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a b s t r a c t

Reservoir computing is a computational framework suited for temporal/sequential data processing. It
is derived from several recurrent neural network models, including echo state networks and liquid
state machines. A reservoir computing system consists of a reservoir for mapping inputs into a
high-dimensional space and a readout for pattern analysis from the high-dimensional states in the
reservoir. The reservoir is fixed and only the readout is trained with a simple method such as linear
regression and classification. Thus, the major advantage of reservoir computing compared to other
recurrent neural networks is fast learning, resulting in low training cost. Another advantage is that
the reservoir without adaptive updating is amenable to hardware implementation using a variety
of physical systems, substrates, and devices. In fact, such physical reservoir computing has attracted
increasing attention in diverse fields of research. The purpose of this review is to provide an overview
of recent advances in physical reservoir computing by classifying them according to the type of the
reservoir. We discuss the current issues and perspectives related to physical reservoir computing,
in order to further expand its practical applications and develop next-generation machine learning
systems.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Abbreviations in alphabetical order

AD: Analog-to-Digital
ANN: Artificial Neural Network
ASIC: Application Specific Integrated Circuit
ASN: Atomic Switch Network
BMI: Brain Machine Interface
BPDC: Backpropagation Decorrelation
BPTT: Backpropagation Through Time
CA: Cellular Automaton
CPU: Central Processing Unit
DA: Digital-to-Analog
DNA: Deoxyribonucleic acid
ECG: Electrocardiogram
EEG: Electroencephalogram
EMG: Electromyogram
ESN: Echo State Network
fMRI: functional Magnetic Resonance Imaging
FNN: Feedforward Neural Network
FORCE: First Order Reduced and Controlled

Error
FPGA: Field-Programmable Gate Array
GPU: Graphics Processing Unit
LIF: Leaky Integrate-and-Fire
LLG: Landau–Lifshitz–Gilbert
LSM: Liquid State Machine
LSTM: Long Short-Term Memory
MEA: Microelectrode Array
MFCC: Mel-Frequency Cepstrum Coefficient
MTJ: Magnetic Tunnel Junction
NARMA: Nonlinear Autoregressive Moving Aver-

age
ODE: Ordinary Differential Equation
PM Particulate Matter
RC: Reservoir Computing
RNN: Recurrent Neural Network
RTRL: Real-Time Recurrent Learning
SNN: Spiking Neural Networks
SOA: Semiconductor Optical Amplifier
STDP: Spike-Timing-Dependent Plasticity
STO: Spin Torque Oscillator
VCSEL: Vertical Cavity Surface Emitting Laser
VLSI: Very Large Scale Integration
XOR: Exclusive OR
YIG: Yttrium Iron Garnet

1. Introduction

Artificial neural networks (ANNs) constitute the core informa-
tion processing technology in the fields of artificial intelligence
and machine learning, which have witnessed remarkable progress

in recent years, and they are expected to be increasingly em-
ployed in real-world applications (Samarasinghe, 2016). ANNs
are computational models that mimic biological neural networks.
They are represented by a network of neuron-like processing
units interconnected via synapse-like weighted links. Network
architectures of ANNs are typically classified into feedforward
networks (Schmidhuber, 2015) and recurrent networks (Mandic,
Chambers, et al., 2001), the choice of which depends on the type
of computational task. Feedforward neural networks (FNNs) are
mainly used for static (non-temporal) data processing, as indi-
vidual input data are independently processed even if they are
given sequentially. In short, FNNs are capable of approximating
nonlinear input–output functions. On the other hand, recurrent
neural networks (RNNs) are suited for dynamic (temporal) data
processing, as they can embed temporal dependence of the inputs
into their dynamical behavior. In other words, RNNs are capable
of representing dynamical systems driven by sequential inputs
owing to their feedback connections.

Reservoir computing (RC) is originally an RNN-based frame-
work and is therefore suitable for temporal/sequential infor-
mation processing (Jaeger & Haas, 2004). Specifically, RC is a
unified computational framework (Lukoševičius & Jaeger, 2009;
Verstraeten, Schrauwen, d’ Haene, & Stroobandt, 2007), derived
from independently proposed RNN models, such as echo state
networks (ESNs) (Jaeger, 2001) and liquid state machines (LSMs)
(Maass, Natschläger, & Markram, 2002). The backpropagation
decorrelation (BPDC) learning rule (Steil, 2004, 2007) for RNNs is
also regarded as a predecessor of RC. Similar concepts and models
in special cases were reported in earlier studies as summarized
in Jaeger (2007), including sequential associative memory models
(Gallant & King, 1988), neural oscillator network models for
learning handwriting movements (Schomaker & Richardus, 1991,
1992), context reverberation networks consisting of linear thresh-
old units for sequential learning (Kirby, 1991; Kirby & Day, 1990),
cortico-striatal models for context-dependent sequence learning
(Dominey, 1995; Dominey, Arbib, & Joseph, 1995), and biologi-
cal neural network models for temporal pattern discrimination
(Buonomano & Merzenich, 1995).

In RC, input data are transformed into spatiotemporal patterns
in a high-dimensional space by an RNN in the reservoir. Then, a
pattern analysis from the spatiotemporal patterns is performed
in the readout, as shown in Fig. 1(a). The main characteristic
of RC is that the input weights (W in) and the weights of the
recurrent connections within the reservoir (W ) are not trained
whereas only the readout weights (W out) are trained with a
simple learning algorithm such as linear regression. This simple
and fast training process makes it possible to drastically reduce
the computational cost of learning compared with standard RNNs,
which is the major advantage of RC (Jaeger, 2002b). RC models
have been successfully applied to many computational problems,
such as temporal pattern classification, prediction, and genera-
tion. To enhance computational performance of RC, it is necessary
to appropriately represent sample data and optimally design the
RNN-based reservoir. The methods for obtaining effective reser-
voirs, which have been summarized in Lukoševičius and Jaeger
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Fig. 1. RC frameworks where the reservoir is fixed and only the readout weights W out are trained. (a) A conventional RC system with an RNN-based reservoir as in
ESNs and LSMs. (b) A physical RC system in which the reservoir is realized using a physical system or device.

(2009), are categorized into task-independent generic guidelines
and task-dependent reservoir adjustments.

The role of the reservoir in RC is to nonlinearly transform
sequential inputs into a high-dimensional space such that the
features of the inputs can be efficiently read out by a simple
learning algorithm. Therefore, instead of RNNs, other nonlinear
dynamical systems can be used as reservoirs. In particular, physi-
cal RC using reservoirs based on physical phenomena has recently
attracted increasing interest in many research areas (Fig. 1(b)).
Various physical systems, substrates, and devices have been pro-
posed for realizing RC. A motivation for physical implementation
of reservoirs is to realize fast information processing devices
with low learning cost. For hardware implementation of normal
RNNs where training is necessary, we often rely on advanced
technologies of neural network hardware (Misra & Saha, 2010)
and neuromorphic hardware (Hasler & Marr, 2013). In contrast,
physical implementation of reservoirs can be achieved using a
variety of physical phenomena in the real world, because a mech-
anism for adaptive changes for training is not necessary. Actually,
physical RC is one of the candidates of unconventional computing
paradigms based on novel hardware (Hadaeghi, He, & Jaeger,
2017). Although design principles for conventional RC, such as
ESNs (Lukoševičius, 2012; Ozturk, Xu, & Príncipe, 2007) and LSMs
(Maass, 2011), have been examined comprehensively, the follow-
ing issues require further investigation: how to design physical
reservoirs for achieving high computational performance and
how much computational power can be attained by individual
physical RC systems.

The purpose of this review is to provide an overview of recent
advances in RC, with a special focus on physical RC. Published
studies on physical RC can be found not only in neural network
journals but also in specialized journals related to the respective
physical systems. Our objective is to provide a comprehensive
viewpoint with regard to interdisciplinary studies on physical
RC by classifying them according to the type of the physical
phenomenon utilized for the reservoir. Toward this end, we sum-
marize the characteristics of individual physical reservoirs. Our
classification, which highlights the similarities and differences
among different physical reservoirs, is useful for gaining insights
into further developments in physical RC.

Some physical reservoirs are promising for developing next-
generation machine learning hardware devices and chips. Such
hardware-based RC can significantly speed up data processing
compared to software-based RC, and it is often motivated by
the need to reduce the power consumed by machine learning
hardware. In particular, the RC framework using a simple read-
out is suited to low-cost real-time computation, which is not
achievable with other machine learning frameworks based on
iterative learning algorithms leading to high learning cost. Cur-
rently, many online services rely on cloud computing (Armbrust
et al., 2010) where tasks are performed at computers far from
devices of end users on the Internet. Owing to the ever-growing
amount of data at network edges, increasing communication
latency is becoming a bottleneck for high-speed cloud computing.

An emerging alternative computing paradigm for reducing the
latency is edge computing (Shi, Cao, Zhang, Li, & Xu, 2016) where
tasks are performed at computers close to devices of end users
and sensors, preferably in real time. Machine learning hardware
for real-time temporal data processing, such as RC hardware,
enables efficient edge computing, and therefore, is expected to
become increasingly significant in the future. On the other hand,
physical constraints make it difficult to optimize the conditions
of reservoirs in physical RC. Many issues remain to be addressed
in order to realize efficient physical RC systems and devices for
practical applications. Our review introduces potential candidates
of physical reservoirs for such devices.

The remainder of this review is organized as follows. In Sec-
tion 2, we briefly describe the basic concept of RC and its recent
trends. In the subsequent sections, we introduce different types
of physical RC systems, including RC based on well-known dy-
namical systems models (Section 3), electronic RC (Section 4),
photonic RC (Section 5), spintronic RC (Section 6), mechanical RC
(Section 7), biological RC (Section 8), and others (Section 9). Fi-
nally, we discuss the current issues and future research directions
in Section 10.

2. Reservoir computing (RC)

First, we outline the fundamental concept of RC in Section 2.1.
For a more detailed background and overview of conventional
RC, readers may refer to the following well-organized articles:
the survey paper (Lukoševičius & Jaeger, 2009), the review pa-
pers (Lukoševičius & Schrauwen, 2012; Scardapane & Wang,
2017; Schrauwen, Verstraeten, & Van Campenhout, 2007), and
the special issue on ESNs and LSMs in Neural Networks (Jaeger,
Maass, & Principe, 2007). Then, we discuss recent trends in RC in
Section 2.2.

2.1. Basic framework

Since the 1980s, RNNs have been used for temporal/sequential
pattern recognition. They are characterized by feedback (recur-
rent) connections for generating history-dependent dynamical
responses to external inputs. These models are described as
non-autonomous dynamical systems. Although a special type
of RNNs without external inputs (the so-called Hopfield net-
works Hopfield, 1982) have also been widely studied (Tananka
et al., 2019), we will not treat such models represented as au-
tonomous dynamical systems in this review. The two major
gradient-based learning algorithms for general RNNs with exter-
nal inputs are backpropagation through time (BPTT) (Rumelhart,
Hinton, & Williams, 1985; Werbos, 1990) and real-time recurrent
learning (RTRL) (Doya, 1998; Williams & Zipser, 1989). These clas-
sical methods for training RNNs are discussed in a tutorial on RC
(Jaeger, 2002b). In BPTT, an RNN is unfolded in time and regarded
as an FNN with shared weights. Then the FNN is trained with the
standard backpropagation algorithm (Rumelhart et al., 1985). In
practice, a variant of this algorithm, truncated BPTT, is performed
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using only a finite history of data to adaptively update the trained
model and save computational cost. Therefore, this method has a
difficulty in learning long-term dependencies of sequential data.
On the other hand, RTRL shows excellent performance in online
learning, but its time complexity (i.e. computational time) is high.
Most RNN-based methods, including long short-term memory
(LSTM) networks (Hochreiter & Schmidhuber, 1997), use one of
the above-mentioned algorithms or a combination of them.

In the early 2000s, ESNs (Jaeger, 2001; Jaeger & Haas, 2004)
and LSMs (Maass, 2011; Maass et al., 2002) were independently
proposed as seminal RC models. They are different from conven-
tional RNNs in that the weights on the recurrent connections in
the reservoir are not trained but only the weights in the readout
are trained (Lukoševičius & Jaeger, 2009; Schrauwen et al., 2007).
The nonlinear mapping of an input signal into a high-dimensional
space in the reservoir is effective for pattern analysis of the
input information as in the kernel method (Hofmann, Schölkopf,
& Smola, 2008). To apply a simple machine learning method to
the readout, the reservoir should be appropriately designed in
advance. The characteristics of the two above-mentioned models,
ESNs and LSMs, are briefly summarized below.

