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Which Model to Use for Cortical Spiking Neurons?
Eugene M. Izhikevich

Abstract—We discuss the biological plausibility and computa-
tional efficiency of some of the most useful models of spiking and
bursting neurons. We compare their applicability to large-scale
simulations of cortical neural networks.

Index Terms—Chaos, Hodgkin–Huxley, pulse-coupled
neural network (PCNN), quadratic integrate-and-fire (I&F),
spike-timing.

I. INTRODUCTION

DURING last few years we have witnessed a shift of the em-
phasis in the artificial neural network community toward

spiking neural networks. Motivated by biological discoveries,
many studies (see this volume) consider pulse-coupled neural
networks with spike-timing as an essential component in infor-
mation processing by the brain.

In any study of network dynamics, there are two crucial is-
sues which are: 1) what model describes spiking dynamics of
each neuron and 2) how the neurons are connected. Inappro-
priate choice of the spiking model or the connectivity may lead
to results having nothing to do with the information processing
by the brain. In this paper, we consider the first issue, i.e., we
compare and contrast various models of spiking neurons.

In Section II and Fig. 1, we review important neuro-compu-
tational features of real neurons and their contribution to tem-
poral coding and spike-timing information processing. In Sec-
tion III, we consider various models of spiking neurons and rank
them according to: 1) the number of neuro-computational fea-
tures they can reproduce; and 2) their implementation efficiency,
i.e., the number of floating-point operations (addition, multipli-
cation, etc.) needed to simulate the model during a 1 ms time
span. The results of our comparison are summarized in Fig. 2.
We compare the utility of the models to large-scale simulations
of cortical networks in Section IV.

II. NEURO-COMPUTATIONAL FEATURES

In Fig. 1, we review 20 of the most prominent features of bi-
ological spiking neurons. The goal of this section is to illustrate
the richness and complexity of spiking behavior of individual
neurons in response to simple pulses of dc current. What hap-
pens when only tens (let alone billions) of such neurons are cou-
pled together is beyond our comprehension. Using some of the
models discussed in Section III, the reader can simulate thou-
sands of cortical neurons in real time with 1 ms resolution.
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A. Tonic Spiking

Most neurons are excitable, that is, they are quiescent but can
fire spikes when stimulated. To test this property, neurophysiol-
ogists inject pulses of dc current via an electrode attached to the
neuron and record its membrane potential. The input current and
theneuronal responseareusuallyplottedonebeneath theother, as
inFig.1(a).Whiletheinputison,theneuroncontinuestofireatrain
of spikes. This kind of behavior, called tonic spiking, can be ob-
served in the three types of cortical neurons: regular spiking (RS)
excitatory neurons, low-threshold spiking (LTS), and fast spiking
(FS)inhibitoryneurons[1],[6].Continuousfiringofsuchneurons
indicate that there is a persistent input.

B. Phasic Spiking

A neuron may fire only a single spike at the onset of the input,
as in Fig. 1(b), and remain quiescent afterwards. Such a response
is called phasic spiking, and it is useful for detection of the be-
ginning of stimulation.

C. Tonic Bursting

Some neurons, such as the chattering neurons in cat neocortex
[7], fire periodic bursts of spikes when stimulated, as in Fig. 1(c).
The interburst (i.e., between bursts) frequency may be as high
as 50 Hz, and it is believed that such neurons contribute to the
gamma-frequency oscillations in the brain.

D. Phasic Bursting

Similarly to the phasic spikers, some neurons are phasic
bursters, as in Fig. 1(d). Such neurons report the beginning of
the stimulation by transmitting a burst.

There are three major hypothesis on the importance of bursts
in the brain which are: 1) bursts are needed to overcome the
synaptic transmission failure and reduce neuronal noise [20];
2) Bursts can transmit saliency of the input, because the effect
of a burst on the postsynaptic neuron is stronger than the ef-
fect of a single spike; and 3) bursts can be used for selective
communication between neurons [14], where the interspike fre-
quency within the bursts encodes the channel of communica-
tion. A good model of a cortical neuronal network cannot ne-
glect bursting neurons.

