiguous. This experimental NEURON version (Hines, 2014)
was quite efficient for matrix setup and channel state integration
for cellular simulations but did not reach network simulation
capability. The project foundered on software administration
difficulties of maintaining two completely separate codebases, the
difficulty of understanding the data structure changes involved
for memory layout transformation from AoS to SoA, and
the difficulty of managing pointer updates in the absence of
pointer semantics information. It became clear that a more
general view was required that could not only alleviate these
problems for the GPU but had a chance of evolving to work on
future architectures. This view is embodied in CoreNEURON
development. As discussed in section 4.2, CoreNEURON data
structures and memory layout have been optimized for efficient
memory access. MOD2C supports code generation with the
OpenACC programming model that helps to target different
accelerator platforms. Users need to compile the CoreNEURON
library with a compiler that supports OpenACC. Figure 5

shows GPU enabled execution workflow where different stages
of the CoreNEURON simulator running on CPU and GPU
are described.

One of the performance challenges for a GPU implementation
is irregular memory accesses due to the non-homogeneous
tree structure of neurons. For example, Figure 6A shows three
different morphological types and their compartmental tree
connection topology in the simulator is shown in Figure 6B. The
GPU delivers better performance when consecutive threads (in
groups of 16 or 32) perform the same computations and load the
data from consecutive memory addresses. When there are a large
number of cells per morphological type, it is straightforward to
achieve optimal performance by interleaving the compartments
of identical cells. But, with few cells per morphological type,
Gaussian elimination suffers from non-contiguous layout of
parents relative to a group of nodes. This results in irregular,
strided memory accesses and hence poor performance (Valero-
Lara et al., 2017). To address this, two alternative node
orderings schemes, Interleaved layout and Constant Depth
layout, are implemented as illustrated in Figures 6D,E. All
cells have the same number of compartments but each has a
different branching pattern (Figure 6C). Nodes (representing
compartments) within a cell are numbered with successive
integers. In the case of Interleaved layout, a compartment from
each of N cells forms an adjacent group of N compartments.
The groups are in any root to leaf order but corresponding
compartments in identical cells are adjacent. As an example, for a
group of three threads the vertical square braces highlight parent
indices that have the same order as the nodes. This results in
either contiguous memory loads (CL) or strided memory load
(SL). For each Gaussian elimination operation the number of
threads that can compute in parallel is equal to the number of
cells and hence this scheme is referred as one cell per thread
layout. For Constant Depth layout, all nodes at the same depth
from the root are adjacent. For a given depth, corresponding
nodes of identical cells are adjacent. Children of branch nodes

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

FIGURE 4 | Code generation workflow for CoreNEURON : different phases of the source-to-source compiler are shown in the middle that translates the input model

description file (hh.mod) to C++ code (hh.cpp). Compiler hints like ivdep and acc parallel loop are inserted to enable CPU vectorization/GPU parallelization.

FIGURE 5 | Timeline showing the workflow of GPU-enabled CoreNEURON execution. The Model Building and Memory Setup phases are executed on CPU by

NEURON and CoreNEURON respectively. The latter performs an in-place memory AoS to SoA transformation and node permutation to optimize Gaussian elimination.

The CoreNEURON in-memory model is then copied to GPU memory using OpenACC APIs. All time step integration phases including threshold detection for event

generation and event delivery to synapse models take place on the GPU. At the end of each timestep (dt), the generated spike events are transferred to the CPU.

Conversely, all the spike events to be delivered during a step are placed in a per-synapse type buffer and transferred at the beginning of each timestep to the GPU. At

the end of mindelay interval all spikes destined to other processes are transferred using MPI Communication.

in the same cell are kept as far apart as possible to minimize
contention while updating the same node from different threads.

To analyse the impact of node ordering schemes on the
execution time, we used a multiple Ring network model of
cells with random tree topology (Hines, 2017a). This test allows
to evaluate performance impact when parents of a contiguous
group of 32 nodes are not contiguous and executed in chunks
of 32 threads (a so-called warp). We used a multiple Ring
model with a total of 131,072 cells comprising 10,878,976
nodes running for 10 ms on NVIDIA K20X GPU (NVIDIA
Corporation, 2012). Every cell has the same number (83) of
nodes but different cell types have a different random branching
pattern of the 40 dendrites. The number of identical cells per
type ranges from 1 (131,072 distinct branching patterns) to 32
(4096 distinct branching patterns). Note that regardless of the
branching pattern, Gaussian elimination takes exactly the same
number of arithmetic operations. Figure 6D shows performance
of Interleaved Layout and Constant Depth Layout. For both
node ordering schemes, performance is optimal with regard to
parent ordering when there are at least 32 cells of each type
corresponding to the 32 threads operating in Single Instruction
Multiple Data (SIMD) mode. With fewer cells per type, parent
node ordering becomes less than optimal and the performance
of Interleaved layout suffers by up to a factor of two. Note
that the total runtime deteriorates more rapidly than Gaussian
elimination time due to the fact that the parent contiguity also