The ESN model was proposed by Jaeger (Jaeger, 2001, 2007;
Jaeger & Haas, 2004). This model uses an RNN-based reservoir
consisting of discrete-time artificial neurons (Fig. 1(a)). When the
feedback from the output to the reservoir is absent, the time
evolution of the neuronal states in the reservoir is described as
follows (Jaeger, 2001):

x(n) = f(W inu(n) + Wx(n − 1)), (1)

where n denotes discrete time, x(n) is the state vector of the
reservoir units, u(n) is the input vector, W in is the weight matrix
for the input-reservoir connections, and W is the weight ma-
trix for the recurrent connections in the reservoir. The function
f represents an element-wise activation function of the reser-
voir units, which is typically a sigmoid-type activation function.
Eq. (1) represents a non-autonomous dynamical system forced
by the external input u(n). The output is often given by a linear
combination of the neuronal states as follows:

y(n) = W outx(n), (2)

where y(n) is the output vector and W out is the weight matrix in
the readout. In supervised learning, this weight matrix is trained
to minimize the difference between the network output and the
desired output for a certain time period (see Sec. 8 of Lukoše-
vičius and Jaeger (2009) for details). The performance of the ESN
depends on the design of the RNN-based reservoir. In order to ap-
proximate a teacher output signal, the RNN-based reservoir must
have the echo state property, whereby it asymptotically eliminates
any information from the initial conditions (Jaeger, 2001). It is
empirically observed that the echo state property is obtained
for any input if the spectral radius (i.e. the maximum absolute
eigenvalue of W ) is adjusted to be smaller than unity. A practical
guide for reservoir design in ESNs can be found in Lukoševičius
(2012). The echo state property is essentially the same as the
fading memory property (Boyd & Chua, 1985; Matthews, 1993).
An input/output system (or a filter) for temporal signals has
fading memory when the outputs corresponding to inputs that
are close in the recent past are close even if those inputs are
very different in the distant past. Recently, it was theoretically
shown that ESNs have universal approximation ability in terms
of discrete-time fading memory filters with uniformly bounded
inputs defined on negative infinite times (Grigoryeva & Ortega,
2018).

The LSM was proposed by Maass et al. (Maass, 2011; Maass
et al., 2002) to explore the computational capability of neural
microcircuits in the brain (Maass & Markram, 2004). The purpose

of LSMs is to develop biologically relevant learning models using
spiking neural networks (SNNs) with recurrent connectivity. The
architecture of the LSM is similar to that shown in Fig. 1(a) and
the reservoir units are typically given by excitatory and inhibitory
spiking neurons. Although the units are principally modeled with
leaky integrate-and-fire (LIF) neurons, other biologically plausible
spiking neuron models can also be used (Grzyb, Chinellato, Wo-
jcik, & Kaminski, 2009; Wojcik & Kaminski, 2007). The topology
and connectivity of the RNN in the LSM follow the constraints
of biological neural networks. Specifically, the probability that
two neurons are connected depends on the distance between
their positions. Such a reservoir is often called a liquid and the
LSM operation is called liquid computing because it is similar
to excitable media exhibiting ripples in response to external
stimulation inputs. The reservoir dynamics is generally described
as follows (Maass et al., 2002):

xM (t) = (LMu)(t), (3)

where t denotes continuous time, xM is the reservoir state (neu-
ronal activation patterns), u(·) is the input encoded as a spike
sequence, and LM is the filter for transforming the input into the
reservoir state. The output is given by

y(t) = f M (xM (t)), (4)

where y(t) is the output and f M is a memory-less readout map.
A simple machine learning algorithm or a biologically plausible
learning rule can be adopted to train the readout map. The LSMs
can incorporate new findings about biological mechanisms of
information processing in the brain. It was shown that any given
time-invariant filter (a transformation from u(·) to y(·)) with the
fading memory property can be approximated by LSMs to any
degree of precision, if LM is chosen from a class of time-invariant
filters with fading memory that has a point-wise separation prop-
erty and f M is chosen from a class of functions that satisfies an
approximation property (Maass & Markram, 2004; Maass et al.,
2002). Recent studies have treated the universal approximation
property of LSMs and other RC systems in a more mathematically
rigorous way (Gonon & Ortega, 2018; Grigoryeva & Ortega, 2018).

2.2. Recent trends

The number of studies on RC has been rapidly increasing in
recent years. In this subsection, we discuss the recent trends in RC
studies from several viewpoints, including applications, methods,
and physical realizations.

First, RC has been successfully applied to many practical prob-
lems involving real data. One of the reasons for this success is
that researchers outside the neural network community have
recognized the advantages of RC. The simplicity of the training
method in RC is attractive for non-expert developers. Table 1 lists
examples of subjects that have been addressed using RC. Most of
these studies are involved in machine learning applications, such
as pattern classification, time series forecasting, pattern gener-
ation, adaptive filtering and control, and system approximation.
In particular, RC meets the demands for low training cost and
real-time processing in these applications. Some benchmark tasks
related to these applications are listed in Table 2. The input and
output information for an RC system are determined depending
on the task. In pattern classification tasks, the input is a time
series and the output is a discrete value (label) representing a
pattern class. More specifically, in a spoken digit recognition task,
the input is a sound signal corresponding to one of ten different
utterances of the digits from zero to nine and the output is one
of the ten digits. The goal of this task is to output the correct
digit number from a sound signal of an unknown digit. To remove
unnecessary information and noise, the original sound signal is
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Table 1
Examples of subjects in RC applications.
Category Examples

Biomedical EEG, fMRI, ECG, EMG, heart rates, biomarkers,
BMI, eye movement, mammogram, lung images.

Visual Images, videos.
Audio Speech, sounds, music, bird calls.
Machinery Vehicles, robots, sensors, motors, compressors,

controllers, actuators.
Engineering Power plants, power lines, renewable energy,

engines, fuel cells, batteries, gas flows, diesel oil,
coal mines, hydraulic excavators, steam generators,
roller mills, footbridges, air conditioners.

Communication Radio waves, telephone calls, Internet traffic.
Environmental Wind power and speed, ozone concentration,

PM2.5, wastewater, rainfall, seismicity.
Security Cryptography.
Financial Stock price, stock index, exchange rate.
Social Language, grammar, syntax, smart phone.

typically transformed into feature values such as mel-frequency
cepstrum coefficient (MFCC) in a preprocessing step and then
given to the reservoir. Although RC is suited for temporal pattern
recognition, it can be applied to image recognition by transform-
ing an image into a sequence of pixel values. As RC can deal
with any sequential data in principle, further expansion of its
application fields is widely expected.

Second, many variants of RC models have been proposed to
improve the performance of the original ones. New RC models
have been devised by using new architectures such as multiple
reservoirs (Akiyama & Tanaka, 2019; Gallicchio, Micheli, & Pe-
drelli, 2017; Malik, Hussain, & Wu, 2017) and evolving reservoirs
(Qiao, Li, Han, & Li, 2017), combining RC with other feature
extraction methods such as untrained convolutional neural net-
works (Tong & Tanaka, 2018) and reinforcement learning (Chang
et al., 2018; Murakami, Kröger, Birkholz, & Triesch, 2015), in-
corporating new learning algorithms such as the FORCE learning
(Sussillo & Abbott, 2009) and its variants (Pyle & Rosenbaum,
2018), and/or employing a diversity of reservoir elements (In-
ubushi & Yoshimura, 2017; Tanaka, Nakane, Yamane and Nakano
et al., 2016; Xia, Jahanchahi, & Mandic, 2015). In addition, the-
oretical studies have provided a deeper understanding of the
relationship between the computational performance of RC and
the dynamics of reservoirs, in terms of nonlinear dynamical sys-
tems theory, information theory, and statistical theory. A com-
prehensive overview of these studies is beyond the scope of this
review.

Finally, physical realizations of RC models have attracted con-
siderable attention. A straightforward method is to implement
RNNs using neural network hardware or neuromorphic comput-
ing techniques. Another method is to employ other dynamical
systems instead of RNNs. Any dynamical system has the potential
to serve as a reservoir if it can exhibit dynamical responses
to inputs. Such reservoirs were previously regarded as ‘‘exotic’’
ones (Lukoševičius & Jaeger, 2009), but the number of studies
on physical RC has been rapidly increasing. Various physical
reservoirs have been proposed using different types of physical
systems, substrates, and devices. Some physical RC systems are
aimed at developing energy-efficient machine learning hardware
and others are at exploring natural computing based on novel
substrates.

There are several requirements for a physical reservoir to
efficiently solve computational tasks. (i) High dimensionality is
necessary to map inputs into a high-dimensional space. This
property facilitates the separation of originally inseparable inputs
in classification tasks and allows reading out spatiotemporal de-
pendencies of inputs in prediction tasks. The dimensionality is

Table 2
Applications and related benchmark tasks of RC.
Applications Benchmark tasks

Pattern classification Spoken digit recognition (Verstraeten, Schrauwen,
Stroobandt and Van Campenhout, 2005)
Waveform classification (Paquot et al., 2012)
Human action recognition (Soh & Demiris, 2012)
Handwritten digit image recognition (Jalalvand,
Van Wallendael, & Van de Walle, 2015)

Time series forecasting Chaotic time series prediction (Jaeger, 2001)
NARMA time series prediction (Jaeger, 2003)

Pattern generation Sine-wave generation (Jaeger, 2002b)
Limit cycle generation (Hauser, Ijspeert, Füchslin,
& Maass, 2012)

Adaptive filtering and
control

Channel equalization (Jaeger & Haas, 2004)

System approximation Temporal XOR task (Bertschinger & Natschläger,
2004)
Temporal parity task (Bertschinger & Natschläger,
2004)

Short-term memory Memory capacity (Jaeger, 2002a)

related to the number of independent signals obtained from the
reservoir. (ii) Nonlinearity is necessary for a reservoir to operate
as a nonlinear mapping. This property allows inputs that are not
linearly separable to be transformed into those that are linearly
separable in classification tasks. It is also useful for effectively
extracting nonlinear dependencies of inputs in prediction tasks.
(iii) Fading memory (or short-term memory) (Boyd & Chua, 1985;
Maass et al., 2002; Maass, Natschläger, & Markram, 2004) is
necessary to ensure that the reservoir state is dependent on
recent-past inputs but independent of distant-past inputs. It is
also referred to as the echo state property, indicating that the in-
fluence of past inputs on the current reservoir states and outputs
asymptotically fades out (Jaeger, 2001; Yildiz, Jaeger, & Kiebel,
2012). Such a property is particularly important for representing
sequential data with short-term dependencies. (iv) Separation
property is required to separate the responses of a reservoir
to distinct signals into different classes. On the other hand, a
reservoir should be insensitive to unessential small fluctuations,
such as noise, so that similar inputs are classified into the same
class. Therefore, when a system parameter variation causes a
transition between non-chaotic and chaotic regimes, it is often
recommended that the parameter be set close to the transition
point (the so-called edge of chaos (Bertschinger & Natschläger,
2004; Legenstein & Maass, 2007)) where the transformation by a
reservoir is neither very expanding nor very contracting.

The responses of physical RC systems are used to train a
readout that is realized using physical devices or software-based
computations. Linear regression or another simple machine learn-
ing algorithm is used in the readout of ESN-type RC (Lukoševičius
& Jaeger, 2009), while a perceptron-like local learning rule or a
synaptic plasticity-based one is used for the readout neurons in
LSM-type RC (Maass et al., 2002).

An intriguing example of physical RC in an early study is
a fluidic RC with water in a bucket for pattern recognition as
shown in Fig. 2 (Fernando & Sojakka, 2003). The input signals
are transmitted to electric motors that generate ripples on the
water surface, and the ripples are recorded using a video camera.
From the recorded signals, a software-based readout is trained.
The performance of the liquid computer is demonstrated in an
XOR task and a spoken digit recognition task. Subsequently, many
dynamical systems models and physical systems have been em-
ployed as potential reservoirs. We classify these RC systems,
substrates, and devices, depending on the type of the physical
phenomenon in the reservoir and review the individual reservoirs
in the following sections.
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Fig. 2. A fluidic RC where the reservoir is the water in a bucket (Fernando &
Sojakka, 2003). Figure reproduced with permission from Springer Nature.

3. Dynamical systems models for RC

In this section, we review several types of reservoirs based
on well-known nonlinear dynamical systems models, includ-
ing delayed dynamical systems (Section 3.1), cellular automata
(Section 3.2), and coupled oscillators (Section 3.3).