E. Mixed Model (Bursting Then Spiking)

Intrinsically bursting (IB) excitatory neurons in mammalian
neocortex [1] can exhibit a mixed type of spiking activity de-
picted in Fig. 1(e). They fire a phasic burst at the onset of stim-
ulation and then switch to the tonic spiking mode. It is not clear
what kind of computation such a neuron can do in addition to
detecting the onset and reporting the extent of stimulation.
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Fig. 1. Summary of the neuro-computational properties of biological spiking neurons. Shown are simulations of the same model (1) and (2), with different choices
of parameters. Each horizontal bar denotes a 20-ms time interval. The MATLAB file generating the figure and containing all the parameters, as well as interactive
matlab tutorial program can be downloaded from the author’s website. This figure is reproduced with permission from www.izhikevich.com. (Electronic version
of the figure and reproduction permissions are freely available at www.izhikevich.com).

F. Spike Frequency Adaptation

The most common type of excitatory neuron in mammalian
neocortex, namely the regular spiking (RS) cell, fires tonic
spikes with decreasing frequency, as in Fig. 1(f). That is, the
frequency is relatively high at the onset of stimulation, and then
it adapts. Low-threshold spiking (LTS) inhibitory neurons also
have this property. The interspike frequency of such cells may
encode the time elapsed since the onset of the input.

G. Class 1 Excitability

The frequency of tonic spiking of neocortical RS excitatory
neurons depends on the strength of the input, and it may span

the range from 2 Hz to 200 Hz, or even greater. The ability
to fire low-frequency spikes when the input is weak (but su-
perthreshold) is called Class 1 excitability [8], [17], [22]. Class
1 excitable neurons can encode the strength of the input into
their firing rate, as in Fig. 1(g).

H. Class 2 Excitability

Some neurons cannot fire low-frequency spike trains. That is,
they are either quiescent or fire a train of spikes with a certain
relatively large frequency, say 40 Hz, as in Fig. 1(h). Such neu-
rons are called Class 2 excitable [8], [17], [22]. Their firing rate
is a poor predictor of the strength of stimulation.
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I. Spike Latency

Most cortical neurons fire spikes with a delay that depends
on the strength of the input signal. For a relatively weak but
superthreshold input, the delay, also called spike latency, can be
quite large, as in Fig. 1(i). The RS cells in mammalian cortex
can have latencies of tens of ms. Such latencies provide a spike-
timing mechanism to encode the strength of the input.

J. Subthreshold Oscillations

Practically every brain structure has neurons capable of ex-
hibiting oscillatory potentials, as in Fig. 1(j). The frequency of
such oscillations play an important role and such neurons act as
bandpass filters, as we discuss next.

K. Frequency Preference and Resonance

Due to the resonance phenomenon, neurons having oscilla-
tory potentials can respond selectively to the inputs having fre-
quency content similar to the frequency of subthreshold oscilla-
tions. Such neurons can implement frequency-modulated (FM)
interactions and multiplexing of signals [14], [16]. In Fig. 1(k),
we stimulate such a neuron with two doublets (pairs of spikes)
having different interspike frequencies. The neuron responds
only to the doublet whose frequency resonates with the fre-
quency of subthreshold oscillations. Such neurons are called
resonators.

L. Integration and Coincidence Detection

Neurons without oscillatory potentials act as integrators.
They prefer high-frequency input; the higher the frequency
the more likely they fire, as in Fig. 1. This can be useful for
detecting coincident or nearly coincident spikes.

M. Rebound Spike

When a neuron receives and then is released from an in-
hibitory input, it may fire a post-inhibitory (rebound) spike, as
in Fig. 1(m). This phenomenon is related to the anodal break
excitation in excitable membranes. Many spiking neurons can
fire in response to brief inhibitory inputs thereby blurring the
difference between excitation and inhibition.

N. Rebound Burst

Some neurons, including the thalamo-cortical cells, may fire
post-inhibitory bursts, as in Fig. 1(n). It is believed that such
bursts contribute to the sleep oscillations in the thalamo-cortical
system.

