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Abstract The integrate-and-fire neuron model is one of the
most widely used models for analyzing the behavior of neu-
ral systems. It describes the membrane potential of a neu-
ron in terms of the synaptic inputs and the injected cur-
rent that it receives. An action potential (spike) is generated
when the membrane potential reaches a threshold, but the
actual changes associated with the membrane voltage and
conductances driving the action potential do not form part
of the model. The synaptic inputs to the neuron are con-
sidered to be stochastic and are described as a temporally
homogeneous Poisson process. Methods and results for both
current synapses and conductance synapses are examined
in the diffusion approximation, where the individual con-
tributions to the postsynaptic potential are small. The fo-
cus of this review is upon the mathematical techniques that
give the time distribution of output spikes, namely stochastic
differential equations and the Fokker–Planck equation. The
integrate-and-fire neuron model has become established as a
canonical model for the description of spiking neurons be-
cause it is capable of being analyzed mathematically while
at the same time being sufficiently complex to capture many
of the essential features of neural processing. A number of
variations of the model are discussed, together with the rela-
tionship with the Hodgkin–Huxley neuron model and the
comparison with electrophysiological data. A brief overview
is given of two issues in neural information processing that
the integrate-and-fire neuron model has contributed to – the
irregular nature of spiking in cortical neurons and neural gain
modulation.
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1 Introduction

The integrate-and-fire neuron model has both a long history
(Lapicque 1907) and wide application (Tuckwell 1988a).
Lapicque (1907) put forward a model of the neuron mem-
brane potential in terms of an electric circuit consisting of
a resistor and capacitor in parallel, representing the leakage
and capacitance of the membrane. In this model the mem-
brane capacitor is charged until it reaches a certain thresh-
old, at which time it discharges, producing an action potential
(spike) and the potential is reset. This simple deterministic
model enabled Lapicque to calculate the spiking-rate of a
neuron that was coupled to a fixed-voltage stimulating elec-
trode. A more extensive analysis of Lapicque’s model with
injected current was carried out by Hill (1936). One of the
key insights into neural behavior that this approach cap-
tures is the separation in time scale of the relatively slow
subthreshold integration and the very rapid spike genera-
tion. Rather than being an oversimplification, this approach
has been very useful because the rapid voltage change dur-
ing spike generation is extremely stereotypical. Focusing
upon the subthreshold membrane properties and excluding
the mechanisms responsible for generating action potentials
(i.e., the voltage-dependent sodium and potassium channels)
has proven to be a powerful tool in understanding the
information processing capabilities of neurons.

However, in order to model in vivo neurons, it is necessary
to take into account the apparently random times of arrival
of the synaptic inputs. The earliest solution of the integrate-
and-fire model that incorporated stochastic activity modeled
the incoming postsynaptic potentials (PSPs) as a random
walk (Gerstein and Mandelbrot 1964). Subsequent develop-
ments have largely built upon this diffusion approach using
stochastic differential equations and the Ornstein–Uhlenbeck
process (Uhlenbeck and Ornstein 1930). Stein formulated
the integrate-and-fire model with stochastic input to include
the decay of the membrane potential (Stein 1965, 1967),
and a number of other authors have subsequently investi-
gated the model using both stochastic differential equations
and numerical techniques (Knight 1972; Kryukov 1976;
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Tuckwell 1977; Wilbur and Rinzel 1982; Lánský 1984).
These techniques have further been used to examine the role
of inhibition in the Stein model (Tuckwell 1978a; Cope and
Tuckwell 1979; Tuckwell and Cope 1980) and a number of
other features such as the effect of reversal potentials (Tuck-
well 1979; Wilbur and Rinzel 1983; Hanson and Tuckwell
1983; Musila and Lánský 1994).

The Hodgkin–Huxley model (Hodgkin and Huxley 1952)
describes the neuron membrane potential in terms of the
dynamic behavior of the various ion channels of the soma and
dendrites. The increasing computational resources that have
become available in recent years mean that it is not only pos-
sible to numerically simulate Hodgkin–Huxley model neu-
rons with dozens of types of ion channels and hundreds of
spatial compartments, but it is also possible to investigate
the behavior of small networks of such neurons. However,
such complex computational models suffer a number of lim-
itations. First, it is frequently difficult to deduce, or gain an
intuitive understanding of, the essential nature of the neuro-
nal dynamics observed in these models. Second, they con-
tain so many parameters that it is frequently difficult to make
any meaningful exploration of the available parameter space,
and thereby have any certainty about the robustness of the
observed phenomena. Third, such models cannot be analyzed
analytically, but rather they can only be analyzed using the re-
sults of numerical simulations, which are subject to statistical
errors that may make it difficult to interpolate or extrapolate
meaningfully the result of varying a parameter. Consequently,
the large amount of detail contained in these models can of-
ten obscure rather than illuminate the essential underlying
principles governing the information processing carried out
by large numbers of interconnected neurons.

This review is concerned primarily with the mathematical
techniques available to analyze the integrate-and-fire neuron
model, although results from computer simulations will also
be mentioned since these play an important role in supporting
the analytical studies and addressing questions that are still
beyond the reach of analytical methods. The integrate-and-
fire neuron model is introduced in Sect. 2, giving details of the
synaptic input and the solution for injected current, as well as
some variants of the basic model. Stochastic models are dis-
cussed in Sect. 3, including the diffusion model, the Weiner
process, the Stein model, the Ornstein–Uhlenbeck process,
the Gaussian approximation, and the Fokker–Planck equa-
tion. The solution of the model with homogeneous Poisson
input and both current and conductance synapses is pre-
sented in Sect. 4, where the interspike interval distribution
is given by the solution for the first passage time problem us-
ing the renewal equation. The output spiking-rate is given, as
is the stationary solution for the membrane potential distribu-
tion. Extensions of the basic model are discussed in Sect. 5,
including finite synaptic time constants, correlated synap-
tic input, and adaptation effects. The relationship between
the Hodgkin–Huxley and integrate-and-fire neuron models is
discussed in Sect. 6, together with the comparison of the mod-
els to physiological data. The application of the model to two
major issues in neural information processing is discussed in

Sect. 7, namely the variability of neural responses and neural
gain modulation. The case in which the synaptic inputs are
time-dependent (i.e., described by a temporally inhomoge-
neous Poisson processes), is reviewed in the accompanying
paper (Burkitt 2006). This review builds upon, and is indebted
to, earlier reviews of these models (Ricciardi 1977; Riccia-
rdi and Sacerdote 1979; Tuckwell 1988b; Lánský and Sato
1999).

2 The integrate-and-fire neuron model

In the integrate-and-fire neuron model the state of the neu-
ron is characterized by its membrane potential. The mem-
brane potential receives excitatory or inhibitory contributions
by synaptic inputs that arrive from other neurons by their
associated synapses. These inputs, that are each weighted
by their respective synaptic strength, are modeled either as
injected current (current synapse models in which summa-
tion is linear) or as a change in the membrane conductance
(conductance synapse models in which summation of the
synaptic input is nonlinear, i.e., the amplitude depends upon
the value of the membrane potential). Conductance synapse
models take account of the change in amplitude of the excit-
atory and inhibitory inputs, which depends upon the differ-
ence between the membrane potential and the corresponding
reversal potential. The integrate-and-fire neuron model is a
point neuron (single compartment) model in which the spa-
tial structure of the neuron associated with the dendrites is
neglected.

The neuron is leaky since the summed contributions to the
membrane potential decay with a characteristic time constant
(the membrane time constant). If this decay of the membrane
potential over time is neglected, the model is a perfect inte-
grator (Gerstein and Mandelbrot 1964). When the membrane
potential reaches a (fixed) threshold, an output spike is gener-
ated–the integrate-and-fire mechanism. The interspike inter-
vals (ISIs) of the resulting action potentials are, therefore,
identified as the first passage time of the membrane potential,
v(t), across the threshold, Vth. One of the main goals of the
mathematical analysis of the model with stochastic synaptic
input is to evaluate the first passage time distribution, fθ (t),
from which the other properties of the output spike distribu-
tion can be deduced. After the membrane potential crosses
threshold it is reset to its resting value and is inactivated for
a brief time corresponding to the absolute refractory period
of the neuron.

The model is described by the dynamics of the neuron’s
membrane potential, v(t),

Cm
dv(t)

dt
= Ileak(t) + Is(t) + Iinj(t), (1)

where Cm is the membrane capacitance, Ileak(t) is the cur-
rent due to the passive leak of the membrane, Is(t) is a cur-
rent describing the effect of synaptic input to the neuron, and
Iinj(t) is a current injected into the neuron (by an intracellular
electrode). The leak current is
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Ileak(t) = −Cm

τm
[v(t) − V0], (2)

where V0 is the resting potential and τm is the passive mem-
brane time constant, which is related by τm = RmCm to the
capacitance and the leak resistance, Rm, of the membrane
potential, both of which are assumed to be constant.

The generation of an action potential when the membrane
potential reaches the spiking threshold is generally not con-
sidered an intrinsic part of the model. Consequently, it is
usual in the description of integrate-and-fire neurons to only
describe the sub-threshold membrane voltage. Nevertheless,
it is possible to formally include the spiking mechanism in
terms of a spiking current Ispike (Meffin et al. 2004),

Ispike(t)= Cm

[
dv(t)

dt

]−1

v=Vth

(Vreset−Vth)δ[v(t) − Vth], (3)

which describes a spike when the membrane potential reaches
the spike generating threshold, Vth, and subsequently the
membrane potential resets to Vreset (δ(.) denotes the Dirac
delta function). The membrane potential begins to evolve
again according to Eq. (1) after an absolute refractory pe-
riod, τr.