affects the performance of tree matrix setup during evaluation of
a node’s current balance equation. The execution time ofConstant
Depth layout shows that it is possible to permute node ordering
so that parent nodes are more likely to be in significant conti
guous order relative to their children. The constant ratio between
total runtime and Gaussian elimination is due to negligible time
contribution of passive dendrites to matrix setup in combination
with the significant role of parent ordering in computing the
effect of topologically adjacent nodes on matrix setup of the
current balance equations.

5. BENCHMARKS AND PERFORMANCE

Not all network models are compute intensive or benefit equally
from CoreNEURON optimizations. In order to evaluate the
performance improvements with the optimizations discussed in
the previous section we ran several published network models
listed in Table 1 on different computing architectures. This
section describes the benchmarking platforms and compares
performance between NEURON and CoreNEURON.

The benchmarking systems with hardware details, compiler
toolchains and network fabrics are summarized in Table 3.
The Blue Brain IV (BB4) and Blue Brain V (BB5) systems
are based on IBM BlueGene/Q (Haring et al., 2012) and
HPE SGI 8600 (Hewlett Packard Enterprise, 2019) platforms

Frontiers in Neuroinformatics | www.frontiersin.org 8 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

FIGURE 6 | The top row shows three different morphological types with their dendritic tree structure in (A) and dendrograms showing in-memory tree representation

of these types in CoreNEURON in (B). The bottom row shows different node ordering schemes to improve the memory access locality on GPUs : (C) Example

topologies of three cells with the same number of compartments; (D) Interleaved Layout where a compartment from each of N cells forms an adjacent group of N

compartments. For ith node, ni is node index and par[i] is its parent index. With three executor threads, square brace highlight parent indices that result into

contiguous memory load (CL) and strided memory load (SL); (E) Constant Depth Layout where all nodes at same depth from root are adjacent; (F) Comparison of two

node ordering schemes for Ring network model showing execution time of whole simulation and Gaussian Elimination step.

respectively, hosted at the Swiss National Computing Center
(CSCS) in Lugano, Switzerland. The BB4 system has 4,096
nodes comprising 65,536 PowerPC A2 cores. The BB5 system
has three different compute nodes: Intel KNLs with low
clock rate but high bandwidth MCDRAM, Intel Skylakes
with high clock rate, and NVIDIA Volta GPUs. Vendor
provided compilers and MPI libraries are used on both
systems. The BB4 system is used for strong scaling benchmarks
(see Figure 8) as it has a large core count compared to
the BB5 system. All benchmarks were executed in pure
MPI mode by pinning one MPI rank per core. During the
model building phase, NEURON divides model into n equal
chunks where n is total number of MPI ranks. CoreNEURON
continues execution with the same number of MPI ranks as

NEURON. For GPU executions we used one MPI rank per
GPU node.

We compared the memory footprint of different network
models listed in Table 1. Figure 7 on the left shows memory
usage reduction with CoreNEURON simulation compared to
NEURON simulation. The memory reduction factor depends
on various model properties (e.g., number of compartments,
sections, synapses, etc.) but one can expect 4-7x reduction with
the use of CoreNEURON. Note that CoreNEURON Online mode
will need 1

7x to 1
4x more memory during the Memory Setup

phase. But once the model is transferred to CoreNEURON for
simulation, NEURON can free allocated memory.

Figure 7 on the right shows the speedup achieved on a single
node for different models with CoreNEURON compared to

Frontiers in Neuroinformatics | www.frontiersin.org 9 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

NEURON. Note that the Cortex and Hippocampus models are
very large in terms of memory capacity requirement. For single
node performance analysis we used a smaller subset of these
two models.

The memory layout and code vectorization optimization
described in section 4.2 shows greatest improvement when
most of the computation time is spent in channel and synapse
computations. The Cortex, Cortex+Plasticity and Hippocampus

TABLE 3 | Details of benchmarking systems.