O. Threshold Variability

A common misconception in the artificial neural network
community is the belief that spiking neurons have a fixed
voltage threshold. It is well-known that biological neurons have
a variable threshold that depends on the prior activity of the
neurons. In Fig. 1(o), we first stimulate a neuron with a brief
excitatory pulse of current that produces 10 mV depolarization.
The neuron does not fire, hence, the input is subthreshold.
Then, we apply a brief inhibitory input and then exactly the
same “subthreshold” pulse of current. The neuron fires the
second time because its “threshold” was lowered by the pre-

ceding inhibitory input. Hence, the same 10-mV depolarization
can be subthreshold or superthreshold depending on the prior
activity. Interestingly, a preceding excitatory pulse might raise
the threshold and make the neuron less excitable.

P. Bistability of Resting and Spiking States

Some neurons can exhibit two stable modes of operation:
resting and tonic spiking (or even bursting). An excitatory or
inhibitory pulse can switch between the modes, as in Fig. 1(p),
thereby creating an interesting possibility for bistability and
short-term memory. Notice that to switch from the tonic spiking
to resting mode, the input must arrive at an appropriate phase of
oscillation, thereby emphasizing the importance of spike-timing
in such information processing.

Q. Depolarizing After-Potentials

After firing a spike, the membrane potential of a neuron may
exhibit a prolonged after-hyperpolarization (AHP) as, e.g., in
Fig. 1(b), I or M, or a prolonged depolarized after-potential
(DAP), as in Fig. 1(q). Such DAPs can appear because of den-
dritic influence, because of a high-threshold inward currents ac-
tivated during the spike, or because of an interplay between sub-
threshold voltage-gated currents. In any case, such a neuron has
shortened refractory period and it becomes superexcitable.

R. Accommodation

Neurons are extremely sensitive to brief coincident inputs,
but may not fire in response to a strong but slowly increasing
input, as we illustrate in Fig. 1(r). The slowly ramped current
in the figure does not elicit a spike, while a smaller but sharply
ramped current elicits a spike. During the slow ramp, the inward
currents have enough time to inactivate and outward currents
have enough time to activate, so the neuron accommodates, be-
comes less excitable and cannot generate a spike.

S. Inhibition-Induced Spiking

A bizarre feature of many thalamo-cortical neurons is that
they are quiescent when there is no input, but fire when hyper-
polarized by an inhibitory input or an injected current, as we
illustrate in Fig. 1(s). This happens because the injected cur-
rent activates the h-current and deinactivates calcium T-current,
leading to tonic spiking.

T. Inhibition-Induced Bursting

Instead of spiking, a thalamo-cortical neuron can fire tonic
bursts of spikes in response to a prolonged hyperpolarization, as
in Fig. 1(t). It is believed that such bursting takes place during
spindle wave oscillations in the thalamo-cortical system and it
plays an important role in sleep rhythms.

No model should exhibit all these 20 neurocomputational
properties simultaneously simply because some of the proper-
ties are mutually exclusive. For example, a neuron cannot be an
integrator and a resonator at the same time. However, there are
models that can easily be tuned to exhibit each such property.
For example, all of the neuronal responses in Fig. 1 were ob-
tained using a simple spiking model having four easily tunable
parameters [15].
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Fig. 2. Comparison of the neuro-computational properties of spiking and bursting models; see Fig. 1. “# of FLOPS” is an approximate number of floating point
operations (addition, multiplication, etc.) needed to simulate the model during a 1 ms time span. Each empty square indicates the property that the model should
exhibit in principle (in theory) if the parameters are chosen appropriately, but the author failed to find the parameters within a reasonable period of time.

III. SPIKING MODELS

Below we review some widely used models of spiking and
bursting neurons that can be expressed in the form of ordinary
differential equations (ODE) (thus, we exclude the spike re-
sponse model [5]). In addition to the 20 neuro-computational
features reviewed above, we also consider whether the models
have biophysically meaningful and measurable parameters, and
whether they can exhibit autonomous chaotic activity. We start
with the simplest models first. The summary of our comparison
is in Fig. 2.

