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Modeling has contributed a great deal to our understanding of

how individual neurons and neuronal networks function. In this

review, we focus on models of the small neuronal networks of

invertebrates, especially rhythmically active CPG networks.

Models have elucidated many aspects of these networks, from

identifying key interacting membrane properties to pointing out

gaps in our understanding, for example missing neurons. Even

the complex CPGs of vertebrates, such as those that underlie

respiration, have been reduced to small network models to

great effect. Modeling of these networks spans from simplified

models, which are amenable to mathematical analyses, to very

complicated biophysical models. Some researchers have now

adopted a population approach, where they generate and

analyze many related models that differ in a few to several

judiciously chosen free parameters; often these parameters

show variability across animals and thus justify the approach.

Models of small neuronal networks will continue to expand and

refine our understanding of how neuronal networks in all

animals program motor output, process sensory information

and learn.
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Introduction
Models of the small neuronal networks of invertebrates,

especially rhythmically active central pattern generators

(CPG), have proven to be fruitful subjects of investi-

gation, revealing general principals of neuronal network

function and generating hypotheses later supported by

the living systems they represent. Over the past two

decades, models of ‘simple’ networks, powered by effi-

cient desktop computing and a wealth of physiological

data, have provided guiding insights into how neuronal

networks function. Over the past decade, theoretical

studies, but now supported by experimental analysis in

several different networks and species, have shown that
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reliable network output can result from networks in

which parameters (e.g. the intrinsic membrane proper-

ties (maximal conductances) of the neurons and the

strengths of the synaptic connections) show 2–5-fold

animal-to-animal variability [1–3]. Consequently, to

understand a neuronal network through biophysical

modeling, we must construct populations of models with

multiple sets of parameter values corresponding to

parameters from different individuals [4–6]. A sobering

consequence is that the computational effort needed to

produce a state of the art biophysical model is vastly

increased. The situation is clearly still fluid [4,5], but the

reaction in the modeling community has ranged from a

continued pursuance ‘ideal parameter sets’ or sticking to

averaged values for parameters to what Prinz [6], calls

ensemble modeling, where multiple functional instances

are identified and examined. In this review we sample

the diversity of small network modeling approaches to

highlight how each continues to contribute significant

new insights.

A note on models and parameters
Before we continue, we should distinguish between

models and parameters. The models discussed in this

review consist of differential equations that describe the

dynamics of state variables, for example, membrane

potential (Vm) and the gating variables of voltage de-

pendent conductances. Embedded in these equations

are a number of parameters, including maximal con-

ductances as well as half activation voltages and time

constants of channel gates. Some of these parameters

are considered free, or variable between instances, while

the remaining parameters are fixed. For example, in

the pioneering work of Prinz et al. [2,3], only maximal

conductances were considered free parameters. Even

with powerful computing resources, it is not possible or

desirable to consider all instances of a model. Making a

model then involves deciding on a neuronal structure

(single or multiple compartments), network connec-

tivity, descriptive equations (often derivatives of

the Hodgkin–Huxley formalism), which parameters

are free and the range over which each may vary. These

decisions will all be driven by the data available

and by the investigators’ intuition for which parameters

are likely to be significant in controlling neuronal

activity. In short, the ability to consider multiple

instances of a model does not free one from making

a good model, and making a good model requires

detailed knowledge of the system and judgment about

what details can be ignored and which parameters

fixed.
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Swimming in Tritonia
The swimming CPG of Tritonia has long been the object

of experimental analyses and modeling [7,8]. Calin-Jage-

man et al. [9��], updated the Getting model [10] to reflect

new data on synaptic connectivity, intrinsic properties

and intrinsic neuromodulation with a careful refitting of

intrinsic and synaptic parameters, only to find that the

network model did not produce the swim motor pattern

in either the unmodulated or modulated state. Unde-

terred, they first compared their model’s parameters to

those of the original model and adjusted those that

significantly differed to the values of the original model.

This process restored the ability of the model to produce

the swim pattern. They also performed a brute force

parameter space investigation of the differing

parameters and identified all models that produced

the swim pattern (2%). They showed that all parameters

sets leading to proper network function were contiguous

in parameter space. Then, using discriminant analysis

and dimensional stacking, they identified key

parameters contributing to proper network function.

Somewhat at a loss to explain how their carefully fitted

model failed while the Getting model was successful,

they suggest that, ‘even if it reflects a nonphysiological

configuration, it has still been a useful sign-post toward

understanding the conditions that could enable the

swim-motor program.’

Feeding in Lymnea
The feeding CPG of Lymnea is well characterized [11] and

has been analyzed for mechanisms of associative learning

in the form of single-trial, food-reward classical condition-

ing [12,13]. Vavoulis et al. [14], developed a model of the

core CPG with fixed parameters selected to match excit-

ability criteria and other physiological data. This model

captured feeding activity and predicted physiological

phenomena that were later verified experimentally. Cor-

responding work in the Aplysia feeding CPG [15] failed to

capture feeding activity without an additional putative

neuron which has yet to be identified physiologically. An

interesting aspect of the Aplysia study is the extensive

sensitivity analysis, including perturbations during simu-

lations, which demonstrated the model activity’s robust-

ness to parameter variation.