BlueGene/Q

(BB4)

Processor IBM PowerPC A2, 16 cores @

1.6 GHz, 16 GB DRAM

Compiler toolchain IBM XL 12.1 and IBM MPI

Network Integrated 5-D torus

Intel Skylake

(BB5)

Processor 2 Xeon 6140, 36 cores @ 2.3

GHz, 384 GB DRAM

Compiler toolchain Intel 2018.1 and HPE-MPI (MPT)

Network InfiniBand EDR

Intel KNL

(BB5)

Processor Xeon Phi (7230), 64 cores @ 1.3

GHz, 96 GB DRAM

Compiler toolchain Intel 2018.1 and HPE-MPI (MPT)

Network, InfiniBand EDR

NVIDIA GPU

(BB5)

Processor NVIDIA GPU V100 SXM2, 2

Xeon 6140, 36 cores @ 2.3 GHz

Compiler toolchain PGI 18.10, OpenMPI 2.0

Network InfiniBand EDR

models have cells with 200 to 800 compartments and 20 different
channel types. This makes these models compute intensive and
lets them benefit most by CoreNEURON. The Ring network
model has computations only from passive dendrites and
active soma.

Intel KNL has 512-bit SIMD vectors and high bandwidth
memory (MCDRAM). One needs to efficiently utilize these
hardware features to achieve best performance. In the case of
CoreNEURON, NMODL generated code is auto-vectorized by
the compiler and has SoA memory layout to provide uniform,
contiguous memory access. NEURON uses AoS memory layout
which results in strided memory accesses. Due to the lower
clock frequency of KNL cores, the performance impact of non-
vectorized code and strided memory accesses is high compared
to other architectures. Hence CoreNEURON delivers better
performance on KNL compared to NEURON. Note that the
Cortex+Plasticity and Hippocampus models have relatively less
improvement (2-4x) compared to the Cortex model (3-7x).
This is because some of the channel and synapse descriptions
explicitly request integration methods that present compilers
cannot efficiently vectorize. Alternative code generation for these
methods is being considered.

On the BlueGene/Q platform the speedup with most of the
models is limited to 2x. This is because the IBM XL compiler is
not able to vectorize most of the channel and synapse kernels.
Observed performance improvement on this platform is due to
more efficient memory accesses from the SoA layout discussed in
the section 4.2.

FIGURE 7 | Memory usage reduction and speedup using CoreNEURON : ratios of memory usage between NEURON and CoreNEURON for different models in

Table 1 are shown on the left (measured on BB4 system). Speedups of CoreNEURON simulations compared to NEURON on various architectures (using single node)

for the same models are shown on the right.

Frontiers in Neuroinformatics | www.frontiersin.org 10 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

GPU support has been recently added to CoreNEURON.
Two models used in this benchmark, Cortex+Plasticity and
Hippocampus, use legacy HOC based stimulus implementations
which are not adapted for GPU yet. The Ring network model has
large number of identical cells which suits SIMD computations
on GPU and hence shows significant performance improvement
compared to other architectures. The Traub model has a
small number of cells exposing limited parallelism and the
Dentate model has gap junctions which require copying of
voltages between CPU and GPU every timestep. This limits the
performance improvement on GPU.

The reduction in the memory footprint of models translates
directly into benefits for users of large-scale models. For example,
while models of the size of Cortex + Plasticity and Hippocampus
models had a memory requirement when using NEURON that
necessitated a minimum of 2,048 nodes on an IBM BlueGene/Q
system, can now run on the same system requiring only 128 or
256 nodes for the Cortex+Plasticity and Hippocampus model
respectively when using the CoreNEURON Offline Mode. This is
a significant usability improvement and translates directly into a
better use of a user’s compute allocation.

Finally, Figure 8 shows that CoreNEURON maintains good
strong scaling properties for large models, as illustrated on
the example of the Cortex+Plasticity and Hippocampus models
simulating one second of biological time on an IBM BlueGene/Q
system. As these models are compute intensive and a small
fraction of execution time is spent in spike communication,
the scaling behavior depends on how well a given number of
cells can be distributed across the available number of ranks
to yield good load balance. Both models show excellent strong
scaling behavior up to 2,048 nodes. Due to the large size
range of morpho-electrical neuron types, at least 7–10 cells per
MPI process are required to achieve good load balance. With
32,000 MPI processes (16 ranks per node) and about 219,000
cells of Cortex+Plasticity, the load balance is not as good as
with the Hippocampus model of about 789,000 cells. Hence,
the Cortex+Plasticity model exhibits poorer scaling behavior
compared to the Hippocampus model.

6. DISCUSSION

Modern compute architectures can significantly boost
application performance and the study of the brain in silico
is in dire need to embrace this capability and trend. Accordingly,
the widely used NEURON simulator that supports a large
variety of models has been over the years successfully adapted
to embrace massively parallel architectures, but its primary
design goals were to allow for a flexible definition of models
and interactive introspection thereof. It was neither designed
for ultimate memory efficiency nor maximal performance.
However, the larger and more detailed the models get, the
larger are the resource requirements to simulate those models.
Eventually, the costs of a system required for an un-optimized
simulator should be weighed against the effort of reworking the
simulator to make more efficient use of resources. In the context
of the Blue Brain Project we took the decision to contribute to
making the NEURON simulator more efficient for large models,
effectively leading to reduced resource requirements, faster

time-to-solution, or simply the capability to run bigger models
on a given resource.