Throughout this section, denotes the membrane potential
and denotes its derivative with respect to time. All the param-
eters in the models are chosen so that has mV scale and the
time has ms scale. To compare computational cost, we assume
that each model, written as a dynamical system , is

implemented using a fixed-step first-order Euler method
with the integration time step chosen

to achieve a reasonable numerical accuracy.

A. I&F

One of the most widely used models in computational neuro-
science is the leaky integrate-and-fire (I&F) neuron

if then

where is the membrane potential, is the input current, and
, , , and are the parameters. When the membrane po-

tential reaches the threshold value , the neuron is said
to fire a spike, and is reset to .

The I&F neuron is Class 1 excitable; it can fire tonic spikes
with constant frequency, and it is an integrator. It is the simplest
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model to implement when the integration time step is 1 ms.
Indeed, the iteration takes only
four floating-point operations (additions, multiplications, etc.)
plus one comparison with the threshold . Because I&F
has only one variable, it cannot have phasic spiking, bursting of
any kind, rebound responses, threshold variability, bistability
of attractors, or autonomous chaotic dynamics. Because of the
fixed threshold, the spikes do not have latencies. In summary,
despite its simplicity, I&F is one of the worst models to use
in simulations, unless one wants to prove analytical results.

B. I&F with Adaptation

The I&F model is one-dimensional (1-D), hence it cannot
burst or have other properties of cortical neurons. One may think
that having a second linear equation

describing activation dynamics of a high-threshold K current
can make an improvement, e.g., endow the model with spike-
frequency adaptation. Indeed, each firing increases the K acti-
vation gate via Dirac delta function and produces an outward
current that slows down the frequency of tonic spiking. Simula-
tions of this model take 10 floating point operations/1 ms time
step, yet the model still lacks many important properties of cor-
tical spiking neurons.

C. Integrate-and-Fire-or-Burst

Smith and coauthors [24] suggested an improvement—inte-
grate-and-fire-or-burst (I&FB) model

if then

if

if

to model thalamo-cortical neurons. Here describes the inac-
tivation of the calcium T-current, , , , , and are
parameters describing dynamics of the T-current, and is the
Heaviside step function.

Having this kind of a second variable creates the possibility
for bursting and other interesting regimes summarized in Fig. 2.
But this comes with a price: It takes between 9 and 13 operations
(depending on the value of ) to simulate 1 ms of the model.

D. Resonate-and-Fire

The resonate-and-fire neuron [16] is a two-dimensional (2-D)
analogue of the I&F neuron

if then

where the real part of the complex variable is the membrane
potential. Here , , and are parameters, and is

an arbitrary function describing activity-dependent after-spike
reset. The resonate-and-fire model is simple and efficient—it
takes 10 operations to simulate 1 ms. When the frequency of
oscillation , it becomes an integrator. Its neuro-computa-
tional properties are summarized in Fig. 2.

E. Quadratic I&F

An alternative to the leaky I&F neuron is the quadratic
I&F neuron, also known as the theta-neuron [2], [3] or the
Ermentrout–Kopell canonical model [10] (when it is written in
a trigonometric form). We present it here following [19]

if then

where and are the resting and threshold values of
the membrane potential. This model is canonical in the sense
that any Class 1 excitable system described by smooth ODEs
can be transformed into this form by a continuous change of
variables [18]. It takes only seven operations to simulate 1 ms
of the model, and this should be the model of choice when one
simulates large-scale networks of integrators. Unlike its linear
analogue, the quadratic I&F neuron has spike latencies, activity-
dependent threshold (which is only when ), and
bistability of resting and tonic spiking modes.

F. Spiking Model by Izhikevich (2003)

All of the responses in Fig. 1 were obtained using a simple
model of spiking neurons proposed recently by Izhikevich [15]

(1)

(2)

with the auxiliary after-spike resetting

if then (3)

Here variable represents the membrane potential of the neuron
and represents a membrane recovery variable, which accounts
for the activation of ionic currents and inactivation of Na
ionic currents, and it provides negative feedback to . After the
spike reaches its apex mV , the membrane voltage and
the recovery variable are reset according to the (3). If skips
over 30, then it first is reset to 30, and then to so that all spikes
have equal magnitudes. The part is chosen
so that has mV scale and the time has ms scale. Geometrical
derivation of the model based on fast and slow nullclines can be
found in [11].