3.1. Delayed dynamical systems

The reservoirs in ESNs and LSMs generate high-dimensional
signals using a network of interacting neuron nodes, which are re-
garded as a special class of high-dimensional dynamical systems.
Another way to generate high-dimensional patterns is to use a
time-delayed dynamical system, as described in the following
form (Lepri, Giacomelli, Politi, & Arecchi, 1994):

dx(t)
dt

= F (t, x(t), x(t − τ )), (5)

where t represents continuous time, x is the state variable, F is
a function determining the flow of this system, and τ > 0 is the
delay period. This system is capable of exhibiting rich nonlinear
behavior including periodic oscillations and deterministic chaos
depending on the system parameter setting. In the first proposal
of a single-node reservoir with delayed feedback (Appeltant et al.,
2011), the reservoir was implemented using electronic circuits
with a feedback loop (see Section 4.1 for details). As shown in
Fig. 3, the input signal is time-multiplexed by a mask function
(Appeltant, Van der Sande, Danckaert, & Fischer, 2014) and fed
to the single nonlinear node. The virtual nodes are set at N time
points that equally divide the delay period τ . The time interval
between two consecutive nodes is θ ≡ τ/N . The states at these
virtual nodes, x(t − (N − i)θ ) for i = 1, . . . ,N , are used as the
reservoir state at time t and then fed to the output layer through
weighted connections. These connection weights are trained in
the readout. The system was successfully applied to the spoken
digit recognition task and the nonlinear autoregressive moving
average (NARMA)-10 time series prediction task.

The architecture of the single-node reservoir with delayed
feedback was extended in two ways (Ortín & Pesquera, 2017).
One is an ensemble of two separate time-delayed reservoirs
whose outputs are combined at the readout. The other is a cir-
cular concatenation of the delay lines of two reservoirs, forming
a longer delay line. These extended architectures were shown to
achieve better performance, faster processing speed, and higher
robustness than the single-node reservoir. An extensive amount

Fig. 3. RC using a single nonlinear node reservoir with time-delayed feedback
(Appeltant et al., 2011).

of work has been performed on single-node reservoirs with
delayed feedback (Brunner et al., 2018).

The simplicity of the single-node reservoir with delayed feed-
back is advantageous for physical implementation compared with
network-based reservoirs consisting of a large number of nodes.
In fact, single-node reservoirs have been widely employed for
electronic RC (Section 4) and photonic RC (Section 5.2).

3.2. Cellular automata

A cellular automaton (CA) is a simple dynamical systems
model where both state and time are discrete (Wolfram, 2018).
The discrete states on the cells are updated according to a given
(local) evolution rule. Depending on the rule, the CA can exhibit
rich behavior, including ordered, critical (or the edge of chaos),
and chaotic dynamics, in spite of its simplicity. It is heuristically
conjectured that the computational capability of CA is maximized
at the edge of chaos.

This conjecture has been confirmed in a numerical study on
RC based on a random Boolean network, which is an extended
version of CA (Snyder, Goudarzi, & Teuscher, 2013). Other stud-
ies employed CA-based reservoirs as shown in Fig. 4 (Yilmaz,
2014,2015a,2015b). Binary or non-binary inputs are randomly
mapped onto the initial states of CA through an encoding pro-
cedure. According to the predefined evolution rule, CA exhibits
nonlinear dynamical behavior, through which the input data are
projected onto an expressive and discriminative space. The entire
state of the CA evolution is vectorized and used as a feature
vector for processing in the readout. The CA reservoirs are bi-
nary in nature and suitable for symbolic computation includ-
ing Boolean logic. The CA-based RC system can perform 5-bit
and 20-bit temporal memory tasks, which require long short-
term memory capability, with less computation compared to
ESNs (Yilmaz, 2015a). The binary operations and simple update
rules of CA reservoirs are advantageous for implementation with
parallel hardware, such as field-programmable gate arrays (FP-
GAs) and graphics processing units (GPUs). In a recent study
(Morán, Frasser, & Rosselló, 2018), different CA evolution rules
were tested for the MNIST handwritten character recognition by
numerical simulations and the best rule giving the highest accu-
racy was specified as rule 90 (Martin, Odlyzko, & Wolfram, 1984).
Then, a CA-based reservoir with this rule was implemented with
FPGA and applied to the MNIST task. Compared to other FPGA-
based neural networks, the proposed method achieved competi-
tive results in terms of accuracy, speed, and power dissipation.

The architecture of the CA reservoir can be extended in sev-
eral ways. For instance, a parallel loosely coupled architecture
(Nichele & Gundersen, 2017) and a layered deep architecture
(Nichele & Molund, 2017) have been proposed. The rules of CA
can also be extended by employing two CA rules of different
classes in the reservoir layer to satisfy two competing require-
ments of the CA reservoir, i.e., sensitivity to the current input and
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Fig. 4. RC using cellular automata (Yilmaz, 2015b).

asymptotic insensitivity to past inputs (McDonald, 2017). The first
half of the CA reservoir is driven by a rule generating chaos or
the edge of chaos for hyperdimensional projection of the inputs,
while the second half is driven by a rule generating an ordered
state for short-term memory.

3.3. Coupled oscillators

Coupled nonlinear oscillators are ubiquitous in mechanical,
chemical, electronic, biological, optical, spintronic, and quantum
mechanical systems. They can be used as physical reservoirs.
When each oscillator is described with a first-order ordinary
differential equation (ODE), a system of N coupled oscillators can
be described in the following general form:
dxi(t)
dt

= F (xi(t)) + G(x1(t), . . . , xN (t)), for i = 1, . . . ,N, (6)

where t represents continuous time, xi(t) is the state of oscil-
lator i at time t , F is a function determining the dynamics of
isolated oscillators, and G is a coupling function. The coupled
oscillator model consists of the term representing the dynamics
of individual oscillators and the coupling term representing the
interactions between oscillators.

A reservoir based on nonlinear mechanical oscillators has been
proposed (Coulombe et al., 2017). Such a reservoir is composed of
multiple inertial masses arranged in a chain, which are coupled
with their nearest neighbors by springs, as illustrated in Fig. 5(a).
The masses are grounded by linear or nonlinear springs with
damping. The entire equation of motion is described by cou-
pled Duffing oscillators (second-order ODEs) driven by periodic
forcing. The input signal is applied to the reservoir through am-
plitude modulation of the periodic forcing. The outputs from the
reservoir are envelope signals containing only the low-frequency
amplitude variations in the high-frequency mass position signals.
The output signal is calculated by a linear combination of the
weighted envelope signals. A reservoir with nonlinear mechanical
oscillators can be compactly fabricated using microelectrome-
chanical systems technology in an energy-efficient manner. The
performance of such a reservoir computer was evaluated in a
parity task and a spoken digit recognition task. Other mechanical
reservoirs are reviewed in Section 7.

Chemical reactions are often modeled with coupled chemi-
cal oscillators to reproduce their oscillatory behavior far from a
steady state. A deoxyribonucleic acid (DNA) reservoir was de-
signed with coupled deoxyribozyme-based oscillators at molec-
ular scale as shown in Fig. 5(b) (Goudarzi et al., 2013). The
reservoir consists of different DNA species interacting via bio-
chemical reactions in a microfluidic reaction chamber, which
can be mathematically represented as coupled ODEs with state
variables representing concentrations of the product molecules

Fig. 5. RC using coupled oscillators. (a) A mechanical reservoir with coupled
nonlinear oscillators (Coulombe, York, & Sylvestre, 2017). (b) A DNA reservoir
with coupled chemical oscillators (Goudarzi, Lakin, & Stefanovic, 2013). (c) A
synchronization-based RC with coupled phase oscillators (Yamane, Katayama,
Nakane, Tanaka, & Nakano, 2015).

of the DNA species. The input signal is encoded as fluctuations
in the influx of species into the reactor, and the reservoir state
is monitored by fluorescent probes. A software-based readout
is trained to map the oscillator dynamics to a target output. A
chemical oscillator-based RC with three DNA species was applied
to a temporal signal-tracking task.

When coupled nonlinear oscillators show limit cycle motions,
they can be reduced to coupled phase oscillators under the as-
sumption of weak interactions (Nakao, 2016). After the reduction,
the amplitude of the motion is eliminated and the dynamics is
restricted to the phase domain. Coupled phase oscillators can
exhibit rich dynamical behavior, including phase transition, clus-
tering, and phase synchronization, which are available for RC.
A phase-based RC encodes the input signal as phases of the
oscillators and adopt phase synchronization for computation as
shown in Fig. 5(c) (Yamane et al., 2015). In this method, the
phase coupling function is appropriately designed to perform
function approximations. This approach based on synchroniza-
tion can contribute to development of phase-based information
processing (Parihar, Shukla, Jerry, Datta, & Raychowdhury, 2017)
and wave-based neuromorphic computing (Katayama, Yamane,
Nakano, Nakane, & Tanaka, 2016).

4. Electronic RC

RC systems implemented with electronic circuits and devices
have been actively studied for developing machine learning de-
vices with low training cost. Any existing ANN and neuromorphic
circuits are available in principle as electronic reservoirs, but
simpler configurations have been explored to reduce energy con-
sumption, speed up computation, and cope with imperfection
and noise in hardware. In this section, we start with single-
node reservoirs implemented with analog circuits (Section 4.1)
and then introduce RC systems implemented with FPGAs which
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Fig. 6. (a) Electronically implemented RC system using a single-node reservoir based on the Mackey–Glass equation with delay (Soriano, Ortín and Keuninckx et al.,
2015). Figure reproduced and modified with permission from Springer Nature. (b) Architecture of an FPGA-based LSM system for speech recognition (Schrauwen,
D’ Haene, Verstraeten, & Van Campenhout, 2008). Figure reproduced with permission from Elsevier.

are common reconfigurable hardware devices consisting of large
arrays of simple configurable logic blocks and configurable in-
terconnection structures (Section 4.2). Subsequently, we review
very-large-scale integrated circuit (VLSI) designs for RC devices
(Section 4.3). Finally, we focus on memristive RC based on mem-
ristive units (Section 4.4).

4.1. Analog circuits

As described in Section 3.1, a single nonlinear node with
delayed feedback works well as a reservoir where the input in-
formation is transformed into the states of the virtual nodes. The
single-node reservoir imposes less hardware requirements com-
pared to a network-type reservoir consisting of a large number
of units and interconnections (Soriano, Brunner, Escalona-Morán,
Mirasso and Fischer, 2015). A nonlinear analog electronic circuit
was implemented for constructing a single-node reservoir with
a delay line, in combination with other digital hardware compo-
nents for pre- and post-processing (Appeltant et al., 2011; Sori-
ano, Ortín and Keuninckx et al., 2015). The system architecture
is schematically shown in Fig. 6(a). The input signal is time-
multiplexed with a mask that defines the connection weights
from the input to the virtual nodes on the delay line (Appeltant
et al., 2014) and kept to be positive by adding a bias voltage by
digital processing. Then, the converted signal is injected into the
single nonlinear node implemented with an analog Mackey–Glass
nonlinear element circuit with a delayed feedback (the upper
panel in Fig. 6(a)), corresponding to the following equation:
dx(t)
dt

= −x(t) +
η(x(t − τ ) + γ I(t))

1 + (x(t − τ ) + γ I(t))p
, (7)

where t is dimensionless time, x is the dynamical variable, τ
is the delay in the feedback loop, η is the feedback strength,
γ is the input scaling, I(t) is the external input current, p is
the parameter for tuning the nonlinearity. The states of the vir-
tual nodes are linearly combined to produce the output in the
digital postprocessing part. The training of the output weights
are performed using a linear regression algorithm. The digital
and analog parts are interfaced by digital-to-analog (DA) and

analog-to-digital (AD) converters with 12-bits resolution. The
proposed system was successfully applied to spoken digit recog-
nition, memory capacity estimation, and time series prediction,
by appropriately adjusting the feedback strength η. The effect of
the quantization noise caused by AD and DA conversion on the
computational performance was also investigated in comparison
with numerical simulations. A recent study proposed an extended
system composed of multiple delayed feedback reservoirs based
on the Mackey–Glass circuit in a deep layer structure (Li, Bai,
Liu, & Yi, 2018). The presented system was applied to time series
prediction tasks with Santa Fe dataset and ECG signals. Another
study considered a single-node reservoir implemented with the
Chua’s circuit driven by external input forcing, which exhibits
chaotic dynamics, and applied it to non-temporal nonlinear tasks
(Jensen & Tufte, 2017).