6.1. Compatibility With Existing NEURON
Models
As the neuroscience community has developed and shared
thousands of models with NEURON, compatibility and
reproducibility has been one of the primary design goals.
To maintain maximal compatibility, we chose the path of
extracting the computational relevant parts of NEURON into
a library called CoreNEURON and adapting it to exploit the
computational features of modern compute architectures. This
is a different path as for example taken by the Arbor (Akar et al.,
2019) which started its developments from scratch. While such
a fresh start has its benefits in terms of designing for future
architectures from the start, we can show that the transformation
approach we took immediately gives compatibility with a
large number of existing NEURON models with minimal
modification. Currently, CoreNEURON does not handle non
thread-safe models and requires NMODL modifications if
constructs like POINTER are used. We are working on handling
such models transparently.

6.2. Flexibility for Model Building and
Efficiency for Model Simulation
Many modeling workflows related to detailed brain models
require flexibility for quickly inspecting and changing the
models. By extracting the compute engine from the NEURON
simulator environment and providing different methods of how
it can interact with the NEURON simulator, one maintains the
flexibility of NEURON for the construction of the models and
can more easily apply optimizations to the compute engine
for the costly simulation phase. The Offline execution mode
of CoreNEURON provides flexibility to build and simulate
large network models that cannot be simulated with NEURON.
Thanks to the use of MPI, and the OpenMP and OpenACC
programming models to achieve portability across different
architectures such as multi-core, many-core CPUs, and GPUs.

6.3. Reduced Memory and Faster
Time-to-Solution
The data structure changes allow CoreNEURON to use
significantly less memory compared to NEURON. The SoA
memory layout and code vectorization allow CoreNEURON
to simulate modelsí efficiently. We benchmarked five different
network models on different architectures showing 4-7x memory
usage reduction and 2-7x execution time improvement.

6.4. Future Work
We discussed the implementation of the most significant changes
and optimizations in NEURON and CoreNEURON. Although
CoreNEURON can be used transparently within NEURON,
users cannot currently access or modify model properties during
integration. Work is ongoing in regard to bidirectional data copy
routines activated by normal NEURON variable name evaluation
and assignment syntax ranging in granularity from the entire
model, to specific named arrays, down to individual variables.
On the numerical side, CoreNEURON today supports network

Frontiers in Neuroinformatics | www.frontiersin.org 11 September 2019 | Volume 13 | Article 63

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

FIGURE 8 | Strong scaling of CoreNEURON on the BB4 system for two large scale models listed in Table 1: the Cortex+Plasticity model with 219 k neurons (on the

left) and the Hippocampus CA1 model with 789 k neurons (on the right).

simulations using the fixed time step method but not the variable
time step integration method (CVODE) (Cohen and Hindmarsh,
1996). The latter is rarely used in network simulations because
state or parameter discontinuities in response to synaptic events
demand continuous re-initialization of variable step integrators.
Research is ongoing on how to improve the applicability of
variable time step schemes in network simulation and can be
considered for inclusion at a later stage. Currently, mapping
of multiple MPI ranks to GPUs is not optimal and this will
be addressed in future releases. Lastly, the NMODL source-to-
source translator will be improved to generate efficient code for
stiff, coupled, non-linear gating state complexes that require the
derivimplicit integration method as well as the generation of
optimal code for GPUs.

6.5. Availability
CoreNEURON and code generation program MOD2C are
open sourced and available on GitHub (CoreNEURON GitHub
Repository, 2019; MOD2C GitHub Repository, 2019).

DATA AVAILABILITY STATEMENT

The datasets relevant for the main conclusions of this study (i.e,.
Ring model, Traub model, and Dentate gyrus model) can be
accessed on GitHub (Raikov and Hines, 2016; Hines, 2017a,b).
The remaining supplementary datasets that further support the
generalization were granted by the respective research groups
prior to their publication.

AUTHOR CONTRIBUTIONS

MH was creator of NEURON simulator and developing
CoreNEURON library with PK. JF and AO contributed to the

development of core features in CoreNEURON. JK has integrated
CoreNEURON with NEURON using HOC and Python scripting
interface and helped in the validation of simulations. FD and
FS has guided overall development and scientific roadmap of
CoreNEURON. The final version of the article is written and
edited jointly by all authors.