2.1 Synaptic input to integrate-and-fire neurons

Before examining the input–output relationship of the model,
it is necessary to define the synaptic input, which may be
modeled in two ways: as current synapses or conductance
synapses.

2.1.1 Current synapses

The synaptic current for a current synapse is independent of
the membrane potential and is described by

Is = Cm

NE∑
k=1

aE,k SE,k(t) + Cm

NI∑
k=1

aI,k SI,k(t), (4)

where the amplitudes, aE,k > 0 and aI,k < 0, are the change
in potential due to a single synaptic event; the associated
charge delivered to the neuron by an excitatory and inhibitory
synaptic input is CmaE,k and CmaI,k , respectively. SE,k(t),
and SI,k(t) describe, respectively, the excitatory and inhibi-
tory synaptic inputs as a series of input spikes to each synapse

SE,k(t) =
∑
tE,k

δ(t − tE,k), SI,k(t) =
∑
tI,k

δ(t − tI,k), (5)

where tE,k and tI,k are the times of the synaptic input spikes
for the excitatory and inhibitory synapses, respectively. These
input spikes are usually modeled as Poisson processes with
individual excitatory and inhibitory synaptic input intensi-
ties (i.e., spiking-rates), γE,k and γI,k , respectively. In this
review only homogeneous Poisson processes, in which these
spiking-rates are constant, are considered. The more gen-
eral case in which the Poisson spiking-rates are time depen-
dent (i.e., temporally inhomogeneous Poisson processes), is

reviewed in the accompanying paper (Burkitt 2006). The
pooled Poisson processes associated with the NE excitatory
and NI inhibitory synaptic inputs are denoted by SE(t) and
SI(t),

SE(t) =
∑

k

SE,k(t), SI(t) =
∑

k

SI,k(t), (6)

with spiking-rates λE and λI, respectively, as discussed fur-
ther in Sect. 3. A single integrate-and-fire neuron with current
synapses is illustrated in Fig. 1, which shows the NE excit-
atory and NI inhibitory synapses. The inputs are summed
linearly and output spikes are represented as δ-functions at
the times when the membrane potential crosses threshold.

The resultant change to the membrane potential (the EPSP
or IPSP) of the total δ-function synaptic input is shot-noise
(Papoulis 1991). The contribution of a single δ-function
input upon the membrane potential, called the (normalized)
postsynaptic response function, is given by

ε(t) = 1

τm
e−t/τm�(t), (7)

where the Heaviside step function �(t) ensures causality.
In order to take account of the synaptic dynamics, it is

necessary to go beyond the simple δ-function synaptic input
and consider an input current with a finite time constant

Is = aECm

τs
e−t/τs�(t), (8)

δ (t - tout)

(t)

SI,k(t)SE,k(t)

aE,1

aE,2

aE,k

aI,1
aI,2

aI,k

aI,NI

aE,NE

output

input

Fig. 1 Schematic representation of an integrate-and-fire neuron with
NE excitatory (filled circles) and NI inhibitory (open circles) current
synapses. Each excitatory (inhibitory) synapse receives an input spike
train denoted by SE,k(t) (SE,k(t)). The subthreshold membrane voltage,
v(t), is the sum of the EPSPs and IPSPs, a portion of which is illus-
trated here with the postsynaptic response function of Eq. (9). Output
spikes are δ-functions, generated when the membrane potential reaches
threshold
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where τs is the synaptic time constant (in general different for
each type of neuron). This gives a normalized postsynaptic
response function of the form

ε(t) = (e−t/τm − e−t/τs)

(τm − τs)
�(t). (9)

Other forms of synaptic current input can be considered, such
as the α-function, Is ∝ te−αt (Jack et al. 1985), which can
be used to model the filtering effect of the dendritic tree upon
the voltage at the soma. Methods to include finite synaptic
time constants in the integrate-and-fire neuron model with
current synapses are discussed further in Sect. 5.1.

2.1.2 Conductance synapses

A more biologically accurate description of the synaptic cur-
rent is given by (cf. Eq. 4) (Tuckwell 1979, 1988b)

Is(t) = Cm[VE − v(t)]
NE∑

k=1

gE,k SE,k(t)

+ Cm[VI − v(t)]
NI∑

k=1

gI,k SI,k(t). (10)

The potentials VE and VI are the (constant) reversal poten-
tials (VI ≤ Vreset < Vth < VE). The reversal potentials
arise from the equilibrium potentials of the ion channels
and are so named because the direction of associated current
flow switches when the membrane potential passes through
the corresponding reversal potential. The reversal potentials
introduce a nonlinearity into the summation of the individual
synaptic inputs. The parameters gE,k , gI,k > 0 are taken to be
small in this model and represent the integrated inhibitory and
excitatory conductances over the time course of the synaptic
event divided by the neural capacitance and are thus dimen-
sionless (they are nonnegative and for convenience are taken
here to be identical for all excitatory and inhibitory inputs,
respectively, so that the subscripts k in the above equation
are subsequently dropped). The excitatory synaptic conduc-
tance gE is identified with the synaptic weight and the two
terms are used interchangeably in the literature on synaptic
plasticity.

In this model, the synaptic current inputs are often taken
to have the form of δ-functions, as discussed above for cur-
rent synapses. The reason for this is that a finite synaptic
time constant introduces temporal correlations in the mem-
brane voltage, as it does for current synapses. The nonlin-
ear summation of synaptic input with conductance synapses
makes the analysis much more difficult as becomes apparent
when the renewal equation, Eq. (24), is introduced. Including
finite synaptic time constants in the integrate-and-fire neu-
ron model with conductance synapses is discussed further in
Sect. 5.1.

2.2 Deterministic input to integrate-and-fire neurons

The subthreshold membrane voltage under the influence of a
deterministic injected current Iinj(t) is described by Eq. (1),

where the synaptic input is neglected and the leak current is
given by Eq. (2). For subthreshold potentials the solution of
this differential equation is (Tuckwell 1988a)

v(t) = V0 + e−t/τm

t∫
t0

Iinj(t ′)
Cm

et ′/τm dt ′, (11)

where it is assumed that the membrane potential at the initial
time t0 is at the resting potential v(t0) = V0. When the mem-
brane potential reaches the threshold, a spike is generated.
Immediately following the spike, the membrane potential is
reset to its initial value Vreset. Refractory effects may be in-
cluded by allowing the threshold to become infinite imme-
diately following the generation of a spike, corresponding
to an absolute refractory period τr. A relative refractory pe-
riod may be included by introducing a time dependence to
the threshold, so that it has an elevated value for a limited
time immediately following a spike, as discussed further in
Sect. 5.3.

For a fixed threshold and constant injected current I the
membrane potential following reset at time t0 evolves accord-
ing to

v(t) = V0 + I Rm

(
1 − e−(t−t0)/τm

)
. (12)

For simplicity the reset potential is taken to be the resting
potential, Vreset = V0, throughout. The time it takes for a
spike to be generated (i.e., the interspike interval, TISI) is

TISI = −τm ln

[
1 − θ

I Rm

]
, (I Rm > θ), (13)

where θ = (Vth − V0) is the potential difference between
the spike generating threshold and the resting potential. This
expression for TISI is only valid for (I Rm) > θ , otherwise
the potential does not reach threshold and there is no output
spike. From this relationship the strength-duration curve can
be derived, which gives the time required for an input current
of a fixed amplitude to generate a spike (Noble and Stein
1966). The corresponding spiking-rate is given by

λout = (τr + TISI)
−1, (14)

where τr is the absolute refractory period during which all
input current is assumed to be lost. For large currents the time
to spike is TISI = τmθ/(I Rm), giving an approximately lin-
ear regime when τr � TISI. For very large currents the output
spiking-rate saturates at the inverse of the absolute refractory
period. For currents below a threshold current Ith = θ/Rm
there will be no output spikes. A peculiarity of the integrate-
and-fire neuron model is that the slope of the input–output
curve (i.e., λout as a function of I ) has a singularity at I = Ith.

These properties of the model with deterministic input
are relatively straightforward and the real interest with inte-
grate-and-fire neuron models is in taking account of stochas-
tic inputs, which is discussed in the following section.