On the other hand, a spike-based single-node reservoir with a
delay loop was proposed with its analog implementation design
(Zhao et al., 2016). The information transmission is based on spike
signals for power efficiency, instead of time-continuous analog
signals requiring peripheral modules for signal conversion and
amplification. The spike-based delayed feedback circuit demon-
strated nonlinear transformation from input spike sequences to
output spike sequences. A spike timing-dependent encoder for
encoding analog inputs as temporal spike trains and a masking
process were used to design an RC system with a spike-based
single-node reservoir (Li, Zhao, Hamedani, & Yi, 2017). Numerical
experiments showed that the optimal mask for yielding high
computational performance was different depending on the task.

4.2. FPGAs

FPGAs have often been used to implement ANNs as their
reconfigurability is suited for concurrent processing and adaptive
weight updating in ANNs (Omondi & Rajapakse, 2006; Zhu &
Sutton, 2003). In the context of RC, many FPGA implementa-
tions have been studied to realize reservoirs and/or readouts
(Antonik, 2018). Network-based reservoirs can be constructed
using a variety of components, such as binary neurons, sigmoid
neurons, stochastic neurons, and spiking neurons. A significant
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issue is how to choose hardware-friendly network components
and efficiently implement them.

Binary neurons are often employed to compose neural net-
work circuits as they are suited to be handled in digital plat-
forms. In an early study, a reservoir composed of stochastic bit-
stream neurons was implemented on an FPGA board to explore
efficient hardware implementation (Verstraeten, Schrauwen and
Stroobandt, 2005). The stochastic bitstream neuron is based on
stochastic computing where its state value is represented as a
statistical characteristic of a sufficiently long bitstream, e.g. as
a probability of ‘‘1’’ in a binary sequence (Bade & Hutchings,
1994). Whereas sigmoid neurons require a large number of mul-
tipliers and adders for updating their states, stochastic bitstream
neurons enable to simplify hardware implementation of those
arithmetic operations. The proposed system with a small-world
network of 25 neurons was applied to a simple task of gen-
erating a phase-shifted version of the input sinusoidal signal.
A similar reservoir based on stochastic logic was implemented
on an FPGA board using a random network of neuron units
(Alomar, Canals, Martínez-Moll, & Rosselló, 2014). The proposed
system composed of 10 neurons was applied to a nonlinear time
series prediction task. The above FPGA-based reservoir computers
use offline batch learning. This limitation was overcome by the
first FPGA implementation of a reservoir computer with an on-
line learning algorithm (Antonik, Smerieri, Duport, Haelterman, &
Massar, 2015). The neuron units in this reservoir have a sinusoidal
activation function and the linear readout provides a gradient
descent algorithm for real-time learning. It was confirmed that
the reservoir computer on the FPGA board has a significant ad-
vantage in the high-speed processing over the software-based
reservoir implemented in a high-end laptop. It was demonstrated
that the proposed system can successfully solve channel equaliza-
tion problems with invariable channels and those with variable
channels.

Implementations of recurrent SNNs for LSMs on FPGAs have
been reported in many studies. The hardware LSMs can be re-
garded as a special form of neuromorphic hardware. The infor-
mation is coded by temporal patterns in spike sequences, unlike
the rate coding in analog neuron hardware. Efficient hardware
architectures for implementing LSMs on an FPGA were explored
for real-time information processing and applied to isolated digit
speech recognition (Schrauwen et al., 2008). The overview of the
system architecture for speech processing is shown in Fig. 6(b).
The speech signals are transformed into cochleograms by the
Lyon cochlear ear model (Lyon, 1982) and then converted to spike
signals via Bens Spiker Algorithm (Schrauwen & Van Campen-
hout, 2003) before being fed to the SNN reservoir. The spikes
generated in the SNN are filtered by a low-pass filter and sam-
pled, and the weighted sum of the sampled signals is used to
produce the system output in the postprocessing step. The SNN
consists of 200 LIF neurons and the exponential synapse models
(Gerstner & Kistler, 2002). A novel implementation technique for
digital SNNs was devised on the basis of serial arithmetic opera-
tions instead of parallel ones, in order to enhance scalability of the
hardware device. Another study presented an efficient design and
architecture for general-purpose FPGA-based LSMs based on LIF
neuron models with a biologically plausible learning rule (Wang,
Jin, & Li, 2015). As a method to enhance energy efficiency, a light
mode where some neuron units in the SNN are powered off was
considered for simple tasks. The proposed neuromorphic LSM
was successfully applied to speech and image recognition tasks
with four different datasets. Furthermore, it was shown that the
stand-alone FPGA-based LSM with parallel processing can speed
up the runtime and reduce the energy consumption using the
firing-activity dependent power gating and approximate arith-
metic, compared to the implementation on a general-purpose

CPU (Wang, Li, & Li, 2016; Wang, Li, Shao, Dey, & Li, 2017).
Other FPGA implementations of LSMs were demonstrated using
stochastic spiking neurons in a ring network (Alomar, Canals,
Morro, Oliver, & Rossello, 2016), multiplier-less reconfigurable
architectures (Ghani et al., 2015), and a spike-time-dependent
encoder (Yi et al., 2016). In a recent work, a novel digital neu-
romorphic architecture called a spiking temporal processing unit
was proposed by incorporating temporal buffers in each spiking
neuron to model arbitrary synaptic response functions (Smith
et al., 2017). This scheme was adopted to implement an LSM on
an FPGA chip, and its pattern classification ability was evaluated
in a spoken digit recognition task. In another FPGA-based study,
improvements in cost and energy efficiency of hardware LSMs
were achieved by developing a reservoir tuning method based
on a hardware-friendly spike-timing-dependent plasticity (STDP)
learning algorithm in speech and image recognition (Liu, Jin, & Li,
2018).

The remaining FPGA-based reservoirs are the single-node
reservoirs with delayed feedback (see Sections 3.1 and 4.1). An
FPGA-based single-node reservoir with a delay loop was demon-
strated using a Boolean logic element (Haynes, Soriano, Rosin,
Fischer, & Gauthier, 2015). The Boolean logic element was set
to operate as an XOR gate and the delay loop was realized as a
cascade of pairs of inverter gates. The states of the virtual nodes
are collected and linearly combined to produce an output in an
external computer. It was shown that, by appropriately adjusting
parameters such as the length of the time delay, the transient
dynamics of the single-node reservoir was useful for classification
of short input patterns. In another study, the single nonlinear
node was realized with a digitized version of the Mackey–Glass
equation in Eq. (7) and the delay line was implemented with
the random access memory block (Alomar et al., 2015). The
training of output weights is conducted on the FPGA board. The
presented system was successfully applied to a waveform pattern
classification task and a time series prediction task.

4.3. VLSIs

Some efforts have made to efficiently integrating reservoir
circuits in VLSIs. In an early study, an electronic reservoir was
implemented with a general-purpose ANN application-specific
integrated circuit (ASIC) which is a mixed-mode hardware using
analog computation and digital signaling (Schürmann, Meier, &
Schemmel, 2005). This system consists of 256 McCulloch–Pitts
binary neuron nodes and 33k analog synapses. The input and
output information are given by binary sequences. Experimental
results showed that the computational performance of the RC
system in a temporal 3-bit parity task was maximized when
the neural network exhibited critical dynamics at the edge of
chaos, as in the case of previous results of software simulations
(Bertschinger & Natschläger, 2004).

Neuromorphic approaches to RC based on spikes and pulses
have recently attracted much attention. Prototypes of pulse-based
information processors were fabricated on a printed circuit board
and an ASIC, on which RC systems can be implemented (Petre &
Cruz-Albrecht, 2016). These systems are based on asynchronous
pulse processing that uses a time encoder for converting analog
signals into pulse domain signals and an event-driven computing
scheme for power efficiency. In another study, a digital design
architecture for implementing LSMs on reconfigurable platforms
was proposed for real-time processing of input data (Polepalli,
Soures, and Kudithipudi, 2016a,2016b). The reservoir consists of
LIF neurons with random connectivity having spatial locality.
The readout layer consists of a two-layer perceptron and the
output weights are adjusted based on a gradient descent method.
The performance of the proposed model was numerically eval-
uated in epileptic seizure detection from EEG signals and user
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identification from walking patterns. Hardware-friendly readout
implementation techniques have been focused on in some stud-
ies for energy-efficient learning in VLSI-based LSMs. Inspired
by dendrites in biological neurons, a hardware-friendly readout
architecture for LSMs and an efficient learning rule with adaptive
network rewiring were proposed (Roy, Banerjee, & Basu, 2014).
The efficiency of the proposed architecture was demonstrated
in a spike train classification task and an approximation task of
retrieving the sum of firing rates of input spike trains. In another
study, a biologically inspired local learning rule was presented
for low-power VLSI implementation of LSMs to reduce hardware
implementation costs (Zhang, Li, Jin, & Choe, 2015). It was nu-
merically shown that the overhead of hardware implementation
can be reduced by the new learning rule in a speech recognition
task. The tradeoff between hardware overhead and computational
performance in hardware-implemented LSMs was discussed in a
simulation study (Jin & Li, 2017).

4.4. Memristive RC

This section focuses on reservoirs implemented with mem-
ristive circuits and devices. The main characteristic of a mem-
ristive element, differentiating from other fundamental circuit
elements, is that its resistance changes with time depending
on the current flow that has passed through it (Chua, 1971;
Williams, 2014). The existence of a memristor (or memory re-
sistor) was first predicted from theoretical consideration (Chua &
Kang, 1976) and after a long time physically realized using tita-
nium dioxide (TiO2) (Strukov, Snider, Stewart, & Williams, 2008).
Although there are some debates about whether the memristor
is truly counted as a fundamental passive circuit element (Abra-
ham, 2018), memristive devices indeed exist in reality and are
promising for computing. We classify memristive reservoirs into
two types: neuromemristive reservoirs consisting of both neuron
circuits and memristor synapses (Section 4.4.1) and memristive
reservoirs without neuron units (Section 4.4.2).

4.4.1. Neuromemristive circuits
Neuromorphic computing with non-von Neumann architec-

ture has rapidly progressed in recent years. Neuromorphic de-
vices/chips have been fabricated by different research groups
(Walter, Röhrbein, & Knoll, 2015). Neuromemristive systems are
a subclass of neuromorphic computing systems that use mem-
ristors to mimic the synaptic plasticity in biological neurons,
where the memristor conductance corresponds to the synaptic
weight (Indiveri, Linares-Barranco, Legenstein, Deligeorgis, & Pro-
dromakis, 2013; Thomas, 2013). Nano-scale memristive synapses
have considerable potential as elements of energy-efficient neu-
romorphic devices.

A memristor-based ESN with cellular neural network struc-
tures (i.e., locally connected arrays) was proposed using staircase
memristor models (Yang, Chen, & Wang, 2016). Numerical simu-
lation showed that, due to the simple structure, the performance
of the proposed model was successful but worse than that of the
original ESN model with a random connection topology in a time
series prediction task. Other ESN-type reservoirs were designed
using memristor crossbar arrays (Donahue et al., 2015; Merkel,
Saleh, Donahue, & Kudithipudi, 2014). Memristor crossbar arrays
are often used to implement direct synaptic connections in neu-
romorphic devices, because they are suitable for vector–matrix
multiplication, and the conductances of memristive synapses can
be adaptively updated by applying voltage pulses. Double cross-
bar arrays were used to realize recurrent connections in ESNs
(Hassan, Li, & Chen, 2017) and LSMs (Soures, Hays, & Kudithipudi,
2017). The use of memristor crossbar arrays in the readout part of
ESNs was proposed for a digital (or mixed signal) reservoir with

a doubly twisted toroidal structure (Kudithipudi, Saleh, Merkel,
Thesing, & Wysocki, 2016). A more general on-chip system using
analog memristive nanosynapses was presented for emulating
a reservoir computer and performing spoken digit and MNIST
image recognition tasks (Bennett, Querlioz, & Klein, 2017).

4.4.2. Memristive systems and devices
Memristive systems and devices are capable of exhibiting non-

linear dynamics and responding to inputs in a history-dependent
manner. Even without neuron units, memristors can exhibit non-
linear transformation of input signals. By exploiting these favor-
able properties for a dynamic reservoir, some studies have pro-
posed reservoirs based on memristive systems and devices. There
are various memristive devices having different current–voltage
characteristics, but ideally, they can be formulated as memristive
systems categorized into a special class of dynamical systems
(Chua, 1971; Chua & Kang, 1976). A current-controlled memris-
tor with time-invariant characteristic is generally described as
follows:

V = R(w, I)I, (8)
dw
dt

= f (w, I), (9)

where t represents continuous time, V is the voltage, R is the
time-varying resistance, I is the current, and w is a vector rep-
resenting the internal state of the system. The function f de-
termines how the internal state evolves depending on the input
current.