FUNDING

This work has been funded by the EPFL Blue Brain Project
(funded by the Swiss ETH board), NIH grant number
R01NS11613 (Yale University), the European Union Seventh
Framework Program (FP7/2007-2013) under grant agreement
n◦ 604102 (HBP) and the European Union’s Horizon 2020
Framework Programme for Research and Innovation
under Grant Agreement n◦ 720270 (Human Brain Project
SGA1) and Grant Agreement n◦ 785907 (Human Brain
Project SGA2).

ACKNOWLEDGMENTS

The authors would like to thank Bruno Magalhaes, Francesco
Cremonesi, Sam Yates, and Timothee Ewart for contributions
to the CoreNEURON development. This manuscript has
been released as a Pre-Print at https://arxiv.org/abs/1901.10975
(Kumbhar et al., 2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.
2019.00063/full#supplementary-material

Frontiers in Neuroinformatics | www.frontiersin.org 12 September 2019 | Volume 13 | Article 63

https://arxiv.org/abs/1901.10975
https://www.frontiersin.org/articles/10.3389/fninf.2019.00063/full#supplementary-material
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

REFERENCES

Ábrahám, E., Bekas, C., Brandic, I., Genaim, S., Johnsen, E. B., Kondov,
I., et al. (2015). “Preparing hpc applications for exascale: challenges and
recommendations,” in 2015 18th International Conference on Network-Based

Information Systems (Taipei), 401–406.
Akar, N. A., Cumming, B., Karakasis, V., Küsters, A., Klijn, W., Peyser, A., et al.

(2019). “Arbor— amorphologically-detailed neural network simulation library
for contemporary high-performance computing architectures,” in 2019 27th

Euromicro International Conference on Parallel, Distributed and Network-Based

Processing (PDP) (Pavia), 274–282.
Anastassiou, C. A., Perin, R., BuzsÃiki, G., Markram, H., and Koch, C. (2015). Cell

type- and activity-dependent extracellular correlates of intracellular spiking. J.
Neurophysiol. 114, 608–623. doi: 10.1152/jn.00628.2014

Arkhipov, A., Gouwens, N. W., Billeh, Y. N., Gratiy, S., Iyer, R., Wei, Z., et al.
(2018). Visual physiology of the layer 4 cortical circuit in silico. PLOS Comput.

Biol. 14, 1–47. doi: 10.1371/journal.pcbi.1006535
Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P., et al.

(2018). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.00068

Cohen, S. D., and Hindmarsh, A. C. (1996). Cvode, a stiff/nonstiff ode solver in c.
Comput. Phys. 10, 138–143.

CoreNEURON GitHub Repository (2019). CoreNEURON - Simulator Optimized

for Large Scale Neural Network Simulations. Available online at: https://github.
com/BlueBrain/CoreNeuron (accessed May 1, 2019).

Dagum, L., and Menon, R. (1998). OpenMP: an industry standard API for
shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55.

Dahmen, D., van Albada, S. J., Tetzlaff, T., Hagen, E., Grün, S., Diesmann, M., et al.
(2016). Hybrid scheme for modeling local field potentials from point-neuron
networks. Cereb. Cortex 26, 4461–4496. doi: 10.1093/cercor/bhw237

Davies, S. N. (1992). Neural networks of the hippocampus. by Roger D. Traub and
Richard Miles. pp. 281. Cambridge university press, 1991. isbn 0 521 36481 7.
Exp. Physiol. 77, 238–238.

De Schutter, E., and Bower, J. (1994). An active membrane model of the cerebellar
purkinje cell i. simulation of current clamps in slice. J. Neurophysiol. 71,
375–400.

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The
dynamic brain: from spiking neurons to neural masses and cortical fields. PLOS
Comput. Biol. 4, 1–35. doi: 10.1371/journal.pcbi.1000092

Dyhrfjeld-Johnsen, J., Santhakumar, V., Morgan, R. J., Huerta, R., Tsimring,
L., and Soltesz, I. (2007). Topological determinants of epileptogenesis in
large-scale structural and functional models of the dentate gyrus derived
from experimental data. J. Neurophysiol. 97, 1566–1587. doi: 10.1152/jn.
00950.2006

Gal, E., London, M., Globerson, A., Ramaswamy, S., Reimann, M., Muller, E., et al.
(2017). Rich cell-type-specific network topology in neocortical microcircuitry.
Nat. Neurosci. 20, 1004–13. doi: 10.1038/nn.4576

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural simulation tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K.,
et al. (2012). The IBM blue gene/Q compute chip. IEEE Micro 32, 48–60.
doi: 10.1109/MM.2011.108

Hepburn, I., Chen, W., and Schutter, E. D. (2016). Accurate reaction-diffusion
operator splitting on tetrahedral meshes for parallel stochastic molecular
simulations. J. Chem. Phys. 145:054118.