A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input 5

2.3 Variants of the integrate-and-fire neuron model

A variation of the integrate-and-fire neuron model is the spike
response model (Gerstner 1995, 2001; Gerstner and Kistler
2002). The motivation for the spike response model lies in the
difficulty of finding analytic solutions of the diffusion-type
integrate-and-fire neuron models, especially when inhomo-
geneous Poisson synaptic input is considered. In the spike
response model, the membrane potential explicitly depends
upon the time of the last spike. This time dependence en-
ables the refractory properties of the neuron to be modeled,
including a reduced responsiveness and increased threshold
after the generation of a spike, as well as a hyperpolariz-
ing spike-afterpotential. One essential difference to the con-
ventional integrate-and-fire neuron model, Eq. (1), is that
the reset of the membrane potential after spike generation is
achieved by adding to the membrane potential an additional
“afterpotential” term η(t − tf) (where tf is the time of fir-
ing of the previous spike). This term explicitly describes the
time course of the action potential and the afterpotential. The
model also includes a dynamic threshold that is elevated af-
ter a spike is generated (similar variable threshold models for
including refractory effects in integrate-and-fire neuron mod-
els are discussed in Sect. 5.3). The leaky integrate-and-fire
neuron model is a special case of the spike response model,
in which the afterpotential function η(t) is a shot-noise func-
tion: η(t) = (Vreset − Vth) exp[−(t − tf)/τm]�(t − tf) (in the
case of conductance synaptic input the time constant must
be set to the effective membrane time constant, as discussed
in Sect. 4.2). In order to examine inhomogeneous Poisson
synaptic input using the spike response model, an escape
process is introduced that is completely described by a haz-
ard function, which depends only on the momentary values
of the membrane potential and input current (Cox and Lewis
1966). An appropriate choice of hazard function has been
shown to reproduce both the generation of individual spikes
and more complex properties seen in integrate-and-fire neu-
rons (Plesser and Gerstner 2000).

Other variations of the model include; the linear inte-
grate-and-fire neuron (Fusi and Mattia 1999), in which the
subthreshold membrane potential depolarization is constant
(i.e., Ileak(t) in Eq. (1) is a constant), the quadratic integrate-
and-fire neuron (Ermentrout and Kopell 1986; Latham et al.
2000; Brunel and Latham 2003; Lindner et al. 2003), in which
there is a nonlinear leakage term V 2(t) on the right of Eq. (1),
the exponential integrate-and-fire neuron (Fourcaud-Trocmé
et al. 2003; Fourcaud-Trocmé and Brunel 2005), in which
there is a term that has an exponential dependence upon V (t)
on the right of Eq. (1), and the generalized integrate-and-fire
neuron (Richardson et al. 2003; Brunel et al. 2003), which
allows the description of subthreshold resonance. The qua-
dratic integrate-and-fire neuron model represents the canon-
ical form of a neuron in which spikes are generated by a
type I bifurcation (Izhikevich 1999) and it is related to the
θ -neuron by a change of variables (Ermentrout 1996; Gutkin
and Ermentrout 1998). A discussion of both the biological
plausability and the computational efficiency of a number of

widely used spiking neuron models is given by Izhikevich
(2004).

3 Methods of analysis for stochastic models

In general, there are two sources of noise associated with
the neural membrane potential: one intrinsic to the neuron,
associated with such properties as the stochastic nature of the
underlying mechanisms controlling the release of neurotrans-
mitter and the opening of channels, and the other external to
the neuron, arising from the apparently random arrival times
of the inputs. The representation of the neuron as a point
(i.e., a single compartment) means that there is no clear dis-
tinction between these two sources of noise, which can be
treated together in terms of the variance of the fluctuations in
the membrane potential. Intracellular recordings of neurons
indicate that the internal noise is generally insignificant in
comparison with that associated with the stochastic synaptic
input (Calvin and Stevens 1968; Bryant and Segundo 1976;
Mainen and Sejnowski 1995).

Consequently, the predominant source of randomness in
the model is the stochastic arrival times of the synaptic input,
and these are generally (indeed almost universally) modeled
as a Poisson process (Cox 1962; Cox and Miller 1965). While
the inputs to a single synapse may differ significantly from a
Poisson process, so long as they can be adequately described
as a renewal process (i.e., the successive time intervals be-
tween inputs are independent and identically distributed) and
the inputs are independent, the pooling property of indepen-
dent renewal processes provides an excellent description of
the combined input of a large number of synapses. The pool-
ing property, also called the superposition property, is im-
plicit in Eq. (6) and ensures that the statistical properties of
the combined process is “locally random”, in the sense that
it will appear random over periods of time that are small
compared to the individual mean interspike times (Cox and
Smith 1954). In general, the pooled process provides a very
good description of the combined input to a neuron when
the number of input synapses is increased to even a moder-
ate number. One of the first papers to discuss in depth the
relationship between spike trains and stochastic point pro-
cesses (i.e., stochastic processes described as a series of point
events in time) was Perkel et al. (1967), and for a more recent
discussion of the Poisson process description of synaptic in-
put see Johnson (1996). A description of the pooled spike
train, obtained from superposing the spike trains of individ-
ual synapses, as a cluster point process is given in Gomez
et al. (2005), together with the physiological ramifications of
this hypothesis. A recent study of both inter-spike variability
and long-range dependence showed that in certain situations
it may be more accurate to describe the synaptic inputs in
terms of fractional-Gaussian-noise-driven Poisson processes,
rather than renewal point processes (Jackson 2004). The situ-
ation in which the inputs are not independent, but rather have
a temporal correlation, is discussed in Sect. 5.2.
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The general formulation of the stochastic integrate-and-
fire neuron model is given in the remainder of this section,
in which the techniques and methods used in its solution are
outlined. Details of the solutions and results are given in the
following section in the case where the synaptic input is a
homogeneous Poisson process (Sect. 4).

3.1 Diffusion models

The diffusion models of neurons treat the membrane
potential as a diffusion process, namely as a continuous-time
Markov process with a continuous path (Tuckwell 1988b).
The stochastic nature of the synaptic input may be described
by modeling the membrane potential, Eq. (1), as a stochastic
differential equation, called the Ornstein–Uhlenbeck model
(Uhlenbeck and Ornstein 1930), with mean input µ (taken to
be constant for homogeneous synaptic input) and a Gaussian
white noise ξ(t) with intensity coefficient σ

τ
dv(t)

dt
= −[v(t) − V0] + µ + σ

√
2τξ(t), (15)

where 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) (note that some
authors use alternative notations in which the τ dependence
on the rhs is absorbed into either the definition of σ or ξ ).
For simplicity, it will be assumed throughout that the mem-
brane potential at the initial time t0 is at the resting potential
V0 and that this is also the reset potential: v(t0) ≡ v0 =
V0 = Vreset. The most straightforward way to derive the
Ornstein–Uhlenbeck model is via the formulation of Stein
(1965), described in Sect. 3.1.2. However, before discussing
these models a simpler diffusion neuronal model is intro-
duced, namely the Wiener process.

3.1.1 Random walk model and Wiener process

One of the first stochastic integrate-and-fire neuron models to
be analyzed was the perfect integrator (or leakless integrate-
and-fire neuron model), in which the decay of the membrane
potential over time is neglected. This model, analyzed by
Gerstein and Mandelbrot (1964), is obtained as the limiting
case of the (discontinuous) random walk process (Brownian
motion), in which the membrane potential undergoes step
changes in amplitude with the arrival of each PSP. By examin-
ing the situation in which the amplitude of each step becomes
smaller, while at the same time the input rate increases, the
trajectory of the membrane potential becomes continuous
(the diffusion approximation). Such a Wiener process of the
membrane potential is described by (Tuckwell 1988b)

v(t) = v0 + µWt + σWW (t), t > 0, (16)

where v(0) = v0 and W (t) is a standard Wiener process
with variance parameter σW and drift parameter µW > 0.
Note that the step size is required to scale as

√
�t in the con-

tinuum limit and that the generalized derivative of a Wiener
process is white noise [for a recent exposition of the Wiener
Process see Stirzaker (2005)].

Both the lack of a lower bound on the potential and the
neglect of the membrane leakage are unrealistic approxima-
tions and limit the usefulness of this model. Nevertheless, it
provides a reasonable approximation when there is positive
drift and the synaptic inputs summate to threshold over a
much shorter time scale than the membrane decay constant
τm. Its analytic tractability makes the model useful in defining
the large τm limit of the more general model. The first pas-
sage time density for this model with homogeneous Poisson
synaptic input is given in Sect. 4.1.

3.1.2 Stein model and Ornstein–Uhlenbeck process

Stein (1965) described the fluctuations of the membrane po-
tential between two firing events, due to current synaptic in-
put, as a one-dimensional stochastic process described by,

τm
dv(t)

dt
= −[v(t) − V0] + aE SE(t) + aISI(t). (17)

Each synaptic input gives rise to a change in the membrane
potential that is a step discontinuity, and can be modeled as
a synaptic response function of the shot-noise form, Eq. (7).
The model is illustrated in Fig. 2, which shows the incom-
ing synaptic input, the resulting membrane potential with
step discontinuities, and the output spikes generated when
the potential reaches threshold. Between subsequent synap-
tic inputs the potential decays with time course determined
by the membrane time constant τm.

Just as it is possible to construct a continuous version
of the discrete random walk model for the perfect integrator
model by the Wiener process with drift, Eq. (16), so can a
continuous version of Stein’s model (which has jumps in the

input

V
0

v(t)

V
th

time

output

Fig. 2 Illustration of the Stein model with current synapses, showing
the relationship between the synaptic input (bottom plot), the membrane
potential (middle plot), and the output spikes (top plot) as a function of
time. Synaptic inputs above and below the axis represent excitatory and
inhibitory inputs respectively. Dotted lines in the middle plot represent
threshold (upper dotted line) and the resting potential (taken here to be
equal to the reset potential)
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potential) be constructed through the Ornstein–Uhlenbeck
process, given in Eq. (15). This approach proceeds by con-
structing a diffusion process with the same first and second
moments as the Stein model, as shown in Ricciardi (1976)
and Lánský (1984) for homogeneous Poisson processes and
in Lánský (1997) for inhomogeneous Poisson processes.