A network of memristors can be used as a reservoir to nonlin-
early map an input signal into a high-dimensional feature space,
as shown in Fig. 7(a). The first memristor-based reservoir was
proposed in Kulkarni and Teuscher (2012). The proposed model
was applied to a wave pattern classification task and an associa-
tive memory task, but the readout was a genetic algorithm which
is not a linear algorithm. Therefore, the merit of the memristive
reservoir was not clear from the results. As the connectivity of the
memristors affects the computational performance of memristor-
based RC, subsequent studies have extended the structure of the
memristor network to a regular mesh structure for investigating
the variation tolerance of RC (Bürger & Teuscher, 2013) and to
a hierarchical structure for enhancing the computational capa-
bility of RC (Bürger, Goudarzi, Stefanovic, & Teuscher, 2015b).
Moreover, the correlation between the computational capacity
and the energy consumption of RC with random memristor net-
works was investigated to clarify its potential and limitations
(Bürger J. Goudarzi, Stefanovic, & Teuscher, 2015a). In the above-
mentioned studies, the behavior of memristor-based reservoirs
was computed using circuit simulators. On the other hand, a
general mathematical model of memristor networks was explic-
itly formulated to promote theoretical and numerical analyses of
memristive RC (Tanaka et al., 2017). This formulation is applica-
ble to any memristor network if the memductance (memristor
conductance) of a single memristor is expressed as a function
of its magnetic flux as in the linear drift model (Strukov et al.,
2008). The numerical simulation showed that the variability in
the memristive elements, which is generally thought to be un-
desired, can be beneficial if the network topology and the input
scaling are appropriately selected. In Carbajal, Dambre, Hermans,
and Schrauwen (2015), new memristor models with volatility
were proposed to introduce the fading memory property into the
standard non-volatile memristor model. Other memory devices,
such as memcapacitors, are potential components of a network-
type reservoir with low power consumption (Tran & Teuscher,
2017).

Several studies have demonstrated physical implementations
of memristive reservoirs. A memristor-based reservoir device was



110 G. Tanaka, T. Yamane, J.B. Héroux et al. / Neural Networks 115 (2019) 100–123

Fig. 7. (a) Schematic illustration of an RC system based on a memristor-based reservoir. (b) A fabricated memristor array where several cells are selected to work
as a reservoir on the whole (Du et al., 2017). The inset shows tungsten oxide (WOx) memristor with a metal–insulator–metal structure. Figure reproduced from Du
et al. (2017), licensed under CC-BY 4.0. (c) An atomic switch network device composed of self-assembled silver nanowires (Stieg et al., 2014). Figure reproduced
with permission from Springer Nature.

recently fabricated as shown in Fig. 7(b) (Du et al., 2017), where
the reservoir is not a network of memristors but a group of
independent memristors. An input signal is divided into multiple
segments, and the segments are then separately transformed
into output signals by the individual memristive devices. The
collection of the output signals is used as the state of the entire
reservoir. It was experimentally demonstrated that this RC device
performed well in image recognition and time series prediction
tasks. Memristive behavior is observed also in atomic switch
networks (ASNs), which are aggregations of a number of silver
nanowires interconnected with each other and formed via a ther-
modynamically driven self-organized growth process, as shown
in Fig. 7(c) (Stieg et al., 2012). The RC device based on ASNs was
applied to a waveform generation task (Sillin et al., 2013; Stieg
et al., 2014).

5. Photonic RC

In this section, the rich literature on photonic reservoir imple-
mentations is categorized and briefly summarized. An alternative
discussion on this specific area can be found in Van der Sande,
Brunner, and Soriano (2017). Reviews on topics related to pho-
tonic spike processing (Prucnal, Shastri, de Lima, Nahmias, &
Tait, 2016) and photonics for neuromorphic applications (Ferreira,
Shastri, Tait, Nahmias, & Prucnal, 2017) have also been published
recently. In this review, optical reservoirs are categorized as
spatially distributed array reservoirs (Section 5.1) and reservoirs
with delay feedback (Section 5.2). On this last category, a detailed
tutorial has recently been published (Brunner et al., 2018).

5.1. Optical node arrays

A photonic reservoir computer, with the potential advantages
of low power consumption and extremely fast computation,
was first proposed in 2008 and subsequently refined on the
basis of numerical simulations (Vandoorne, Dambre, Verstraeten,

Schrauwen, & Bienstman, 2011; Vandoorne et al., 2008). The
design is based on a chip-integrated device with single-mode
waveguides. Semiconductor optical amplifiers (SOAs) are assem-
bled in a 4 × 4 array, with each node connected to a maximum
of four neighbors in a swirl configuration, as shown in Fig. 8. The
effects of non-uniformity of the nodes and the delay and phase
shift between interconnections were studied. An experimental
prototype was reported in 2014 (Vandoorne et al., 2014). Readout
was performed at 11 of the 16 nodes by photodetectors providing
nonlinearity, owing to the limitations imposed by optical loss.
The signal input was inserted via a single node and the training
of the reservoir and processing of the output were performed
offline. Experimental demonstrations include a 2-bit XOR logical
operator, header recognition, and spoken digit classification.

A proposed related design is a platform in which the nodes are
microring resonators providing nonlinear responses (Mesaritakis,
Papataxiarhis, & Syvridis, 2013). With a randomly interconnected
6 × 6 array, successful operation for a pattern recognition task
was numerically demonstrated. Another related study developed
a node-based framework adapted to a coupled-mode theory to
simulate a large number of cavities efficiently (Vaerenbergh, Fiers,
Dambre, & Bienstman, 2015). A drawback of photonic reservoirs
is that a compact design results in short time delays; hence,
the required input and readout operation rates may be too high
for practical implementation. A digital mask modulation tech-
nique was reported to alleviate this problem and decrease the
input signal rate by a factor of 40 (Schneider, Dambre, & Bien-
stman, 2016). There is a design choice for the number of nodes
that are linked to the input signal. This aspect was recently
studied, and it was found that the power efficiency was im-
proved for an input signal fully connected to the array (Katumba,
Freiberger, Bienstman, & Dambre, 2017). An intrinsic limitation
of single-mode waveguide-integrated passive optical reservoirs
is loss accumulation for a large number of nodes and long delay
lines. A chip-integrated multimode photonic circuit with a low-
loss optical Y-junction combiner was proposed, simulated, and
applied to a header recognition task (Katumba et al., 2018).
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Fig. 8. A 4 × 4 node array optical reservoir with a swirl connection pattern (Vandoorne et al., 2011).

The concept of a device built instead on a photonic crystal
platform was first proposed for a multiple superimposed oscilla-
tor waveform prediction task (Fiers et al., 2014). Good simulation
results were reported for a reservoir structure made of an array
of resonator cavities for which there is bistability in the optical
power. More recently, a reservoir built from photonic crystal cavi-
ties with multiple waveguide inputs and outputs was designed to
exploit field mixing dynamics and was shown to exhibit memory
up to 6 bits (Laporte, Katumba, Dambre, & Bienstman, 2018).

Another family of reservoirs with photonic nodes is based
on free-space optics principles. A configuration with a diffrac-
tion grating and Fourier imaging was designed with randomly
interconnected microring resonators and applied to an imaging
pattern task (Mesaritakis, Bogris, Kapsalis, & Syvridis, 2015). An-
other reservoir with a diffractive optical element was recently
described on the basis of an 8 × 8 laser array and a spatial
light modulator. Rich interaction dynamics was experimentally
observed, and the potential for scaling up to a complex config-
uration with low power consumption was illustrated (Brunner &
Fischer, 2015; Van der Sande et al., 2017). Further modifications
to this setup, including the use of a laser illumination field and
digital micro-mirror device, led to the realization of an RNN with
hundreds of nonlinear optical nodes applied to a time series
prediction task (Bueno et al., 2018). A reservoir in which node
interaction comes from the scattering of light passing through
a microscopic slide with a simple layer of white paint was also
proposed and applied to logical function operation, with signal
input via a micro-mirror array (Dong, Gigan, Krzakala, & Wainrib,
2018).

5.2. Time-delay systems

5.2.1. Opto-electronic and optical feedback with gain
The most extensively studied implementation of an optical

reservoir computer is a configuration that uses a single physical
node with a time-delayed feedback signal (Appeltant et al., 2011),
as explained in Section 3.1. The input signal is converted into a
staircase waveform by a sample-and-hold procedure. A weight
mask related to the number of virtual nodes in the feedback
loop is applied to each symbol step. The weights of the output
signal are calculated offline during the training procedure. In
this section we describe this class of systems as well as related
designs.

In the first experimental demonstrations (Larger et al., 2012;
Paquot et al., 2012), the feedback loop was optoelectronic. Light
from a continuously emitting laser source is sent to a modulator
for information processing. The optical output reaching a pho-
todiode is amplified and electronically combined with the input

Fig. 9. Time-delay reservoir configuration examples. Blue and gray lines rep-
resent optical and electronic signals, respectively. (a) Opto-electronic feedback
loop. (b) All-optical feedback loop with gain. (c) Passive optical feedback and
opto-electronic node with gain. (d) Feedback into a laser cavity by a partially
reflecting mirror . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

signal to drive the modulator, as shown in a generic form in
Fig. 9(a). Readout is performed either by sampling the feedback
photodiode output or with an optical splitter collecting part of
the light in the loop and a second photodiode. Demonstrations
include generation of the NARMA equation of order 10, equaliza-
tion of a nonlinear channel, and spoken digit recognition. In these
pioneering demonstrations, the signal input rate was in the MHz
range.

A number of related published studies have reported differ-
ent components, design optimization, and the addition of new
functionality. A reservoir in which the input signal is fed by
directly modulating the laser, node nonlinearity is achieved by



112 G. Tanaka, T. Yamane, J.B. Héroux et al. / Neural Networks 115 (2019) 100–123

a birefringent plate, and multiple feedback loops with different
delay times for enhanced connectivity are realized with an FPGA,
was reported (Martinenghi, Rybalko, Jacquot, Chembo, & Larger,
2012). Designs with an all-optical feedback in Fig. 9(b) in which
the electronics in the loop was replaced by a semiconductor
optical amplifier and a fiber coupler (Duport, Schneider, Smerieri,
Haelterman, & Massar, 2012) or a fiber amplifier, semiconductor
saturable absorber, and fiber coupler (Dejonckheere et al., 2014)
have also been demonstrated experimentally.

A critical limiting factor for reservoir prototypes is the impact
of noise on performance. This issue was investigated numerically
and experimentally, and the importance of a preprocessing mask
weight with multiple values, as opposed to binary values, was
demonstrated (Soriano, Ortín, Brunner et al., 2013). It was also
shown that when an optoelectronic loop setup was used for a
reservoir computer, the system could perform learning tasks even
if the feedback was removed to obtain an extreme learning ma-
chine configuration if the response was slower than the masked
input steps to provide some interaction between neighboring
neurons (Ortín et al., 2015). The system without feedback was
found to be capable of performing a cancer type classification task
with genetic microarray data.

A chip-integrated device that combines physical optical nodes
and time memory functions by connecting in series several ring
resonators with a time-encoded input optical signal was also
described (Zhang et al., 2014) and is included here for complete-
ness even though the feedback is not amplified. Performance for
signal classification and chaotic time series prediction tasks was
numerically investigated. In another scheme, a reservoir with a
coherently-driven passive cavity was reported, in which the low
optical loss led to good operation (Vinckier et al., 2015). State-
of-the-art results were obtained numerically and experimentally
for a spoken digit recognition task. A parallel reservoir computer
based on a fiber loop with frequency multiplexing of neurons was
also reported (Akrout et al., 2016), where the realization of non-
linear channel equalization and isolated spoken digit recognition
was simulated.

Another example of added functionality is the simultaneous
computation of three independent tasks in a time-delay optical
system with three so-called virtual reservoirs, as the system
typically has an inherent bandwidth higher than the input signal
rate (Duport, Smerieri, Akrout, Haelterman, & Massar, 2016b).
To avoid electronic preprocessing of the input signal into a step
waveform as an input mask, an implementation of a fully analog
reservoir with time delay was also proposed and only slight
performance degradation compared to a step signal was observed
(Duport, Smerieri, Akrout, Haelterman, & Massar, 2016a). At the
output layer, the signal was split between a readout photodiode
and a modulated portion applying the readout coefficients online.
In another publication, the potential of an optoelectronic feed-
back reservoir computer for high speed processing was clearly
demonstrated in the realization of a setup capable of performing a
million-words-per-second classification task using fast electron-
ics for input and output processing (Larger et al., 2017). Phase
modulators were used in the feedback loop, and the delay be-
tween the virtual nodes corresponded to an input signal rate of
approximately 17 GHz.