Hewlett Packard Enterprise (2019). HPE SGI 8600 System. Available online at:
https://h20195.www2.hpe.com/V2/getpdf.aspx/A00016640ENW.pdf (accessed
May 1, 2019).

Hines, M. (1993). “NEURON—a program for simulation of nerve equations,” in
Neural Systems: Analysis and Modeling, ed F. Eeckman (Norwell, MA: Kluwer),
127–136.

Hines, M. (2014). NEURON GPU Implementation. Available online at: https://
bitbucket.org/nrnhines/nrngpu (accessed May 1, 2019).

Hines, M. (2017a). Ring Network Model of Ball-and-Stick neurons. Available online
at: https://github.com/nrnhines/ringtest (accessed May 1, 2019).

Hines, M. (2017b). Traub 2005 model for CoreNEURON. Available online at:
https://github.com/nrnhines/nrntraub (accessed May 1, 2019).

Hines, M. (2019). NMODL User Guide. Available online at: https://www.neuron.
yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/
nmodl.html (accessed May 1, 2019).

Hines, M., Kumar, S., and Schurmann, F. (2011). Comparison of neuronal spike
exchange methods on a blue gene/p supercomputer. Front. Comput. Neurosci.

5:49. doi: 10.3389/fncom.2011.00049
Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.

Neural Comput. 9, 1179–1209.
Hines, M. L., and Carnevale, N. T. (2000). Expanding neuron’s

repertoire of mechanisms with nmodl. Neural Comput. 12, 995–1007.
doi: 10.1162/089976600300015475

Hines, M. L., Markram, H., and Schürmann, F. (2008). Fully implicit
parallel simulation of single neurons. J. Comput. Neurosci. 25, 439–448.
doi: 10.1007/s10827-008-0087-5

Human Brain project (2018).CommunityModels of Hippocampus.Available online
at: https://www.humanbrainproject.eu/en/brain-simulation/hippocampus/
(accessed January 11, 2018).

Ippen, T., Eppler, J. M., Plesser, H. E., and Diesmann, M. (2017). Constructing
neuronal network models in massively parallel environments. Front.

Neuroinform. 11:30. doi: 10.3389/fninf.2017.00030
Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A 105, 3593–3598.
doi: 10.1073/pnas.0712231105

Jolivet, R., Coggan, J. S., Allaman, I., and Magistretti, P. J. (2015). Multi-
timescale modeling of activity-dependent metabolic coupling in the
neuron-glia-vasculature ensemble. PLOS Comput. Biol. 11, 1–23.
doi: 10.1371/journal.pcbi.1004036

Kumar, S., Heidelberger, P., Chen, D., and Hines, M. (2010). Optimization
of applications with non-blocking neighborhood collectives via
multisends on the blue gene/p supercomputer. IPDPS 2010, 1–11.
doi: 10.1109/IPDPS.2010.5470407

Kumbhar, P., Hines, M., Fouriaux, J., Ovcharenko, A., King, J., Delalondre, F.,
et al. (2019). CoreNEURON : an optimized compute engine for the NEURON
Simulator. arXiv:1901.10975.

Kumbhar, P., Hines, M., Ovcharenko, A., Mallon, D. A., King, J., Sainz, F., et al.
(2016). Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations

(Frankfurt: Springer International Publishing), 363–380.
Lange, M., Gorman, G., Weiland, M., Mitchell, L., and Southern, J. (2013).

Achieving efficient strong scaling with petsc using hybrid mpi/openmp
optimisation. in Supercomputing eds J. M. Kunkel, T. Ludwig, andH.W.Meuer
(Berlin; Heidelberg: Springer), 97–108.

Levine, J., and John, L. (2009). Flex & Bison, 1st Edn. O’Reilly Media, Inc. Available
online at: http://shop.oreilly.com/product/9780596155988.do

Lindroos, R., Dorst, M. C., Du, K., FilipoviÄ, M., Keller, D., Ketzef, M., et al.
(2018). Basal ganglia neuromodulation over multiple temporal and structural
scales simulations of direct pathway msns investigate the fast onset of
dopaminergic effects and predict the role of kv4.2. Front. Neural Circ. 12:3.
doi: 10.3389/fncir.2018.00003

Mainen, Z. F., and Sejnowski, T. J. (1996). Influence of dendritic structure on firing
pattern in model neocortical neurons. Nature 382, 363–366.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M.,
Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical
microcircuitry. Cell 163, 456–492. doi: 10.1016/j.cell.2015.09.029

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L. (2006).
Parallel network simulations with nEURON. J. Comput. Neurosci. 21, 119–129.
doi: 10.1007/s10827-006-7949-5

MOD2C GitHub Repository (2019). MOD2C - Converter for Mod Files to C

Code. Available online at: http://github.com/BlueBrain/mod2c (accessed May
1, 2019).