The time-dependent first and second moments, µ(t; v0)
and σ 2(t; v0), of the free or unrestricted membrane potential
(i.e., neglecting the spiking threshold) are defined by

µ(t; v0) ≡ E[v(t)|v0, t0 = 0]
σ 2(t; v0) ≡ Var[v(t)|v0, t0 = 0]. (18)

Their evaluation requires the expectation value of a Poisson
process: a process S(t) with intensity λ has expectation val-
ues over the time interval �t given by

E [S(t + �t)] = E
[
S2(t + �t)

] = λ�t + o(�t). (19)

In the case of current synapses with homogeneous Poisson
input, the first and second moments of the free membrane
potential are

µ(t; v0) = v0e−t/τm + µQ(1 − e−t/τm )

σ 2(t; v0) = σ 2
Q(1 − e−2t/τm ),

(20)

where the large time (equilibrium) limits of the mean and
variance of the free membrane potential are identified as the
drift and diffusion coefficients of the Ornstein–Uhlenbeck
process

τ = τm

µ = µQ ≡ τm (aEλE − aIλI) (21)

σ 2 = σ 2
Q ≡ τm

2

(
a2

EλE + a2
I λI
)
.

This correspondence between the first two moments of
the Stein model and the drift and variance of the
Ornstein–Uhlenbeck process requires that the limits are taken
in the appropriate manner (Lánský 1984). Consequently, the
membrane potential approaches an equilibrium value, µQ,
about which it fluctuates with variance σ 2

Q. The results for
homogeneous Poisson synaptic input with conductance syn-
apses are given in Sect. 4.

The diffusion approximation has been very successful
in describing the Stein model when the synaptic input can
be modeled as Gaussian white noise. However, when finite
synaptic time constants or temporal correlations are intro-
duced the noise is colored and alternative methods such as
the Fokker–Planck formalism have proved more successful,
as described in Sect. 3.2.

3.1.3 Gaussian approximation

An alternative formulation uses the Gaussian approximation,
which proceeds by considering the evolution of the free mem-
brane potential. The conditional probability density of the
free membrane potential p(v, t |v0, t0), which is the proba-
bility that it has the value v at time t given that it had the

value v0 at some earlier time t0, is parameterized as (Burkitt
and Clark 2000)

p(v, t |v0, 0)= 1√
2πσ 2(t; v0)

exp

{
−[v − µ(t; v0)]2

2σ 2(t; v0)

}
,

(22)

where µ(t; v0) and σ 2(t; v0) are given by Eq. (18). These
values are evaluated using a self-consistent formalism in
which the mean and variance are calculated by evaluating
the first two moments of the corresponding Gaussian distri-
bution. The Gaussian approximation is accurate in the limit of
a large number of small-amplitude synaptic inputs, as can be
shown using the central limit theorem (Lamperti 1966, 1996).
The error scales as 1/

√
N , as also found in a related study

(Kempter et al. 1998). Comparisons of the simulated proba-
bility density of the free membrane potential and the Gaussian
approximation show an excellent match between analytical
approximation and computer simulation (Hohn and Burkitt
2001). The Gaussian approximation, although equivalent to
the diffusion approximation, has proven to be particularly
useful in the study of the integrate-and-fire neuron model
with conductance synapses (Burkitt 2001).

3.1.4 Stein model with conductance synapses

The Stein model with conductance synapses is described by
(Tuckwell 1979, 1988b) [cf. Eq. (10)]

τm
dv(t)

dt
= −[v(t) − V0] + gE[VE − v(t)]SE(t)

+gI[VI − v(t)]SI(t). (23)

Note that the discontinuous jumps associated with each
synaptic input are now state dependent, i.e., the jump size
depends upon the value of the membrane potential. This re-
sults in a nonlinear summation of the individual excitatory
and inhibitory PSPs, whereby the amplitude of the PSP de-
creases according to how close the membrane potential is
to the corresponding reversal potential. The leakage term is
often conveniently written in terms of the passive leakage
conductance gL = 1/Rm.

A number of variations of this model have been investi-
gated (Hanson and Tuckwell 1983; Wilbur and Rinzel 1983;
Smith and Smith 1984; Kallianpur and Wolpert 1987; Lánský
and Lánská 1987; Lánský and Musila 1991; Lánský and
Smith 1991; Musila and Lánský 1994; Lánská et al. 1994;
Lánský et al. 1995; Lánská and Lánský 1998). As for the
Stein model with current synapses, the discontinuous nature
of the trajectory of the membrane potential, together with the
nonlinear summation of the PSPs, complicates the analytical
study of this model. It is therefore convenient to analyze the
corresponding diffusion model, i.e., the diffusion model with
statistically equivalent properties. The solution with homo-
geneous Poisson input is discussed in Sect. 4.2.
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Fig. 3 Illustration of the renewal Eq. (24). The conditional probability
density that the membrane potential p(Vth, t |Vreset, t0) will have the
value Vth at time t , given that it had the value v0 at an earlier time t0,
is obtained by integrating over all paths linking v(t+0 ) = Vreset with
v(t−) = Vth. Splitting each path into the first approach to threshold
(indicated for the upper trajectory by time t ′) and the return to thresh-
old (at time t) yields the renewal Eq. (24) [taken from Burkitt and
van Hemmen 2003]

3.1.5 Renewal equation

In the diffusion and Gaussian approximations to the inte-
grate-and-fire neuron model, the quantity that emerges natu-
rally from the calculation is the time at which the membrane
potential, v(t), crosses the threshold, Vth, for the first time.
This first passage time density, fθ (t), represents the output
interspike interval distribution and obeys the renewal equa-
tion (Plesser and Tanaka 1997; Burkitt and Clark 1999)

p(Vth, t |v0, t0) =
t∫

t0

dt ′ fθ (t
′)p(Vth, t |Vth, t ′), (24)

where p(v, t |v′, t ′) is the conditional probability density of
the membrane potential defined above in the description of
the Gaussian approximation. This formulation of the first pas-
sage time problem, illustrated in Fig. 3, is due to Schrödinger
(1915) and involves splitting the trajectory of the freely evolv-
ing membrane potential into two sections: the first approach
to threshold at time t ′ and the later return to threshold at time
t . This equation is exact for synaptic input modeled as a series
of δ-functions; otherwise it is approximate, since finite synap-
tic time constants introduce temporal correlations (Sect. 5.1)
that destroy the renewal property of the equation.

The integral in Eq. (24) can be solved using the con-
volution theorem of Laplace transforms, where the Laplace
transform fθ,L(s) = L{ fθ (t)} is obtained using the time-
translation invariance p(v, t |v0, t0)= p(v, t−t0|v0, 0), which
depends upon the inputs being a homogeneous Poisson
process.

3.2 Fokker–Planck formalism

An alternative formalism is the Fokker–Planck equation,
which describes the time evolution of the probability den-
sity P(v, t) of the membrane potential (van Kampen 1992;
Risken 1996)

∂

∂t
P(v, t) =

[
− ∂

∂v
A(v) + 1

2

∂2

∂v2 B(v)

]
P(v, t), (25)

where A(v) is the drift function and B(v) is the diffusion
function, which are the first two zero centered moments of the
distribution of the independent jumps in the membrane
potential due to the stochastic synaptic input. For the
Ornstein–Uhlenbeck process with current synapses, Eq. (15),
these functions are given by (Brunel and Hakim 1999)

A(v) = −1

τ
(v − V0 − µ), B(v) = 2σ 2

τ
, (26)

where τ , µ, and σ are given in Eq. (21). The Fokker–Planck
equation can be split into a continuity equation for the prob-
ability density

∂

∂t
P(v, t) = −∂ J (v, t)

∂v
, (27)

and a constitutive equation for the probability flux J (v, t)

J (v, t) = A(v)P(v, t) − 1

2

∂

∂v
B(v)P(v, t)

= −1

τ
(v − µ)P(v, t) − σ 2

τ

∂

∂v
P(v, t) (28)

which gives the probability current throughv at time t (Risken
1996). The instantaneous spiking-rate is given by the flux
through the threshold

λout(t) = J (Vth, t). (29)

The boundary conditions need to be specified; at the lower
boundary the conditions are

lim
v→−∞ P(v, t) = 0, lim

v→−∞ vP(v, t) = 0, (30)

at the threshold, Vth, there is an absorbing boundary condition

P(Vth, t) = 0,
∂

∂v
P(Vth, t) = −λout(t)τm

σ 2 , (31)

and at the reset potential, Vreset, the flux from the threshold
flows in as a result of the reset mechanism

J (V +
reset, t) − J (V −

reset, t) = λout(t − τr). (32)

The probability distribution also has to satisfy the normali-
zation condition

Vth∫
−∞

dvP(v, t) + pr(t) = 1, (33)

where pr(t) = ∫ t
t−τr

duλout(u) is the probability of the neu-
ron being refractory at time t . The generalization of these
equations to the situation where there are different popula-
tions of excitatory and inhibitory synaptic inputs is straight-
forward (Brunel 2000).
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For the integrate-and-fire neuron model with conductance
synapses, the drift and diffusion functions A(v) and B(v) are
(Richardson 2004)

A(v) =− 1

τm
(v − V0) + λEgE(VE − v) + λIgI(VI − v)

B(v) = λEg2
E(VE − v)2 + λIg2

I (VI − v)2.