An interesting application was shown in Qin, Zhao, Yin, Jin,
and Liu (2017), namely the identification and classification of a
packet header for switching in an optical network application.
The low hardware requirements compared to a traditional neural
network were emphasized. This concept was further extended
to a system with two feedback loops to perform simultaneous
recognition of packet headers for two optical channels (Zhao,
Yin, & Zhu, 2018). An optoelectronic reservoir computer was also
applied to the task of generating a long-range periodic time series

and the emulation of a chaotic system (Antonik, 2018; Antonik,
Haelterman and Massar, 2017; Antonik, Hermans, Haelterman
and Massar, 2017). The underlying concept of this work was to
feed the signal output processed by an FPGA back into the reser-
voir, in addition to the usual feedback signal. Periodic frequency
and random patterns were successfully generated.

Some recently published articles have reported the potential
of novel schemes for online training. A new method based on
gradient descent training with BPTT was recently proposed and
experimentally shown with an optoelectronic feedback loop (Her-
mans, Antonik, Haelterman, & Massar, 2016; Hermans, Dambre
and Bienstman, 2015; Hermans, Soriano, Dambre, Bienstman and
Fischer, 2015). The scheme cannot be strictly labeled as a reser-
voir, because the input weights are optimized to enhance perfor-
mance, but may have a significant impact on the development of
future related systems. Results obtained for the TIMIT phoneme
recognition task were similar to those reported for a fully offline
trained RC with a larger number of nodes. By connecting an FPGA
performing a gradient descent algorithm at the loop output, a
device with a very low symbol error rate was also demonstrated
for a distorted wireless signal recovery task, particularly for a high
signal-to-noise ratio environment (Antonik, Duport et al., 2017).

A multimode polymer waveguide-based design in which cou-
pling and propagation losses are small has recently been pro-
posed (Héroux, Numata, Kanazawa, & Nakano, 2018; Héroux &
Nakano, 2017). The feedback is all-optical and the nodes are opto-
electronic, composed of photodiode, amplifier, and vertical cavity
surface emitting laser (VCSEL) chip arrays, as shown in Fig. 9(c).
Simulations with this reservoir yielded promising results for sig-
nal recovery and nonlinear time series prediction tasks. As the
gain is located in the neurons, there is no fundamental limitation
on the aggregation of a large number of physical nodes in a
future device. Moreover, as the optical path is on the centimeter
scale with low loss and signals can cross each other, there is
added flexibility, compared to a chip-integrated device, in the
implementation of multiple relatively long delay feedbacks on a
solid substrate in a compact format.

5.2.2. Optical feedback in a laser cavity
A second class of time-delayed optical reservoir computers

has been investigated in recent years, in which the nonlinearity
comes not from a discrete element in the loop but from the
nonlinear response of a laser when a delayed signal re-enters
its cavity. Light input and output with the same aperture is
achieved by polarization rotation with a circulator component or
another suitable mechanism. In the first reports (Brunner, Sori-
ano, Mirasso and Fischer, 2013; Hicke et al., 2013), good results
were experimentally obtained with a semiconductor laser for
spoken digit recognition and chaotic time series prediction tasks.
In another study that is related but not strictly categorized as a
reservoir as there was no feedback component, a similar system
based on a nonlinear resonant cavity was used to demonstrate
optical vector–matrix product operations (Brunner, Soriano and
Fischer, 2013).

In an alternative configuration, a semiconductor ring laser
was implemented as the nonlinear node, with the potential for
on-chip integration and simultaneous processing of two tasks
by modes with opposite propagation directions. Numerical stud-
ies have shown good results for chaotic time series prediction
and nonlinear channel equalization tasks (Nguimdo, Verschaffelt,
Danckaert, & der Sande, 2015). Delayed systems are sensitive to
phase change, but in a subsequent study, it was explained that
this problem can be alleviated with a modified readout layer
(Nguimdo, Verschaffelt, Danckaert, & der Sande, 2016).

In another related setup, information was sent into the laser
cavity via phase modulation, and a partially transparent mirror
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split the laser output into a delayed component going back into
the cavity and a transmitted component for readout (Nakayama,
Kanno, & Uchida, 2016), as shown schematically in Fig. 9(d).
The efficiency of a chaotic input mask generated from a sepa-
rate optical cavity subjected to feedback was compared to other
digital and analog masking schemes and numerically studied
for a chaotic time series prediction task. Performance improve-
ment was observed, provided that the mask frequency was near
the relaxation oscillation of the ring cavity laser. It was exper-
imentally confirmed that a chaotic or colored-noise mask gives
better results with a properly selected cut-off frequency (Kuriki,
Nakayama, Takano, & Uchida, 2018). In another study, numerical
simulation of a reservoir in which the input signal was applied to
a tunable Bragg reflector providing external feedback to the laser
cavity was proposed, and the reservoir was applied to a waveform
classification task (Takeda, Nakano, Yamane and Tanaka et al.,
2016).

Another application was described in Qin et al. (2016), where a
delayed optical feedback setup with a polarization circulator was
adopted for optical packet header identification at 10 GB/s. The
optimal feedback parameters were found and a low recognition
error was obtained provided that the signal-to-noise ratio was
above 15 dB. Calculations with a ring laser system for dual-
channel packet header recognition have also been reported (Bao,
Zhao, Yin, & Qin, 2018).

The optimal operation conditions for an all-optical feedback
loop system were experimentally investigated in Bueno, Brun-
ner, Soriano, and Fischer (2017). The effects of detuning of the
frequency between an injection laser and the reservoir laser as
well as the locking of the laser state were studied for a chaotic
time series prediction task. Moreover, very recently a system with
two optical feedback loops was studied numerically for a time
series prediction task with an information processing rate of 1
GB/s (Hou et al., 2018). Performance was improved over a single
loop configuration owing to the rich dynamics.

6. Spintronic RC

Several reservoirs based on spin electronics (spintronics) have
been proposed. Spintronics is an emerging research field of
nanoscale electronics involving both charge and spin of electrons
for developing new electronic devices, such as non-volatile stor-
age (Wolf et al., 2001). Spin systems are potential candidates for
low-power and small-scale reservoir devices. Three types of spin-
based reservoirs with spin oscillations, spin waves, and skyrmions
are summarized.

A reservoir with a spin torque oscillator (STO) was experi-
mentally demonstrated (Torrejon et al., 2017). The spin torque
oscillator was fabricated with a magnetic tunnel junction (MTJ)
element composed of two ferromagnets (the top free layer and
the bottom pinned layer) separated by a thin insulator, as shown
in Fig. 10(a). When a constant DC current is injected into an MTJ,
the spin direction in the free layer rotates owing to the spin
torque that originates from the spin-polarized electron current
generated by the pinned layer. After a transient time, the oscilla-
tion is stabilized at a frequency depending on the magnitude of
the input current. The reservoir uses the nonlinear relationship
between the input current and the oscillation frequency as well
as history-dependent transient motions of the spin in the free
layer. In a spoken digit recognition task, the sound data was
given to the single STO as an input current after a preprocessing
step and the voltage output of the STO was used to train the
readout. It was shown that the digit prediction performance of
the proposed method was better than that in the case without
STO. The possibility of using chaotic dynamics in an STO with
time-delayed feedback for RC has been explored in Williame,

Fig. 10. (a) Schematic illustration of the spin torque oscillator (left) and the
reservoir device structure with a bias current input and a voltage output
(right) (Torrejon et al., 2017). (b) Schematic illustration of a spin-wave-based
reservoir device (Nakane, Tanaka, & Hirose, 2018). Figure reproduced with
permission from IEEE. (c) A possible structure of a skyrmion-based reservoir
device (Prychynenko et al., 2018).

Accioly, and Kim (2017). By adjusting the amplitude and delay
time of the feedback current, good conditions for spin motions
in RC can be specified. Another study numerically investigated
the effect of memory and nonlinearity of STO-based reservoirs
with single and multiple MTJs in a short-memory task and a
parity check task (Furuta et al., 2018). A random binary voltage
was used as an input and the time-varying resistance of the MTJ
device was used as an output. The spin dynamics in the free layer
follows the Landau–Lifshitz–Gilbert (LLG) equation (Lakshmanan,
2011). It was demonstrated that the performance in the two tasks
depends on the duration of the input pulse voltage.

Spatial propagation of spin motions, or spin waves, can also be
used for spintronic reservoir (Nakane et al., 2018). The proposed
reservoir device structure consists of a thin Yttrium iron garnet
(YIG) film between a magneto-electric coupling layer and a con-
ductive substrate, as shown in Fig. 10(b). The input voltage signals
applied at the input electrodes on the top layer cause changes in
the uniaxial magnetic anisotropy constant of the middle garnet
layer due to the magneto-electric effect. This stimulation disturbs
the alignment of spins in the same direction; thus, the phase
difference between neighboring spins is transmitted through a
material as spin waves. The spin motions in a three-dimensional
space were simulated by solving the LLG equation. The spin
waves can show input history-dependent transient motions and
nonlinear interferences (Stancil & Prabhakar, 2009). Spin motions
measured at the output electrodes were used to train a regression
model in the readout. Numerical demonstration showed that
a characteristic of the input pattern can be well estimated by
the spin-wave-based RC system when the electrode positions
and the duration of the spin motions used for computation are
appropriately selected.

Another type of spin-based reservoir device could be realized
using a magnetic skyrmion, which is a nano-scaled magnetic
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Fig. 11. (a) A tensegrity structure-based reservoir (Caluwaerts et al., 2014). Figure reproduced with permission from NASA Ames Research Center. (b) A reservoir
based on a soft octopus robot (Nakajima, Hauser, Li, & Pfeifer, 2015). Figure reproduced from (Nakajima et al., 2015), licensed under CC-BY 4.0.

vortex in a magnetic material, as shown in Fig. 10(c) (Prychy-
nenko et al., 2018). It is known that a current-induced transfer of
a skyrmion can show nonlinear dynamics and history-dependent
spin responses, which are favorable for a reservoir. In the pro-
posed device, the input is an electron current at the source and
the output is the voltage between the source and the drain.
By injection of a constant current, a skyrmion initially present
between the source and the drain moves toward the drain and
is then annihilated at the drain. The output voltage changes with
the distance between the skyrmion position and the drain, in
response to the input current. Interacting multiple skyrmions can
generate more complex behavior, and skyrmion fabrics are poten-
tially attractive options for implementing a reservoir (Bourianoff,
Pinna, Sitte, & Everschor-Sitte, 2018).

7. Mechanical RC

Mechanical systems, such as soft and compliant robots, are
possible options for physical reservoirs. Soft and compliant robots
with flexible bodies are difficult to control due to their complex
body dynamics compared with rigid robots with stiff bodies.
However, such complex behavior can be favorably leveraged to
generate rich nonlinear dynamics required for RC. The idea of
outsourcing computation to a physical body is known as mor-
phological computing in the field of robotics (Pfeifer & Bongard,
2006).

Soft and compliant robots are typically composed of
deformable bodies. A primitive model available as a physical
reservoir is a mass–spring network, which can be regarded as
coupled mechanical oscillators as described in Section 3.3. A
mass–spring network reservoir where mass points are randomly
connected to neighboring mass points via nonlinear springs was
proposed in Hauser, Ijspeert, Füchslin, and Maass (2011). The
motion of each nonlinear spring can be described as follows:
dx1
dt

= x2, (10)

dx2
dt

= −p(x1) − q(x2) + u, (11)

where t represents continuous time, x1 is the displacement of the
spring from its rest length, x2 is the velocity of the spring motion,
p and q are nonlinear functions representing the properties of the
spring, and u is the sum of external forces acting on the spring.
The input signal is given to some randomly chosen nodes as the
external force, inducing nonlinear responses of the mass–spring
network. The output signal is obtained as a linear combination
of the actual lengths of the springs. Simulations demonstrated
the computing power of RC based on the mass–spring network

in time series approximation and robot arm tasks. By adding
feedback loops from the output, the reservoir of a mass–spring
network can be applied to pattern generation tasks, which are
useful for producing locomotion of robots and biological organ-
isms (Hauser et al., 2012). In another extensive study, a reservoir
model of a mass–spring–damper network was numerically inves-
tigated to clarify the link between the property of the mechanical
reservoir and its computational ability in locomotion learning
(Urbain, Degrave, Carette, Dambre, & Wyffels, 2017).