Nichols, B., Buttlar, D., and Farrell, J. (1996). Pthreads Programming: A POSIX

Standard for Better Multiprocessing. O’Reilly Media, Inc. Available online at:
http://shop.oreilly.com/product/9781565921153.do

NVIDIA Corporation (2006–2017). CUDA. Available online at: https://developer.
nvidia.com/about-cuda (accessed January 24, 2019).

NVIDIA Corporation (2012). TESLA K20X GPU Accelerator. Available online
at: https://www.nvidia.com/content/pdf/kepler/tesla-k20x-bd-06397-001-v07.
pdf (accessed April 4, 2019).

Frontiers in Neuroinformatics | www.frontiersin.org 13 September 2019 | Volume 13 | Article 63

https://doi.org/10.1152/jn.00628.2014
https://doi.org/10.1371/journal.pcbi.1006535
https://doi.org/10.3389/fninf.2018.00068
https://github.com/BlueBrain/CoreNeuron
https://github.com/BlueBrain/CoreNeuron
https://doi.org/10.1093/cercor/bhw237
https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1152/jn.00950.2006
https://doi.org/10.1038/nn.4576
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1109/MM.2011.108
https://h20195.www2.hpe.com/V2/getpdf.aspx/A00016640ENW.pdf
https://bitbucket.org/nrnhines/nrngpu
https://bitbucket.org/nrnhines/nrngpu
https://github.com/nrnhines/ringtest
https://github.com/nrnhines/nrntraub
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html
https://doi.org/10.3389/fncom.2011.00049
https://doi.org/10.1162/089976600300015475
https://doi.org/10.1007/s10827-008-0087-5
https://www.humanbrainproject.eu/en/brain-simulation/hippocampus/
https://doi.org/10.3389/fninf.2017.00030
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.1371/journal.pcbi.1004036
https://doi.org/10.1109/IPDPS.2010.5470407
http://shop.oreilly.com/product/9780596155988.do
https://doi.org/10.3389/fncir.2018.00003
https://doi.org/10.1016/j.cell.2015.09.029
https://doi.org/10.1007/s10827-006-7949-5
http://github.com/BlueBrain/mod2c
http://shop.oreilly.com/product/9781565921153.do
https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
https://www.nvidia.com/content/pdf/kepler/tesla-k20x-bd-06397-001-v07.pdf
https://www.nvidia.com/content/pdf/kepler/tesla-k20x-bd-06397-001-v07.pdf
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Kumbhar et al. CoreNEURON

ParallelContext (2019). NEURON User Guide. Available online at: https://www.
neuron.yale.edu/neuron/static/docs/help/neuron/neuron/classes/parcon.
html#psolve (accessed May 1, 2019).

POINTER (2019). NMODL User Guide. Available online at: https://www.neuron.
yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/
nmodl.html#pointer (accessed May 1, 2019).

Potjans, T. C., and Diesmann, M. (2012). The cell-type specific cortical
microcircuit: Relating structure and activity in a full-scale spiking network
model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Raikov, I., and Hines, M. (2016). Model of a Dentate Granule Cells Adapted

for CoreNEURON. Available online at: https://github.com/pramodk/reduced_
dentate (accessed May 1, 2019).

Reimann, M. W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi,
G., et al. (2017). Cliques of neurons bound into cavities provide a
missing link between structure and function. Front. Comput. Neurosci. 11:48.
doi: 10.3389/fncom.2017.00048

Salmon, J. K., Moraes, M. A., Dror, R. O., and Shaw, D. E. (2011). “Parallel random
numbers: as easy as 1, 2, 3,” in Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis, SC ’11 (New
York, NY:ACM), 16:1–16:12.

Sanz-Leon, P., Knock, S. A., Spiegler, A., and Jirsa, V. K. (2015). Mathematical
framework for large-scale brain network modeling in the virtual brain.
NeuroImage 111, 385–430. doi: 10.1016/j.neuroimage.2015.01.002

Schulz, M., Bronevetsky, G., Fernandes, R., Marques, D., Pingali, K., and Stodghill,
P. (2004). “Implementation and evaluation of a scalable application-level
checkpoint-recovery scheme for MPI programs,” in SC ’04: Proceedings of the
2004 ACM/IEEE Conference on Supercomputing (Pittsburgh, PA: IEEE), 38–38.
doi: 10.1109/SC.2004.29

Soltesz Lab (2019). Available online at: http://med.stanford.edu/ivansolteszlab/
front-page.html (accessed May 1, 2019).