(34)

The Fokker–Planck approach is particularly useful for obtain-
ing the stationary distribution of the membrane potential
P0(v) (Brunel and Hakim 1999; Brunel 2000), which is given
by the solution of

J0(v) = A(v)P0(v) − 1

2

∂

∂v
B(v)P0(v) = C, (35)

where C is a constant that is determined by the normalization
of the probability distribution. In addition, the Fokker–Planck
formalism enables a systematic perturbative expansion that
has proven useful in the study of the integrate-and-fire neu-
ron model with finite synaptic time constants and temporal
correlations (Brunel and Sergi 1998; Fourcaud and Brunel
2002), as discussed in Sects. 5.1 and 5.2.

4 The spiking-rate and interspike interval distribution

Here, the derivation of the output spiking-rate for temporally
homogeneous Poisson inputs is reviewed. How these meth-
ods can be extended to the case where the inputs are described
by an inhomogeneous Poisson process is reviewed in Burkitt
(2005). The output spiking-rate is determined from the aver-
age interspike interval, T ISI, which is the first moment of the
first passage time density,

λout = [
τr + T ISI

]−1

T ISI = E[TISI] =
∞∫
0

dt t fθ (t)
(36)

where τr is the absolute refractory period. The higher mo-
ments of the interspike interval distribution also play an impor-
tant role in understanding the properties of the model. In
particular, the coefficient of variation CV of the interspike
interval distribution,

CV =
√

Var[TISI]
E[TISI] = [(TISI − T ISI)2]1/2

T ISI
, (37)

is an important measure of the variability of the neural re-
sponse. For a homogeneous Poisson distribution, it has the
value CV = 1. The variability of neuronal spiking and the
role of the integrate-and-fire neuron model is discussed fur-
ther in Sect. 7.1.

4.1 The perfect integrator neuron model

The solution for the perfect integrator neuron model with
current synapses and homogeneous Poisson input in the case
where there are only excitatory input follows straightfor-
wardly from the Poisson statistics. If the threshold is reached

with mθ excitatory synaptic inputs (of uniform amplitude),
then the output interspike interval distribution is exactly the
distribution of the mth

θ input

fmθ (t) = λ
mθ

E tmθ−1e−λt

(mθ − 1)! . (38)

The solution of the spike output density for the homoge-
neous Poisson process with both excitatory and inhibitory
inputs may be calculated using the renewal equation for the
first passage time density, obtained using Laplace transforms
(Tuckwell 1988b),

fmθ (t) = mθ

(
λE

λI

)mθ /2 e−(λE+λI)t

t
Imθ (2t

√
λEλI), (39)

where mθ is the value of the threshold above the resting po-
tential V0 (in units of a = aE = aI) and Im is the modified
Bessel function.

A solution may also be obtained by approximating the
random arrival times using a Wiener process (Gerstein and
Mandelbrot 1964), as described in Sect. 3.1.1. The mean and
variance of the process are

µ(t; v0) = E[v(t)|v0, t0 = 0] = v0 + µWt,
σ 2(t; v0) = Var[v(t)|v0, t0 = 0] = σ 2

Wt.
(40)

The drift, µW > 0, and variance parameter, σ 2
W, for a neuron

with current synapses (Sect. 2.1.1) and Poisson-distributed
input described by Eq. (5) are given by

µW = aEλE − aIλI, σ 2
W = a2

EλE + a2
I λI. (41)

For positive drift, µW > 0, the probability of firing is 1,
whereas for negative drift, µW < 0, inhibition is greater
than excitation and the probability of firing is less than 1. It
is possible to overcome this problem by imposing a reflect-
ing boundary at some potential below v0, and the proper-
ties of this model (incorporating a constant decay term) have
been investigated using the Fokker–Planck equation (Fusi
and Mattia 1999).

The solution for the output interspike interval distribu-
tion (the density of the first passage time), obtained using the
renewal equation and Laplace transforms, is (Gerstein and
Mandelbrot 1964; Tuckwell 1988b)

fθ (t) = θ√
2πσ 2

Wt3
exp

{
− (θ − µWt)2

2σ 2
Wt

}
. (42)

This is an inverse Gaussian distribution (Chhikara and Folks
1989). The mean of the interspike interval distribution is
TISI = θ/µW and the variance is θσ 2

W/µ3
W, giving a coeffi-

cient of variation CV = σW/
√

θµW. Recent investigations
of the perfect integrator with colored noise have been carried
out (Middleton et al. 2003; Lindner 2004).

4.2 The leaky integrate-and-fire neuron model

A number of authors have subsequently analyzed the leaky
integrate-and-fire neuron model (Geisler and Goldberg 1966;
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Roy and Smith 1969), including Gluss (1967), who obtained
a solution to the first passage time problem in terms of an
expression for its Laplace transform, from which it is straight-
forward to obtain expressions for all the moments of the
distribution. The moments of the first passage time distribu-
tion were first derived by Johannesma (1968) Siebert (1969)
was the first to explicitly derive the first passage time
density. Sugiyama et al. (1970) provided an alternative
solution using a Laplace transform approach, which they
compared with the numerical results of finite-difference equa-
tions. A derivation of the first passage time distribution was
also given by Capocelli and Ricciardi (1971).

For the leaky integrate-and-fire neuron model with cur-
rent synapses and homogeneous Poisson δ-function inputs,
Eqs. (4) and (5), the conditional mean and variance of the
free membrane potential are given by Eqs. (20) and (21).
The parameters (µQ, σ 2

Q, τm) are identified as (µ, σ 2, τ )
respectively, in the Ornstein–Uhlenbeck Eq. (15).

The output spiking-rate is given by

λout =


τr + τQ

σQ

√
π

2

Vth∫
Vreset

du exp

[
(u − µQ)2

2σ 2
Q

]

×
[

1 + erf

(
u − µQ

σQ
√

2

)]


−1

(43)

where erf is the error function. For the leaky integrate-and-
fire neuron model with current synapses and δ-function inputs
the membrane time constant is the passive time constant,
τQ = τm. This is the so-called Siegert formula (Siegert 1951;
Ricciardi 1977; Tuckwell 1988b; Amit and Tsodyks 1991).
For details of a derivation using the Gaussian approximation
and a Laplace transform approach based upon the renewal
equation, Eq. (24), which requires careful consideration of
the finite and divergent parts of the resultant integrals, see
(Burkitt et al. 2003, App. A). For details of a derivation using
the Fokker–Planck equation, see Brunel and Hakim (1999).
Note that once the parameters Vth and Vreset have been cho-
sen, this formula gives the mean spiking-rate as a function of
the three variables µQ, σQ, and τQ, which are experimentally
accessible (Inoue et al. 1995; Destexhe and Paré 1999). The
case of current inputs with a finite synaptic time constant is
discussed in Sect. 5.1.

The stationary distribution of the membrane potential,
P0(v), for the model with current synapses is (Brunel and
Hakim 1999)

P0(v) = λoutτQ

σQ
exp

[
(v − µQ)2

2σ 2
Q

]

×
Vth∫
v

du exp

[
(u − µQ)2

2σ 2
Q

]
�(u − Vreset), (44)

where �(x) is the Heaviside step function.

The analysis for the case with conductance synapses is
not so straightforward, since the corresponding Stein model,
Eq. (23), has voltage-dependent jumps in the membrane po-
tential. Early studies of this model with conductance syn-
apses typically approximated the first passage time by the
instant at which the mean membrane potential crosses the
threshold. This procedure breaks down when the mean mem-
brane potential asymptotically approaches a sub-threshold
value.

It is, however, possible to find an analytic solution for
δ-function conductance synaptic input using the Stein model
(Hanson and Tuckwell 1983), or the Gaussian approximation
(Burkitt 2001), and the values of µQ, σ 2

Q, and τQ are

µQ = τQ

(
V0

τm
+ r11

)

σ 2
Q = µ2

Qr20 − 2µQr21 + r22

2/τQ − r20

(45)

1
τQ

= 1

τm
+ r10

rkl := λIg
k
I V l

I + λEgk
EV l

E,

(46)

where (kl) = {(10), (11), (20), (21), (22)}. Introducing the
total excitatory and inhibitory conductances

GE = gEλE, GI = gIλI, (47)

the expressions for the equilibrium value of the membrane
potential and the effective membrane time constant take the
simple form

1

τQ
= gL + GE + GI

µQ = τQ (gLV0 + GE EE + GI EI) ,

(48)

where gL is the passive leakage conductance. As before, the
parameter µQ represents the average equilibrium value of
the membrane potential in the absence of spike generation.
The membrane potential decays with time, displaying leak-
age with time constant τQ.

In the large NE, NI limit, the individual synaptic conduc-
tances (somewhat surprisingly) do not scale – it is sufficient
that gE, gI << 1. This is due to the increased leakage in the
model with conductance synapses, and it is in contrast to the
case with current synapses, for which aE, aI scale as 1/

√
N ,

with N = NE, NI, respectively.
The resulting output spiking-rate is given by Eq. (43) with

the values of µQ, σ 2
Q, and τQ given above (Burkitt 2001).