By replacing point masses in a mass–spring network by stiff
bars, a tensegrity-like structure is obtained. Tensegrity (tension
integrity) indicates a structural principle that uses isolated com-
pression elements loaded in a continuous network of tension
elements, leading to a physical structure combining strength and
flexibility. The compliant body of a tensegrity robot was ex-
ploited as a physical reservoir and successfully applied to sta-
ble gait pattern generation and terrain pattern classification in
numerical experiments (Caluwaerts & Schrauwen, 2011). More-
over, how to effectively implement control in physical reservoirs
with tensegrity structure was investigated by considering various
learning rules including a reward-modulated Hebbian learning
rule (Burms, Caluwaerts, & Dambre, 2015; Caluwaerts, D’Haene,
Verstraeten, & Schrauwen, 2013). A physical prototype of a reser-
voir compliant tensegrity robot (ReCTeR, Fig. 11(a)) was devel-
oped for creating planetary rovers (Caluwaerts et al., 2014). The
highly compliant body of ReCTeR consists of 24 passive spring-
cable assemblies and 6 actuated spring-cable assemblies connect-
ing non-parallel struts. The reservoir states obtained from the
sensors attached to the struts were used to control the robot in
order to approximate desired signals under various control strate-
gies. In another study, better conditions for a tensegrity-based
reservoir computer were explored (Fujita, Yonekura, Nishikawa,
Niiyama, & Kuniyoshi, 2018).

Another type of physical body is a muscular hydrostat system
inspired by octopus limbs, as shown in Fig. 11(b) (Nakajima et al.,
2013). This is an extreme embodiment of a soft robotic arm with-
out a skeleton, involving virtually unlimited degrees of freedom.
Even though the hydrodynamic effect yields highly complex and
time-varying dynamics of the soft robotic arm, its motion was
successfully learned by an ESN-based controller in a simulation
study (Kuwabara et al., 2012) and in an experimental study using
a real robot made of silicone rubber (Li, Nakajima, Cianchetti,
Laschi, & Pfeifer, 2012). These studies suggested that the complex
dynamics of the soft body can be used for RC. The computational
capability of the soft body was demonstrated in nonlinear system
approximations and body dynamics control without an external
controller (Nakajima et al., 2015; Nakajima, Li, Hauser, & Pfeifer,
2014).
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Fig. 12. A possibility that some brain regions work as reservoirs.

Other attempts to control real robots and generate different
robot behaviors, based on the concept of RC, can be found in
studies on a pneumatically driven soft robot arm (Eder, Hisch, &
Hauser, 2017), a spine-driven quadruped robot (Zhao, Nakajima,
Sumioka, Hauser, & Pfeifer, 2013), a dog-like quadruped robot
(Wyffels et al., 2010), and a much less compliant quadrupedal
robot (Degrave, Caluwaerts, Dambre, & Wyffels, 2015).

8. Biological RC

The mechanism behind the computing ability of the brain is
one of the mysteries in neuroscience. Considerable efforts have
been made to explain the brain computing function using an
analogy to computational models in ANNs and machine learning.
In attempts to understand the relationship between temporal
information processing in the brain and RC, researchers have
speculated about which part of the brain can be regarded as a
reservoir or a readout as well as about how subnetworks of the
brain work in the RC framework. On the other hand, physical RC
based on in vitro biological components has been proposed to
investigate the computational capability of biological systems in
laboratory experiments. We review recent studies on RC hypothe-
ses in brain regions (Section 8.1) and RC using in vitro cultured
cells (Section 8.2).

8.1. Brain regions

A specific case of RC principle can be found in a series of
neurocognitive studies on cortico-striatal models for context-
dependent sequential information processing (Dominey, 1995,
2013; Dominey et al., 1995). A more general computational
framework was later proposed as the LSM, motivated by the
real-time information processing of time-varying input streams
in cortical microcircuits (Maass & Markram, 2004; Maass et al.,
2002) as described in Section 2.1. Subsequently, researchers have
debated on whether reservoir computation is actually conducted
in the brain and which brain regions can be interpreted to use
this computational framework (Fig. 12). It is suggested that RC is
one of the general frameworks for state-dependent computation
in cortical networks, emerging from the interaction between
the incoming stimulation and the internal dynamics in RNNs
(Buonomano & Maass, 2009). Some researchers have hypothe-
sized that the spatiotemporal information processing in cortical
and subcortical networks can be interpreted as RC through neuro-
physiological experiments and/or computational model analyses,
as described below.

First, we summarize RC-related studies on cortical regions
including prefrontal and visual areas. The prefrontal cortex is
a front part of the cerebral cortex, which is associated with
the planning of cognitive behavior, personality expression, deci-
sion making, and moderating social behavior (Fuster, 2015). An
early RC-type model of the cortico-striatal system was proposed
to understand the mechanism of context-dependent oculomo-
tor (eye movement) behavior (Dominey, 1995; Dominey et al.,

1995). The model consists of the prefrontal cortex neurons with
fixed recurrent connections (‘‘reservoir’’) and modifiable con-
nections from the prefrontal cortex neurons to neurons in the
striatum (‘‘readout’’). The neural activity in the cortical network,
responding to sequential visual inputs, is associated with the
outputs that represent the corresponding oculomotor movements
through reinforcement learning. An extended work combined the
cortico-striatal model (called a temporal recurrent network) for
learning serial and temporal structure of sequential inputs with
an additional abstract recurrent network which has a short term
memory for encoding an abstract structure (or a hidden rule) of
sequential inputs (Dominey & Ramus, 2000). The cortico-striatal
model was further combined with neurophysiological models of
language processing to learn grammatical constructions in sen-
tence processing (Dominey & Inui, 2009; Dominey, Inui, & Hoen,
2009) and with an RC scheme to improve the performance of the
learning algorithm (Hinaut & Dominey, 2013). A detailed history
of the cortico-striatal model and its developments is summarized
in a review paper (Dominey, 2013). On the other hand, the RC
properties in monkey prefrontal cortex were investigated with
both model simulation and neurophysiological experiments to
explore how contexts of sensory inputs are represented in cortical
dynamics (Enel, Procyk, Quilodran, & Dominey, 2016). A reservoir
of model neurons was compared with the monkey prefrontal cor-
tex in terms of their representational and dynamical properties
during a complex cognitive task. Then, it was shown that the
reservoir of randomly connected RNNs can obtain a dynamic form
of mixed selectivity (Rigotti et al., 2013) and thus perform a com-
plex context-dependent cognitive task as in cortical neurons. This
result suggests that RC can be a model of cognitive processing
in local generic prefrontal cortical networks. A discussion on the
computational role of the thalamus (Dehghani & Wimmer, 2018)
also highlights the close relationship between the computational
properties of the prefrontal cortex and the main features of RC.
It is suggested that the context-dependent computing in the
prefrontal cortex relies on the task-dependent modulation of the
cortical reservoir by thalamic functions.

The visual cortex is a part of the cerebral cortex that processes
visual information. The visual cortex located in the occipital lobe
is divided into the primary visual cortex (early visual areas) and
visual association cortex (higher-order visual areas) (Grill-Spector
& Malach, 2004). An experimental study showed evidence that
early visual areas have fading memory properties demanded by
LSMs (Nikolić, Häusler, Singer, & Maass, 2009). In this experiment,
in vivo data of neuronal spiking activities in cat primary visual
cortex for different visual stimulus were obtained as a reser-
voir state and they were classified by a simple linear classifier
emulating linear integrate-and-fire readout neurons. The new
perspective that the primary visual cortex can perform time-
dependent computation for sequential inputs based on memory
mechanisms is in contrast to the conventional one that it executes
frame-by-frame computation based on memory-less hierarchi-
cally organized feedforward architectures (Serre et al., 2005). The
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limitation of the conventional viewpoint is that the frame-by-
frame computation cannot respond to changes in the context and
environment behind visual inputs.

Second, we move on to studies on RC in subcortical struc-
tures including the cerebellum and the basal ganglia. In terms
of learning styles, the cerebellum and the basal ganglia can be
characterized by supervised learning and reinforcement learn-
ing, respectively, which are complementary to each other (Doya,
2000). The cerebellum is mainly involved in the coordination of
body movement and is responsible for the learning of motor and
non-motor skills (Rapoport, van Reekum, & Mayberg, 2000). The
classical hypothesis is that the cerebellum is a learning device,
such as a simple perceptron (Albus, 1971; Marr, 1969). Another
viewpoint from a model-based study is that the functional role of
cerebellar circuits is interpreted as an LSM (Yamazaki & Tanaka,
2007). In the proposed model, the granular layer constructed
with a recurrent inhibitory circuit is regarded as a reservoir that
receives inputs through mossy fibers, and the Purkinje cells are
regarded as readout neurons. Numerical studies showed that the
cerebellar circuit model successfully learned Boolean functions.
This LSM hypothesis highlights an indirect functional pathway
from the precerebellar nucleus to the cerebellar nucleus through
the LSM model consisting of the granular layer and the Purkinje
cells, in addition to the direct pathway from the precerebellar
nucleus to the cerebellar nucleus, which is regarded as a simple
perceptron as in the classical hypothesis. Further exploration in
this direction has made it possible to incorporate recent anatom-
ical and physiological findings on cerebellar microcircuits into
computational models (D’Angelo et al., 2016).

The striatum is the primary input module of the basal gan-
glia and a critical component of the reward system. It plays
a significant role not only in motor control and planning but
also in reward-modulated decision making. However, it is not
obvious how the environmental states are represented in the
reinforcement learning of the basal ganglia. Based on the hypoth-
esis that the striatum responds to diverse inputs from different
cortical sources and plays a computational role for discrimi-
nating inputs in reinforcement learning-based decision making,
the LSM properties of a striatal microcircuit were studied with
computational models (Toledo-Suárez & Morrison, 2014). It was
demonstrated that the separation and approximation properties
required for the LSM were generated using a model network of
medium spiny neurons and fast spiking interneurons coupled via
inhibitory synapses in a supervised learning task.

Third, we focus on the discussion about the relationship be-
tween RC and working memory. Working memory is a cognitive
process that temporarily stores and manages information for
carrying out complex cognitive tasks (Baddeley, 2003; Daneman
& Carpenter, 1980) and is believed to be involved in multiple
cortical and subcortical regions (Dutta, Shah, Silvanto, & Soto,
2014; Eriksson, Vogel, Lansner, Bergström, & Nyberg, 2015). How-
ever, elucidating the mechanism for task-dependent switching of
the role of neural circuitry remains an unresolved issue. Mul-
tiple working memory models based on RC and their variants
have been proposed, including the working memory model with
generic cortical microcircuit models with feedback (Maass, Joshi,
& Sontag, 2007), the ESN-based working memory model (Pas-
canu & Jaeger, 2011), the reservoir model for storing different
time constants of memory traces for reward expectation in re-
inforcement learning (Bernacchia, Seo, Lee, & Wang, 2011), the
autonomously emerged working memory model through reward-
modulated online learning rule that enables the same neural
circuit to solve different tasks (Hoerzer, Legenstein, & Maass,
2012), and the comparative analysis of three working mem-
ory models including the RC-based one (Barak, Sussillo, Romo,
Tsodyks, & Abbott, 2013).

Fig. 13. A reservoir of in-vitro cell cultures.

As described above, the biological plausibility of RC in the
brain regions has been examined in many studies, but it re-
quires further investigation. To address this issue, the RC models
should be evaluated from multiple aspects of structural, dynam-
ical, and functional properties of cognitive systems. For instance,
an investigation focused on the robustness and resilience of reser-
voir models against structural perturbations in cortical circuits
(Vincent-Lamarre, Lajoie, & Thivierge, 2016). Examination of RC
from the neuroscience viewpoint is expected to be useful for its
applications in brain machine interfacing, disease care, and robot
control.

8.2. in-vitro cultured cells

A model system to gain insights into the spatiotemporal in-
formation processing in vivo is cultured biological components in
vitro.