THREADSAFE (2019). NEURON User Guide. Available online at: https://www.
neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/network/
parcon.html#ParallelContext.Threads (accessed May 1, 2019).

Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau,
F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical
network model exhibiting gamma oscillations, sleep spindles, and
epileptogenic bursts. J. Neurophysiol. 93, 2194–2232. doi: 10.1152/jn.009
83.2004

Tuckwell, H. C. (2005). Introduction to Theoretical Neurobiology: Volume

2, Nonlinear and Stochastic Theories, Volume 8. Cambridge University
Press. Available online at: https://www.cambridge.org/fr/academic/subjects/
mathematics/mathematical-biology/introduction-theoretical-neurobiology-
volume-2?format=PB&isbn=9780521019323

Valero-Lara, P., Martínez-Perez, I., Peña, A. J., Martorell, X., Sirvent, R.,
and Labarta, J. (2017). cuHinesBatch: Solving multiple hines systems
on GPUs human brain project. Proc. Comput. Sci. 108, 566–575.
doi: 10.1016/j.procs.2017.05.145

Wikipedia (2006). NVIDIA CUDA. Available online at: https://en.wikipedia.org/
wiki/CUDA (accessed April 20, 2019).

Wikipedia (2012). OpenACC. Available online at: https://en.wikipedia.org/wiki/
OpenACC (accessed April 20, 2019).

Wils, S., and De Schutter, E. (2009). Steps: modeling and simulating
complex reaction-diffusion systems with python. Front. Neuroinform. 3:15.
doi: 10.3389/neuro.11.015.2009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2019 Kumbhar, Hines, Fouriaux, Ovcharenko, King, Delalondre and

Schürmann. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 14 September 2019 | Volume 13 | Article 63

https://www.neuron.yale.edu/neuron/static/docs/help/neuron/neuron/classes/parcon.html#psolve
https://www.neuron.yale.edu/neuron/static/docs/help/neuron/neuron/classes/parcon.html#psolve
https://www.neuron.yale.edu/neuron/static/docs/help/neuron/neuron/classes/parcon.html#psolve
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html#pointer
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html#pointer
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/mechanisms/nmodl.html#pointer
https://doi.org/10.1093/cercor/bhs358
https://github.com/pramodk/reduced_dentate
https://github.com/pramodk/reduced_dentate
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1016/j.neuroimage.2015.01.002
https://doi.org/10.1109/SC.2004.29
http://med.stanford.edu/ivansolteszlab/front-page.html
http://med.stanford.edu/ivansolteszlab/front-page.html
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/network/parcon.html#ParallelContext.Threads
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/network/parcon.html#ParallelContext.Threads
https://www.neuron.yale.edu/neuron/static/py_doc/modelspec/programmatic/network/parcon.html#ParallelContext.Threads
https://doi.org/10.1152/jn.00983.2004
https://www.cambridge.org/fr/academic/subjects/mathematics/mathematical-biology/introduction-theoretical-neurobiology-volume-2?format=PB&isbn=9780521019323
https://www.cambridge.org/fr/academic/subjects/mathematics/mathematical-biology/introduction-theoretical-neurobiology-volume-2?format=PB&isbn=9780521019323
https://www.cambridge.org/fr/academic/subjects/mathematics/mathematical-biology/introduction-theoretical-neurobiology-volume-2?format=PB&isbn=9780521019323
https://doi.org/10.1016/j.procs.2017.05.145
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/OpenACC
https://en.wikipedia.org/wiki/OpenACC
https://doi.org/10.3389/neuro.11.015.2009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	CoreNEURON : An Optimized Compute Engine for the NEURON Simulator
	1. Introduction
	2. NEURON Simulation Environment
	3. CoreNEURON Design and Implementation
	3.1. NEURON to CoreNEURON Workflow
	3.2. Data Structure Changes
	3.3. Pointer Semantics
	3.4. Checkpoint-Restart Support
	3.5. Spike Communication
	3.6. Portability Considerations

	4. Optimizations
	4.1. Parallelism
	4.2. Memory Layout and Vectorization
	4.3. NMODL Source-to-Source Translator
	4.4. GPU Porting

	5. Benchmarks and Performance
	6. Discussion
	6.1. Compatibility With Existing NEURON Models
	6.2. Flexibility for Model Building and Efficiency for Model Simulation
	6.3. Reduced Memory and Faster Time-to-Solution
	6.4. Future Work
	6.5. Availability

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