A similar expression have been arrived at using a Fokker–
Planck formalism (Richardson 2004)

λout =

τr + 2

Vth∫
Vreset

due−K (u)

u∫
−∞

dx
eK (x)

B(x)




−1

, (49)

where for homogeneous synaptic input both the drift and
diffusion functions, A(v) and B(v) in Eq. (34), are indepen-
dent of time and
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K (v) = − 1

τQr20
ln
(
r20v

2 − 2r21v + r22
)

+
(

2r11 − 2r21

τQr20

)
1

s0
arctan

(
2r20v − 2r21

2s0

)

s0 = gEgI

√
λEλI(VE − VI). (50)

The two expressions for the spiking-rate with conductance
synapses, Eqs. (43) and (49), agree in the regime where the
diffusion approximation is good.

The stationary distribution of the membrane potential,
P0(v), for the model with conductance synapses and homo-
geneous synaptic input is (Richardson 2004)

P0(v) = 2λout

B(v)
eK (v)

Vth∫
v

due−K (u)�(u − Vreset). (51)

The essential difference of conductance synapses to current
synapses is that the membrane potential approaches µQ with
an effective membrane time constant τQ that is less than the
passive membrane time constant τm because of the effect
of the synaptic conductances, as originally recognized by
(Johannesma 1968). It is apparent from these equations that
as the input rates λE and λI increase, the effective time con-
stant τQ decreases, due to the neuron becoming more leaky as
more synaptic channels open (Tiesinga et al. 2000). The case
of conductance synaptic inputs with a finite synaptic time
constant is discussed in Sect. 5.1 and a more detailed discus-
sion of the issues associated with conductance synapses is
given in (Richardson and Gerstner 2005).

5 Extensions of the integrate-and-fire neuron model

5.1 Finite synaptic time constants

The effect of the synaptic time constant τs may be approx-
imated in the model by modeling the synaptic input as a
dynamical quantity. In the case of current synapses, the mem-
brane voltage is given by

τm
dv(t)

dt
= −[v(t) − V0] + Rm Is(t), (52)

and the synaptic current Is(t) obeys the Langevin equation

τs
dIs(t)

dt
= −Is(t) + µ + σ

√
2τsξ(t), (53)

where ξ(t) is Gaussian white noise and µ, σ are the mean
and variance of the input synaptic current, given by Eq. (21).
The synaptic current consequently has an exponential cor-
relation with time constant τs. It is then possible to write a
Fokker–Planck equation for the probability density
P(v, Is, t) (Brunel and Sergi 1998). The stationary solution
can be approximated by expanding as a power series in the
parameter k = √

τs/τm < 1. The output spiking-rate to first
order in k is given by (Brunel and Sergi 1998; Fourcaud and
Brunel 2002).

λout =


τr + τQ

σQ

√
π

2

Vth+kασQ∫
Vreset+kασQ

du exp

[
(u − µQ)2

2σ 2
Q

]

×
[

1 + erf

(
u − µQ

σQ
√

2

)]


−1

, (54)

where α = |ζ(1/2)| and ζ is the Riemann zeta function. The
approximation to the stationary distribution of the membrane
potential, P0(v), is likewise obtained by adding the correction
term kασQ to both Vreset and Vth in the expression for P0(v)
in Eq. (44). This method has also been used for studying the
leaky integrate-and-fire neuron model with current synapses
and oscillatory input current (Fourcaud and Brunel 2002). An
expansion in the parameter

√
τm/τs < 1 for large synaptic

time constants, also using the Fokker–Planck formalism, is
given by (Moreno-Bote and Parga 2004).

In the case of conductance synapses, finite synaptic time
constants are introduced in an analogous fashion to current
synapses, Eq. (53), by modeling the conductances as a Lange-
vin equation

τs
dg(t)

dt
= −g(t) + g0 + σg

√
2τsξ(t), (55)

where ξ(t) is Gaussian white noise, g0 and σg are the mean
and variance of the conductance fluctuations, and in general
there are different synaptic time constants associated with
each type (E, I) of conductance in the model. This model
has been investigated using numerical simulations (Destexhe
et al. 2001). The analytical study of this model is somewhat
more complicated than for current synapses, since the result-
ing fluctuations are not simply additive (as they are for current
synapses) but have a component with a multiplicative depen-
dence upon the membrane potential, as described in Eq. (10).
A perturbation method has been developed (Richardson and
Gerstner 2005) that successfully describes the non-Gaussian
nature of the free membrane potential distribution, giving
the effective-time-constant approximation (Burkitt 2001) to
leading order while the higher orders give the skew of the dis-
tribution. However, this multiplicative noise means that there
is no straightforward extension of the results for the spik-
ing-rate and CV obtained for δ-function conductance synap-
tic input using the Fokker–Planck formalism (Lindner and
Longtin 2005a, in press).

5.2 Temporal correlations in the synaptic input

The existence of correlations in the arrival times of input
on different synapses has been postulated as a cause of the
observed variability of output spike times (Stevens and Zador
1998). Such temporal correlations in the synaptic input cur-
rent Is(t) can be included by modeling the current as colored
noise, η(t),

〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = exp

(−|t − t ′|
τc

)
, (56)
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where τc is the time constant of the input correlations (in the
limit τc → 0, η(t) becomes a Gaussian random variable).
Colored noise can be generated from Gaussian white noise
using the Langevin equation

τc
dη(t)

dt
= −η(t) +√

2τcξ(t), (57)

where ξ(t) is Gaussian noise. This introduces a filtering of
the same type as that considered above in relation to finite
synaptic time constants, and the same methods have been
employed to study temporal correlations, both with numer-
ical simulations (Sakai et al. 1999) and the Fokker–Planck
approach (Moreno et al. 2002). The impact of temporal cor-
relations in the synaptic input upon the variability of output
spike times has subsequently been examined by a number
of authors both analytically in the perfect integrator (Salinas
and Sejnowski 2000; Feng and Brown 2000) and numerically
in the leaky integrate-and-fire neuron model, with binary val-
ued current synapses (Salinas and Sejnowski 2002) and with
conductance synapses (Salinas and Sejnowski 2000; Svirskis
and Rinzel 2000; Feng and Brown 2000; Stroeve and Gielen
2001). The results indicate that such temporal correlations
increase the variability, as well as playing a role in regu-
lating the gain of the output spiking-rate. A discussion of
other possible sources of spike timing variability is given in
Sect. 7.1 and of gain modulation in Sect. 7.2. In addition to
pairwise correlations of the sort discussed above, it has also
been found that the higher-order statistics can have an effect
upon the firing rate of neurons (Kuhn et al. 2003).

5.3 Adaptation and relative refractory effects

Spike-rate adaptation is the observed lengthening of the
interspike intervals over time when a neuron is injected with
a constant current, before it settles into a steady-state value.
The inclusion of adaptation into the framework of integrate-
and-fire neuron models is problematic, since the reset
mechanism after the generation of an output spike in the inte-
grate-and-fire neuron model means that both the past spike
times and the previous time course of the membrane poten-
tial are forgotten. This renewal behavior is what facilitates
the analytic study of integrate-and-fire neuron models, but
makes including adaptation effects difficult.

In order to include adaptation effects in the leaky
integrate-and-fire neuron model with conductance synapses,
an adaptation current is introduced (Wehmeier et al. 1989;
Salinas and Sejnowski 2000)

Iadapt(t) = −gadapt(t)[v(t) − V0], (58)

where gadapt(t) is a time-dependent shunting conductance
with an associated reversal potential equal to the resting po-
tential. Each output spike increases this conductance by a
fixed amount ginc and between spikes the conductance de-
cays with an associated time constant, τadapt,

τadapt(t)
dgadapt(t)

dt
=−gadapt(t)+

∑
{tout}

gincδ(t − tout), (59)

where {tout} are the output spike times. The rationale is
that this adaptation mechanism mimics the activation of the
fast potassium current that occurs after a spike is generated
(McCormick et al. 1985). This current is not reset when an
output spike is generated and consequently it contains infor-
mation about the past spiking behavior of the neuron.

An extensive study of spike-rate adaptation and its role
in the temporal properties of neuronal computation has been
carried out (Liu and Wang 2001), using a leaky integrate-and-
fire model with a Ca2+-activated K+ current (Wang 1998).
They find an analytic expression for the adaptation time con-
stant τadapt in terms of the Ca2+ decay time constant and
other neural parameters, and explore the variability of the in-
terspike intervals. Similar results are obtained using a more
general approach to adaptation (i.e., not tied to the Ca2+-
dependent K+ channel) and also showed that adaptation
linearizes the input-output curve for constant current injec-
tion, namely the singularity of the slope at the spiking thresh-
old becomes finite [cf. discussion following Eq. (14)] (Er-
mentrout 1998; Benda and Herz 2003). A similar model
of spike adaptation has been used in a study of contrast
invariance of neurons in the visual cortex (Hansel and van
Vreeswijk 2002), in neocortical rhythms (Fuhrmann et al.
2002), and in the response of neurons to in vivo-like currents
(Rauch et al. 2003).

A number of alternative methods to introduce spike-rate
adaptation have been proposed. One method is to increase
the threshold for a time following the generation of a spike,
and a review of early work using models of this type is given
by (Holden 1976, Chap. 4.4). Such a transient increase of
the threshold following a spike has also been used as a tech-
nique to include a relative refractory period into the model
(Tuckwell 1978b; Wilbur and Rinzel 1983; Tuckwell and
Wan 1984). The model displays the progressive decrease in
the spiking-rate following the onset of a stimulus that char-
acterizes adaptation, as well as a correlation of the interspike
intervals (Chacron et al. 2003). Analytical expressions for
the mean and variance of the interspike interval have been
found for the case where the modification to the threshold
is small (Lindner and Longtin 2005b). Another method for
modeling refractoriness is to consider the spiking threshold
as an elastic barrier (Buonocore et al. 2002).