The model can exhibit firing patterns of all known types
of cortical neurons with the choice of parameters , , ,
and given in [15]. It takes only 13 floating point oper-
ations to simulate 1 ms of the model, so it is quite effi-
cient in large-scale simulations of cortical networks. When

and , the model has
chaotic spiking activity, though the integration time step
should be small to achieve adequate numerical precision.
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We stress that mV in (3) is not a threshold, but the peak
of the spike. The threshold value of the model neuron is between
–70 and -50, and it is dynamic, as in biological neurons. To build
intuition and understanding of the dynamics of the model, the
reader is advised to download an interactive MATLAB tutorial
program from the author’s webpage and play with the model
and its parameters. In particular, the reader could explore all 20
neuro-computational properties in Fig. 1.

G. FitzHugh–Nagumo

The parameters in the FitzHugh–Nagumo model [4]

can be tuned so that the model describes spiking dynamics of
many resonator neurons. Its neuro-computational properties are
summarized in Fig. 2. Since one needs to simulate the shape of
each spike, the time step in the model must be relatively small,
e.g., ms. It takes 18 floating point operations/0.25
ms, hence 72 operations/1 ms of simulation. Since the model
is a 2-D system of ODEs without a reset, it cannot exhibit au-
tonomous chaotic dynamics or bursting. Adding noise to this,
or some other 2-D models, allows for stochastic bursting.

H. Hindmarsh–Rose

The Hindmarsh–Rose model of thalamic neuron [23] can be
written

where , , and are some functions. Depending on their
choice, the model can, in principle, exhibit all of the neuro-com-
putational properties in Fig. 1. The problem is, of course, how
to find the functions to model, say RS or LTS neurons. Let us
assume that this problem is somehow solved and that the func-
tions are polynomials of the third degree (in the best case). Since
we need to simulate the shape of the action potential, the max-
imal time step is 0.25 ms. Since it takes 30 floating point oper-
ations/0.25 ms of simulation time, it would take 120 operations
to simulate 1 ms of the model. Again, this is an optimistic as-
sessment that might never be achieved.

I. Morris–Lecar

Morris and Lecar [21] suggested a simple 2-D model to
describe oscillations in barnacle giant muscle fiber. Because it
has biophysically meaningful and measurable parameters, the
model became quite popular in computational neuroscience
community. It consists of a membrane potential equation with
instantaneous activation of Ca current and an additional equa-
tion describing slower activation of current

where

with parameters: cm , cm ,
mV, cm , mV,

cm , mV, mV,
mV, mV, mV, s ,

and applied current cm .
The model can exhibit various types of spiking, but could ex-

hibit tonic bursting only when an additional equation is added,
e.g., slow inactivation of Ca current. In this case, the model
becomes equivalent to the Hodgkin–Huxley model discussed
below (both have transient inward and persistent outward cur-
rents).

Because one needs to simulate the shape of the action po-
tential in the Morris–Lecar model, the time step must be sig-
nificantly smaller than 1 ms. We found that ms is the
largest step that gives reasonable results when the model is used
to simulate cortical spiking neurons. Since the model involves
hyperbolic tangents and exponents, it takes around 60 floating
point operations to evaluate one 0.1-ms time step, which leads
to 600 operations/1 ms of simulation.

J. Wilson Polynomial Neurons

Wilson [25] suggested to model cortical neurons using poly-
nomial equations. His model consists of four differential equa-
tions, which we do not provide here. It can exhibit all neuro-
computational properties in Fig. 1, provided that the parameters
are chosen appropriately, which is not an easy task. The sug-
gested time step in the model was 0.1 ms, though it could be
pushed up to 0.25 ms without significant loss of precision or no-
ticeable distortion of the shape of the action potential. It takes
45 floating point operations to evaluate 0.25 ms of the model,
hence 180 operations/1 ms.