RC with biological neurons has been demonstrated to inves-
tigate the computational function of an assembly of biological
components. Microelectrode arrays (MEAs) are widely used to
electrically stimulate neuronal cultures and measure their re-
sponses as shown in Fig. 13 (Obien, Deligkaris, Bullmann, Bakkum,
& Frey, 2015). An RC system that combines a reservoir based on
cultured cells on MEAs and a computer-aided readout is regarded
as a hybrid biological-silicon computer. An early study demon-
strated an LSM using in vitro rat cortical neurons plated on MEAs
Hafizovic et al. (2007). Two stimulation patterns with rectangular
voltage pulses were given to the electrodes for generating the
action potentials of the cultured neurons. The spatiotemporal
patterns of spike events recorded with MEAs were transformed
into a time-continuous reservoir state by a leaky integrator. In
the readout on an external computer, a support vector machine
(SVM) was employed for classification of the stimulation patterns.
We note that this readout is not a linear classifier and thus the
effectiveness of this reservoir remains undetermined. This work
was followed by similar experiments. In one such study, the
classification ability was investigated with a larger number of
stimulation patterns and SVM classifiers, and the tradeoff be-
tween the number of patterns and the separability was evaluated
(Ortman, Venayagamoorthy, & Potter, 2011). In Dockendorf, Park,
He, Príncipe, and DeMarse (2009), two types of electrical stimu-
lation protocols were used. One is the low-frequency stimulation
inducing bursts and the other is the high-frequency stimulation
suppressing the burst response. Living cortical networks react
to these stimulus patterns differently, generating distinct spa-
tiotemporal spike trains. The goal is to reconstruct the input
spatial stimulation pattern from the temporal structures of the
spike trains. The results show that the input reconstruction is
successful if an appropriate window size is chosen, suggesting
the separation property of the biological cell networks. In another
study, input coding and output decoding methods for LSMs with
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cultured neurons were considered (George et al., 2014). The pro-
posed input coding method enabled to generate a large number
of input patterns from stimulations through a small number of
electrodes. The spatiotemporal spike patterns in the reservoir of
cultured cells were transformed into spatial patterns such that a
linear classifier works well in the readout.

Instead of electrical stimuli, an optogenetic approach for con-
trolling neuronal activities more precisely has been used in RC
experiments. Optical stimuli using random dot patterns were pro-
jected onto rat cortical neurons cultured on MEAs as a reservoir
(Dranias, Ju, Rajaram, & VanDongen, 2013). Through experiments
on short-term memory for optical inputs, it was shown that the
results closely matched those of corresponding in vivo experi-
ments in Nikolić et al. (2009). This suggests that the mechanism
of state-dependent information processing in vivo can be studied
using cultured neuronal networks. Based on a similar experimen-
tal setting, more complex tasks in the time domain were tested
(Ju, Dranias, Banumurthy, & VanDongen, 2015). In classification
tasks of spike template patterns and musical styles, high classi-
fication performance was achieved if appropriate MEA channels
were selected before the readout process and the spatiotemporal
memory processes lasted for several seconds.

In addition to the input separability, the control of biological
reservoirs has received considerable attention in terms of robot
control. In this case, the reservoir receives feedback inputs from
the output. The FORCE learning (Sussillo & Abbott, 2009) was
used for a closed loop reservoir with cultured neurons to control
the output at a target constant value (Takahashi, Yasuda, Yada, &
Kanzaki, 2016). This technique was adopted to control a mobile
robot, by which the robot can avoid obstacles and traverse a
maze. An application of the concept of RC to robot control is
discussed in Aaser et al. (2017).

Finally, reservoirs based on other living organisms are dis-
cussed. A reservoir with bacterium Escherichia coli (E. coli) reacts
to different chemical inputs and generate complex temporal pat-
terns (Jones, Stekel, Rowe, & Fernando, 2007). A population of
E. coli was placed in a flask and exposed to sequential inputs that
indicate time-varying combinatorial conditions of chemical envi-
ronments and temperatures. Then, samples of E. coli were moved
to a microarray to measure the mRNA and protein concentrations,
representing the state of the gene regulatory network. Perceptron
learning was used in the readout to classify the stimuli into
the appropriate classes. Numerical simulations corresponding to
the above experimental design confirmed that the proposed RC
was partially successful in an XOR problem and showed good
performance in a separation problem. This study motivated a
corresponding experiment in a wet lab. In Didovyk et al. (2014),
genetically engineered bacterial cell cultures were used for real-
izing a variety of simple classifiers separating different chemical
inputs, which are aggregated to form a more complex classifier.
This conceptual design of machine learning in synthetic biology
can be extended to a reservoir computer.

9. Others

There are many other candidates for physical reservoirs. At-
tempts to exploit novel physical reservoirs for RC can contribute
to exploration of unconventional computing methods (Hadaeghi
et al., 2017). We introduce two types of physical reservoirs that
are not categorized into the aforementioned types.

The first one is RC realized with nano-scale materials and sub-
strates that exhibit stimulation-dependent changes. An example
is the atomic switch network introduced in Section 4.4.2. Another
proposal is a nano-scale reservoir with quantum dots and chemi-
cal compounds that change their absorption spectrum depending
on the pH or redox potential in their environment (Obst et al.,

2013). An input signal is given as a change in chemical proper-
ties of the compounds, which affect the signal transfer between
quantum dots randomly dispersed in a space, encoded as an
emission pattern. Simulations confirmed the potential computa-
tional performance in an image recognition task. In another study,
reservoirs were configured with physical substrates consisting of
carbon nanotubes and polymer mixtures (Dale, Miller, Stepney
and Trefzer, 2016; Dale, Stepney, Miller and Trefzer, 2016). A
computer-aided evolutionary algorithm determines the control
voltage signals and the locations of input/output electrodes for
finding an optimal configuration of the reservoir. Experimental
results showed that the material-based RC with the optimized
reservoir configuration was successful in time series prediction
benchmark tasks.

Another recently proposed idea is to use complex quantum
dynamics for RC (Fujii & Nakajima, 2017). A quantum system con-
sists of multiple qubits (or quantum bit, indicating the minimum
unit of information in quantum computing). For N qubits, there
are 2N basis states for a pure quantum state. In quantum RC, each
individual node of a quantum reservoir is defined by the system’s
basis states, not by qubits; therefore, a large number of hidden
nodes can be implicitly implemented behind true nodes that are
monitored by ensemble measurements. In response to an input
signal injected into the first qubit, the quantum system tempo-
rally evolves under a Hamiltonian. Then, the states of the qubits
obtained by ensemble average measurements are transformed
with time multiplexing into a set of signals that are linearly
combined to yield an output signal in the readout. High com-
putational performance of the quantum RC was demonstrated in
benchmark tasks. In a subsequent study (Nakajima, Fujii, Negoro,
Mitarai, & Kitagawa, 2018), spatial multiplexing was proposed to
enhance the computational power of quantum RC by constructing
a system of multiple decoupled quantum reservoirs. Physical
implementation of a quantum reservoir system is a challenge for
the future.

10. Conclusion and outlook

This review has summarized recent trends in RC, with special
focus on physical RC. Physical reservoirs have been categorized
based on the type of dynamical system (Section 3) and phys-
ical phenomenon (Sections 4–9). Most physical reservoirs are
designed and configured to satisfy multiple requirements, such
as high-dimensionality, nonlinearity, input history-dependent re-
sponse, fading memory property (echo state property), and/or
separation property (Section 2.2). However, dynamical behavior
produced by different types of physical reservoirs exhibits high
diversity in terms of the degree of nonlinearity, transient re-
sponse time, signal transmission speed, and spatial dimension.
This diversity makes physical reservoirs appropriate for various
tasks and data.

Physical reservoirs are classified into several types according
to the architecture, including network-type reservoir, single-node
reservoir with time-delayed feedback, and excitable continuous
medium reservoir. They are characterized as follows:

• Network-type reservoirs consist of interacting nonlinear el-
ements, such as artificial neurons (Section 2.1), oscillators
(Section 3.3), standard circuit elements (Sections 4.2 and
4.3), memristive elements (Section 4.4), optical nodes (Sec-
tion 5.1), springs (Section 7), biological cells (Section 8.2).
They can be simply scaled up by increasing the number
of network elements for higher dimensionality. However,
realization of a large-scale reservoir requires sophisticated
technology to implement massive recurrent interconnec-
tions.
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• Single nonlinear node reservoirs with time-delayed feed-
back generate input-dependent patterns in a high-
dimensional space using virtual nodes on a delay loop (Sec-
tion 3.1). Such reservoirs have been intensively studied
for electronic RC (Sections 4.1 and 4.2) and photonic RC
(Section 5.2). These reservoirs can avoid the problem of mas-
sive interconnections and thus are more hardware friendly.
However, designing and implementing an appropriate de-
layed feedback loop is not a straightforward task.

• Excitable continuous medium reservoirs use propagation of
waves triggered by stimulation inputs. Propagation phe-
nomena are widely observed in fluids (Section 2.2), cellular
automata (Section 3.2), magnetic materials (Section 6), and
elastic media (Section 7). They have the potential to realize
extremely efficient physical RC by harnessing rich phys-
ical properties of waves, such as interference, resonance,
and synchronization (Katayama et al., 2016). However, their
computational power has not been fully understood thus far.

There are general issues to be addressed in physical RC. First,
appropriate preprocessing is necessary for maximizing the com-
putational power of each physical RC system. In fact, some studies
have empirically demonstrated that adequate information trans-
formation of input data is necessary for satisfactory performance.
In addition, temporal and spatial scaling of input data critically
affects the computational performance as the dynamic range is
limited in physical reservoirs. Second, each physical reservoir
needs to be optimized by the selection of the best-suited material
or substrate as well as the tuning of hyper-parameters, such
as the shape and size of the reservoir. Mathematical modeling
and analysis of a physical reservoir, under physical constraints
and practical conditions, are useful for determining the reservoir
settings systematically. It is also practically important to ensure
scalability in a single reservoir as well as in combined multiple
reservoirs. Third, a training algorithm in the readout should be
suitably chosen to be compatible with the physical property of
RC. Even if a physical reservoir has high signal processing speed,
the total computation speed of the entire physical RC system for
real-time information processing is limited by the training speed
in the readout. One possible solution to this problem is to use a
physically realized readout instead of a software-based one.

Moreover, evaluation of computational performance, process-
ing speed, memory, power efficiency, and scalability of physi-
cal RC systems is necessary for comparison with other relevant
methods including current digital computers. The computational
performance is evaluated with a task-dependent measure, such
as classification accuracy in classification tasks and prediction
error in prediction tasks. The measures called kernel quality and
generalization ability (Büsing, Schrauwen, & Legenstein, 2010;
Legenstein & Maass, 2007) are also useful for evaluating the effec-
tiveness of a physical reservoir. The processing speed is measured
by how much information is processed in a unit time for each
task. For instance, in speech recognition tasks, the number of
words processed per second under a very low word error rate
condition is a measure for processing speed (Larger et al., 2017).
The memory in reservoirs means the length of time during which
the past input information is kept in the reservoir dynamics.
The memory capacity is a standard measure for evaluating the
memory performance (Jaeger, 2002a). The power efficiency is
evaluated by power consumption required for performing a spe-
cific task. For instance, in a study on photonic reservoir (Vinckier
et al., 2015), the total optical power injected into a passive optical
cavity reservoir is considered for assessing its power efficiency
aside from power consumption for the other hardware compo-
nents in preprocessing steps and the readout. The scalability of
physical reservoirs is determined by how much the reservoir

components can be miniaturized and whether they can be ef-
ficiently implemented on a small-scale chip. The evaluation of
emerging RC technologies from these different aspects would
highlight the advantage and disadvantage of each reservoir.

Some physical RC systems are suited for realizing next-
generation machine learning hardware devices and chips with
low power consumption. Such RC hardware is potentially capable
of high-speed online computation for dynamic data, in contrast
to relatively expensive computation in deep learning hardware
for static data. This type of hardware is in great demand as
edge computing devices for reducing the communication load
in the IoT society, where a massive amount of data is produced
and transmitted. Developments of device technology and findings
of new materials for this purpose are highly expected. Other
physical RC systems are useful for exploring the applicability
of natural phenomena to information processing under realistic
constraints in biology, chemistry, physics, and engineering. In
particular, studies on biological reservoirs are expected to pro-
vide new insights into the mechanism of real-time information
processing in a variety of brain regions (Section 8.1).

Physical RC still remains in an early stage of development.
It seems premature to compare different physical RC technolo-
gies in terms of performance, speed, memory, power efficiency,
and scalability, because these characteristics highly depend on
the implementation method. It is an ongoing challenge to ex-
plore efficient implementation methods for each type of reservoir.
For full-scale development of physical RC, further investigation
is required from various aspects, such as performance evalua-
tions in practical applications, developments of implementation
technology, and theoretical understanding of dynamics and com-
putational function. It is intriguing to exploit novel physical phe-
nomena for RC and to combine physical RC with other machine
learning algorithms/hardware. We expect this review to facilitate
future interdisciplinary research on physical RC.
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