Wilbur and Rinzel (1983) carried out a numerical inves-
tigation of the leaky integrate-and-fire neuron model with
conductance synapses using a time-varying spiking thresh-
old. They used both Monte Carlo simulations and numerical
methods for solving partial differential equations to show that
a time-dependent threshold is capable of producing results
that more closely agree with experimental data. Moreover,
such a time-dependent threshold is equivalent to allowing a
partial reset of the membrane potential following each spike
(Bugmann et al. 1997).

The effect of noise adaptation, namely how a step increase
in the root-mean-square level of input noise produces a tran-
sient increase in the spiking-rate of integrate-and-fire neu-
rons, is discussed in (Rudd and Brown 1997).
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Recent studies have employed the population density
approach to investigate both of the above mechanisms of
adaptation (adaptation current and time-dependent thresh-
old) to examine the time-varying behavior of a large popula-
tion of adapting integrate-and-fire neurons with conductance
synapses (La Camera et al. 2004).

6 Relationship to the Hodgkin–Huxley model
and electrophysiological data

6.1 Hodgkin–Huxley model

The Hodgkin–Huxley model of the membrane potential is the
classic description of both the subthreshold behavior and the
spiking behavior of the membrane potential (Hodgkin and
Huxley 1952). It is an equation of the form given in Eq. (1),
but with a spiking current Ispike [cf. Eq. (3)]

Ispike(t) = gNam3h(v(t) − VNa) + gKn4(v(t) − VK), (60)

where gNa and gK are the sodium and potassium conduc-
tances, respectively, VNa and VK are their associated reversal
potentials, m and n are the sodium and potassium activa-
tion variables, and h is the sodium inactivation variable. The
voltage dependence of the variables m, h, and n provides a
description of the time course of an action potential.

The relationship between the Hodgkin–Huxley model
and other neuron models has been examined by a number
of authors (Abbott and Kepler 1990). The standard leaky
integrate-and-fire neuron model cannot be derived from
conductance-based models such as the Hodgkin–Huxley
model using a rigorous reduction procedure. However, it is
possible to approximate the Hodgkin–Huxley model by a re-
sponse kernel expansion in terms of a single variable describ-
ing the membrane voltage. The truncation of this expansion
beyond the first-order kernel has been shown to be equiva-
lent to a form of the leaky integrate-and-fire neuron model
(Kistler et al. 1997), namely the spike response model (Ger-
stner 1995). Numerical comparisons of this threshold model
with the Hodgkin–Huxley model with stochastic input cur-
rent have shown that the threshold model provides a good
approximation that justifies the threshold description of the
spiking behavior. The relationship between the Hodgkin–
Huxley model and the leaky integrate-and-fire model, as well
as a pulse-based model, is examined in detail in (Destexhe
1997).

6.2 Comparison of integrate-and-fire neurons
with electrophysiological data

There are three classes of parameters that characterize the
integrate-and-fire neuron model. First, there are the intrin-
sic parameters characterizing the neuron, such as the firing
threshold Vth, the resting potential V0, the reset potential fol-
lowing a spike Vreset (often taken in the model to be equal
to the resting potential), the reversal potentials VE, VI, and

the passive membrane time constant τm. These parameters
are not dependent upon the activity of the neuron (i.e., the
response to synaptic input) and can be determined by direct
methods (i.e., observing responses to injected current). There
are well-established methods for determining these parame-
ters (Tabak et al. 2000) and they will not be discussed fur-
ther here. Second, the parameters associated with the re-
sponse of the membrane potential to stochastic synaptic in-
put, namely the three variables µQ, σQ, and τQ. These param-
eters are experimentally accessible from intracellular record-
ings. Third, the parameters associated with the input to the
neuron, namely the amplitudes aE, aI (or gE, gI for mod-
els with conductance synapses), spiking-rate λE, λI, and the
number of synaptic inputs NE, NI. These parameters are
usually not directly experimentally accessible and must be
deduced from the observed activity, either intracellularly or
extracellularly. When considering in vivo data, the second set
of parameters (associated with the membrane potential) are
clearly intimately related to the third set (associated with the
input to the model).

There has been comparatively little work done on the
systematic estimation of these parameters from electrophys-
iological data. A proper estimation of the parameters enables
a systematic comparison of the model with the data using
statistical techniques and is an important step in the vali-
dation of the model. Early work comparing the model with
experimental data centered around a comparison of extracel-
lular recordings (i.e., the moments of the interspike interval
distribution) with model parameters. Fits of the interval his-
togram data to the inverse Gaussian distribution, Eq. (42),
for the perfect integrator (Gerstein and Mandelbrot 1964),
were obtained using both least-squares and maximum like-
lihood estimation methods (Nilsson 1977). A comparison of
the first three moments of the diffusion approximation of
the leaky integrate-and-fire neuron model with experimental
data enabled the number of synaptic inputs to the neuron to
be estimated (Tuckwell and Richter 1978). The difficulty of
these estimation techniques is that they are based upon com-
plex analytical expressions for the moments of the interspike
interval distributions. In order to overcome this difficulty,
maximum likelihood estimation methods were proposed for
the comparison of mean µ and variance σ of the membrane
potential with recordings of the intracellular trace between
consecutive spikes (Brillinger and Segundo 1979; Lánský
1983). Subsequent neural parameter estimator studies have
elaborated these two methods, followed either methods based
on extracellular data (O’Neill et al. 1986; Lánský and Radil
1987; Brillinger 1988; Inoue et al. 1995; Paninski et al. 2004)
or intracellular data (Habib and Thavaneswaran 1990; Lánská
and Lánský 1998). Recent studies have made use of large-
scale numerical simulations (Destexhe and Paré 1999) and
whole-cell recordings using the dynamic-clamp technique,
in which the response of a neuron to an injected stochastic
current with parameters (µ, σ ) is observed (Destexhe et al.
2001). Rather than using analytical fitting techniques, some
studies have implemented Monte Carlo parameter estima-
tion techniques (Rauch et al. 2003). Parameter estimation
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using the dynamic-clamp technique has been extended to
take account of network behavior (Giugliano et al. 2004).

7 Discussion

The integrate-and-fire neuron model has proven useful in
addressing many of the questions about how neurons and
neural systems process information. The sheer quantity of
such investigations means that a review such as this must
be somewhat selective, both in terms of the issues addressed
and the papers cited. In particular, it is not possible to re-
view the many applications of the integrate-and-fire neuron
model that are modality specific, i.e., that address-specific
questions in the visual, auditory, olfactory, somatosensory,
or motor systems. The questions addressed below have been
chosen to illustrate how the model has played, and is play-
ing, an important role in elucidating some of the broader key
issues in our understanding of neural systems.

7.1 ISI variability with the integrate-and-fire
neuron model

The irregular firing of cortical neurons in vivo has frequently
been used to make inferences about the cortical code and cor-
tical processing. A measure of this irregularity is the coeffi-
cient of variation of the interspike intervals, given in Eq. (37).
Softky and Koch (1992, 1993) pointed out that the integration
of many randomly arriving excitatory postsynaptic potentials
leads to highly regular, rather than irregular, neural firing.
Experimental evidence (Bryant and Segundo 1976; Mainen
and Sejnowski 1995) suggests that the spiking mechanism is
very reliable, and so the synaptic input must be correlated,
causing irregular fluctuations in the membrane potential, or
there must be some strong dendritic nonlinearities in neural
processing. Subsequent studies showed that highly irregular
spiking can also result from either a short membrane time
constant (i.e., the neuron behaves as a coincidence detec-
tor, responding to random variations in the membrane po-
tential), or from a balance between excitation and inhibition,
which can cause the membrane potential to have an equilib-
rium value just below threshold, so that random small fluc-
tuations can generate spikes (Shadlen and Newsome 1994,
1998). Moreover, such an approximate balance of excitation
and inhibition produces an effective membrane time constant
that is much shorter than the passive membrane time constant,
as discussed in Sect. 4.2, and is therefore a likely cause of
the irregular firing.

It is beyond the scope of this review to give a full descrip-
tion of the extensive research and the numerous mechanisms
that have been proposed as an explanation of the observed
irregular spiking in cortical neurons. However, the integrate-
and-fire neuron model has played an important role in uncov-
ering some of the important issues associated with irregular
spiking behavior, and some of the papers that have used the

model are discussed here briefly. One of the earliest analy-
ses of the coefficient of variation using the integrate-and-fire
neuron model with conductance synapses (Tuckwell 1979)
showed that a large amount of inhibition could produce a
value of CV greater than 1. This result was subsequently dis-
puted in a study that showed that such large values of CV
within a physiologically realistic parameter range required
the introduction of a time-varying (decaying) threshold to
model refractory effects (Wilbur and Rinzel 1983). There
have been a number of more recent investigations of the effect
of an exponentially decaying threshold on the ISI variability
(Chacron et al. 2003; Lindner and Longtin 2005b), which
introduces correlations between successive interspike inter-
vals as discussed in relation to adaptation (Sect. 5.3).