K. Hodgkin–Huxley

The Hodgkin–Huxley model [9] is one of the most impor-
tant models in computational neuroscience. It consists of four
equations and tens of parameters, not provided here, describing
membrane potential, activation of Na and K currents, and inac-
tivation of Na current. Though the model has quite limited be-
havior for original values of parameters, it can actually exhibit
all properties in Fig. 1, if the parameters are tuned.

In general, scientists refer to all conductance-based models
as being of the Hodgkin–Huxley-type. Such models are impor-
tant not only because their parameters are biophysically mean-
ingful and measurable, but also because they allow us to inves-
tigate questions related to synaptic integration, dendritic cable
filtering, effects of dendritic morphology, the interplay between
ionic currents, and other issues related to single cell dynamics.
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The model is extremely expensive to implement. It takes 120
floating point operations to evaluate 0.1 ms of model time (as-
suming that each exponent takes only ten operations), hence,
1200 operations/1 ms. Thus, one can use the Hodgkin–Huxley
formalism only to simulate a small number of neurons or when
simulation time is not an issue.

IV. CONCLUSION

As the reader can see in Fig. 2, many models of spiking neu-
rons have been proposed. Which one to choose? The answer de-
pends on the type of the problem. If the goal is to study how the
neuronal behavior depends on measurable physiological param-
eters, such as the maximal conductances, steady–state (in)acti-
vation functions and time constants, then the Hodgkin–Huxley-
type model is the best. Of course, you could simulate only tens
of coupled spiking neurons in real time.

In contrast, if you want to simulate thousands of spiking neu-
rons in real time with 1 ms resolution, then there are plenty of
models to choose from. The most efficient is the I&F model.
However, the model cannot exhibit even the most fundamental
properties of cortical spiking neurons, and for this reason it
should be avoided by all means. The only advantage of the I&F
model is that it is linear, and hence amenable to mathematical
analysis. If no attempts to derive analytical results are made,
then there is no excuse for using this model in simulations.

The quadratic I&F model is practically as efficient as the
linear one, and it exhibits many important properties of real neu-
rons, such as spikes with latencies, and bistability of resting and
tonic spiking modes. However, it is 1-D, and hence, it cannot
burst and cannot exhibit spike frequency adaptation. Thus, it can
be used in simulations of cortical neural networks only when bi-
ological plausibility is not a great concern.

If the goal is to understand the fine temporal structure of cor-
tical spike trains, and to use spike-timing as an additional vari-
able to understand how the mammalian neocortex processes in-
formation, a spiking model that can exhibit all or most of the
20 neuro-computational properties of biological neurons sum-
marized in Fig. 1 is required. The model recently proposed by
Izhikevich [15] was developed exactly for these purposes. It is
the simplest possible model that can exhibit all the firing pat-
terns in Fig. 1. Indeed, removal of the (2) makes it 1-D with no
possibility for bursting, removal of the term makes it linear
and equivalent to the resonate-and-fire model.

The author has used the model to simulate a fully connected
network of 1,000 cortical spiking neurons in real time with 1 ms
resolution using only modest computational resources (1 GHz
desktop PC; MATLAB code is provided in [15]. Using the C
programming language, it is possible to speed up simulations
by the factor of twenty). The network exhibited rhythms in the
alpha and gamma frequency range, transient and sustained spike
synchrony, spindle waves, sleep oscillations, and other temporal
phenomena.

This model was also used in a simulation of a network
of 100 000 spiking neurons with realistic cortical anatomy,
axonal delays, and spike-timing dependent synaptic plasticity
(STDP) [13]. Due to the interplay between spiking, plasticity,
and delays, the neurons self-organized into polychronous

(i.e., multiple-timing) groups that could generate persistent
time-locked firing patterns with ms precision. There are many
such polychronous groups coexisting at the same time. In
another study [12], we found that each neuron participates in
many polychronous groups, so that the total number of groups
the model could memorize can significantly exceed the number
of neurons, or even the number of synapses in the network,
resulting in unprecedented memory capacity.

In conclusion, having a network of computationally efficient
and biologically plausible cortical spiking neurons intercon-
nected according to the principles of known anatomy of the
neocortex should be the goal of every scientist exploring infor-
mation processing in the mammalian brain.
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