There are a number of other factors that can have an ef-
fect upon the temporal structure of the output spike times.
Correlations within the synaptic input have been implicated
as a source of the high ISI variability observed, and such
correlations can arise either through explicit temporal corre-
lations between inputs on different synapses, as described
in Sect. 5.2, or through finite synaptic time constants, as
described in Sect. 5.1. The studies of the integrate-and-fire
neuron model with temporal correlations discussed in these
sections have shown that correlations can substantially in-
crease the variability of the output spike times. Another pro-
posed source of temporal correlations is through the spatial
properties of the model neuron, namely taking into account
the spatial extent of the dendritic tree (Kohn 1989). This is
typically done by considering a two-compartment model, in
which one compartment corresponds to the effect of the den-
dritic tree and the other to the spike initiation site (Lánský and
Rospars 1995). The dendritic compartment is modeled using
a diffusion process that is independent of the output spikes,
whereas the spike initiation compartment is modeled as a
simplified RC-circuit. The output spikes generated in this
model have been found to be temporally correlated (Lánský
and Rodriguez 1999a,b). Another effect upon the temporal
structure of the output spike times is the possibility of a ran-
domized distribution of reset potentials following the gener-
ation of a spike (Lánský and Musila 1991). Introducing such
a random reset value of the membrane potential causes an
increase in the variability of the output spikes (Lánský and
Smith 1989). The effect upon CV of a partial reset of the
membrane potential was investigated by (Troyer and Miller
1997) and was further examined in considerable detail by
(Bugmann et al. 1997), where it was shown to be equivalent
to the use of a time-dependent threshold, as described above.

While most models consider Poisson-distributed synap-
tic inputs, some analyses of real spike data shows that it can
exhibit long-range dependence, and this can have a significant
influence upon the variability of the output spikes (Jackson
2004). An analysis of the effect of such long-range depen-
dence upon the spiking-rate and CV has been carried out in
the perfect integrator (Middleton et al. 2003) and the leaky
integrate-and-fire neuron model (Jackson 2004).

Other mechanisms that address the question of output
spike variability include the interaction of random synaptic
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input with nonlinearities in type I Hodgkin–Huxley spike
dynamics (Gutkin and Ermentrout 1998).

The observed spike time variability may also arise through
network mechanisms, such as the amplification of corre-
lated fluctuations in a recurrent network. This mechanism has
been shown to give high values of CV in a numerical study
of a network of leaky integrate-and-fire neurons (Usher et
al. 1994). A comparison of the CV between two analytical
studies of a sparsely connected network of integrate-and-fire
neurons, one with current synapses (Brunel 2000) and the
other with conductance synapses (Meffin et al. 2004), indi-
cates that different mechanisms underlie the irregular spik-
ing in these two models. In the case of conductance-based
synapses, irregular firing is maintained across different lev-
els of external input through changes in the effective mem-
brane time constant τQ (Meffin et al. 2004). This causes a
rapid charging of the membrane potential to values just below
threshold, and random fluctuations then occasionally cause it
to cross threshold. This mechanism does not require a strict
balance between excitation and inhibition, which is required
in the case of current synapses. Similar conclusions were
reached in a simulation based study (Rudolph and Destexhe
2003).

7.2 Gain modulation

Gain modulation describes how the amplitude of the output
response of a system can be changed in a nonlinear way,
in particular how a neuron’s spiking-rate (in response to a
stimulus) is modulated by other features in the external or
internal environment. This allows information to be trans-
formed, combined or compared, and consequently gain mod-
ulation provides an important means by which an organism
can respond appropriately to its environment. Physiological
studies have observed gain modulation both in many neural
functions and in a number of brain areas, but the underly-
ing mechanisms are not well understood. The central ques-
tion concerning gain modulation is how neurons achieve the
nonlinear, multiplicative behavior characteristic of gain
modulation when their input–output relationship is basically
integrative. A number of possible mechanisms have been pro-
posed for neural gain modulation at the single neuron level,
as reviewed by (Salinas and Thier 2000). One approach in-
volves the effect of correlated synaptic input (see Sect. 5.2),
in which an analysis of an integrate-and-fire neural model
indicates that the gain can be modulated by the degree of cor-
relation of the synaptic inputs (Salinas and Sejnowski 2000).

Another approach involves the effect of the balanced
component of the synaptic input in providing the nonlinear
gain modulation of the neural response to an additional driv-
ing synaptic input (Chance et al. 2002). An analysis of gain
modulation using the leaky integrate-and-fire neural model
with conductance synapses showed that the effect of increas-
ing the balanced background activity can be understood in
terms of two competing processes, both influenced by the
effective membrane time constant, τQ (Burkitt et al. 2003).

First, the contribution of a driving excitatory synaptic input
to the mean membrane potential is approximately linear in
the spiking-rate of the driving input. As the level of back-
ground activity increases, the effective time constant, τQ,
decreases, resulting in a lower value of µQ for a given
driving spiking-rate [see Eq. (45)]. This decrease in τQ is due
to the neuron becoming more leaky as more synaptic chan-
nels open (Tiesinga et al. 2000). The value of σQ remains
approximately constant for all conditions and driving spik-
ing-rates, also as a result of the increased leakiness. Although
lower values of µQ are expected to decrease the output spik-
ing-rate, this is offset by a second effect: the neuron operates
on a faster time scale as τQ decreases, and so the time course
and fluctuations in the membrane potential are more rapid.
When the neuron is in the linear input–output regime these
two competing effects approximately cancel and there is no
gain modulation. When the neuron is in the nonlinear regime
the effect of the extra leakiness dominates over the effect of
the faster time scale, resulting in diminished gain as the level
of background activity increases (Meffin et al. 2005). Simi-
lar conclusions were reached in related studies (Murphy and
Miller 2003; Yu and Lee 2003; Kuhn et al. 2004).

The conditions that characterize the linear and nonlinear
behavior can be understood by reparameterizing the output
spiking-rate, Eq. (43), as (Burkitt et al. 2003)

λout = 1

τQ
F

(
µQ − Vth√

2σQ
; σQ

θ

)

= 1

τQ




− (µQ−Vth)√
2σQ∫

− (µQ−Vth)√
2σQ

− θ√
2σQ

du
√

πeu2
(1 + erf u)




−1

,

(61)

where the absolute refractory period term has been neglected,
since we are interested in comparatively low spiking-rates
where it plays little role. Figure 4 shows that the function
F is approximately linear in the first argument, x = (µQ −
Vth)/

√
2σQ, for moderate and large values of x . Two impor-

tant implications follow from this result (Burkitt et al. 2003).
First, a linear input–output curve can result even when µQ is
less than threshold. Second, the transition from linear to non-
linear behavior occurs when the output spiking-rate becomes
sufficiently large, as illustrated in Fig. 4b. This provides a sec-
ond criterion for the presence of gain modulation behavior
that relates directly to the output spiking-rate.

Other mechanisms for gain control using the integrate-
and-fire neuron model with conductance synapses have been
investigated by a number of authors, including the study of the
effect of neuromodulators acting postsynaptically, inhibitory
feedback and presynaptic inhibition (Capaday 2002), and
studies of shunting inhibition (Doiron et al. 2000; Longtin
et al. 2002).
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Fig. 4 Illustration of gain modulation in the integrate-and-fire neuron model. a The function F , Eq. (61), and b its derivative with respect to its
first argument x = (µQ − Vth)/

√
2σQ for several values of its second argument σQ/θ = 0.05 (solid), 0.1 (dashed) and 0.2 (dot-dashed). The

vertical dotted lines in (b) illustrate the region −1.5 ≤ x ≤ −0.5 in which a transition from nonlinearity to linearity occurs, depending on the
values of σQ/θ and the strictness of the criteria for linearity. The dotted lines in (a) give the corresponding region and values of the function F .
(Taken from Burkitt et al. 2003)

8 Conclusions

The integrate-and-fire neuron model has been a very useful
tool in the quest to understand how neural systems function
and how they process information. The separation of the time
scales in the model between the relatively slow subthreshold
integration of synaptic inputs and the rapid spike generation
has captured a significant part of the essential character of
neural processing. The model is sufficiently simple to pro-
vide both analytical methods of solution and intuitive insights
into a number of important questions.

However, the model also has a number of shortcomings
associated with the simplifying assumptions that form part
of the model, such as the neglect of the spiking mechanisms
and the lack of spatial structure. The model represents a bal-
ance between conceptual simplicity and biological accuracy.
The perfect integrator with current synapses, for example, is
relatively straightforward to analyze, but the results can be
used as a guide to actual neural behavior only in limited situ-
ations. The various extensions to the model to include more
biological features, as discussed in Sect. 5, extend the appli-
cability of the model but lead to increasing complexity in the
mathematical analysis of the model.

Nevertheless, the advantages possessed by the integrate-
and-fire neuron model mean that, despite these shortcom-
ings, it will very likely continue to play an active role in our
understanding of neural information processing, particularly
in those areas in which the network dynamics (as opposed to
the single neuron properties) is crucial to understanding the
function of the neural system. These include an understand-
ing of the control mechanisms and the control hierarchy in
the brain, including the role of feedback (Laing and Longtin
2003) and network stability which are the subjects of a sep-
arate review (Burkitt 2006).
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