Vavoulis et al. [16�], have continued the Lymnea work by

focusing on the mechanisms of persistent depolarization

of the cerebral giant cells (CGCs) that underlies single-

trial, food-reward classical conditioning. To construct the

model CGC neuron they used a combination of fitting to

available voltage-clamp data and parameter optimization

techniques for determining maximal conductances and

dynamic parameters. Remarkably, optimization led to

tight ranges for most parameters, though some time

constant parameters were not tightly constrained. A

model based on median parameter values captured

CGC depolarization without altered excitability,
www.sciencedirect.com 
observed in the living system, and identified two critical

maximal conductances in this process; simultaneous

increases in maxgNaP, a persistent sodium current, and

maxgD, a delayed rectifier.

Heartbeat in Hirudo
The heartbeat CPG of Hirudo has been analyzed [17] and

modeled, for example [18], extensively. Weaver et al. [19],

presented a model of the entire core CPG that shows the

utility of systematic parameter variation of a small subset

of parameters in network analysis. Two bilateral pairs of

premotor interneurons, phased differently with respect to

the timing kernel of the CPG, show a phase progression

on one side and near synchrony on the other. These phase

differences are achieved by blending inhibitory synaptic

input and electrical coupling. Making simplifying

assumptions based on symmetry in the network, these

investigators probed a range of maximal conductances

for the inhibitory synapse and the electrical coupling to

each premotor interneuron. The analysis established

parameter values that produced model activity within

the range observed in a large number of preparations.

The relative parameter values predicted by this model

were confirmed physiologically in voltage-clamp exper-

iments [19] (see Figure 1).

The control of motor neurons by this CPG has also been

extensively analyzed and modeled [20,21,22�]. Garcia

et al. [23] used averaged data to define input phasing

and synaptic strength profiles and a simplified single

compartment model for the motor neurons. That model

failed to achieve quantitatively accurate average output

phasing [23,24]. An analysis of 12 preparations for the

timing of the activity of the four premotor interneurons of

the CPG (input phasing) and of their strength of inhibi-

tory output (synaptic strength profiles) onto motor

neurons, and the timing (output phasing) of the motor

neurons revealed wide animal-to-animal variability in

synaptic strengths and input and output phasing [20].

Wright and Calabrese [22�], used input phasing, synaptic

strength profiles and phasing targets from individual

animals as inputs to the Garcia model [23], but were still

not able to achieve greater accuracy. Those results, as well

as dynamic clamp experiments also using individualized

synaptic input patterns, indicated the involvement of

motor neuron intrinsic properties not encompassed by

the motor neuron model, thus leading to the conclusion

that a multi-compartmental motor neuron model with

more sophisticated intrinsic properties was required

[21,22�].

Respiration in vertebrates
The respiratory CPG of vertebrates has been studied in

detail at many levels. It is a complex system consisting of

millions of neurons with a great diversity of intrinsic and

synaptic properties [25]. Moreover, the CPG is influ-

enced by myriad extrinsic inputs, primarily related to
Current Opinion in Neurobiology 2012, 22:670–675
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Figure 1
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(a) Bilateral activity (recorded extracellularly) in the premotor heart interneurons (HN(3), HN(4), HN(6) and HN(7) interneurons) of the core heartbeat CPG

showing these neurons in peristaltic (P) and synchronous (S) coordination modes. The middle spike of the peristaltic HN(4) interneuron is used as a

reference to compute phase: vertical dashed lines ease comparison of relative (unilateral) phase in the two coordination modes. The bilateral record is

artificially reconstructed from a unilateral recording that switched between coordination modes and aligned so that peristaltic and synchronous HN(4)

interneurons fire out of phase (0.5). (b) Circuit diagram showing synaptic connections among interneurons of the core heartbeat CPG. Small colored/

black circles indicate inhibitory chemical synapses, and diodes indicate rectifying electrical junctions. For simplicity, in the CPG diagram, cells with

similar input and output connections and function are combined. Only one HN(5) interneuron is rhythmically active at a time, and it determines

synchronous coordination ipsilaterally and peristaltic coordination contralaterally. (c) Covarying maximal conductances for the inhibitory synapse and

the electrical coupling to identify appropriate values (colored asterisks and arrows). For every combination of maximal conductances, phase and duty

cycle for that middle premotor interneuron were calculated and compared with those of individual neuron’s experimentally recorded values (see graph

legend). (d) Core CPG model activity (bilateral) with parameters selected in (c). After Weaver et al. [19].

Current Opinion in Neurobiology 2012, 22:670–675 www.sciencedirect.com
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relevant respiratory signals such as pCO2. A large-scale

computational model of the respiratory CPG [26] suc-

cessfully reproduced data from arterially perfused

brainstem-spinal cord rat preparations in which tran-

sections sequentially removed rostral components of

the respiratory network. That model was based on

populations of Hodgkin–Huxley style neurons in

the Bötzinger complex (BötC), pre-Bötzinger complex

(pre-BötC), and ventral respiratory group, with excit-

atory drive from the pons and retrotrapezoid nucleus

(RTN).

Building on this work, Rubin et al. [27��,28], reduced the

complexity and employed the small network approach

used for invertebrate models. The authors used activity-

based, non-spiking, single neuron models to represent

populations of spiking neurons, allowing for the appli-

cation of bifurcation analysis. The reduced model repro-

duced the three major dynamic regimes observed in

previous experimental studies and large-scale models

[26,29], supporting the idea that the proposed architec-

ture and drive structure are reasonable. Similar to exper-

imental studies using brain stem transections, the

removal of pontine drive converted the initial three-phase

oscillations characteristic of in vivo respiration to two-

phase oscillations, which lack the post-inspiratory phase,

characteristic of en bloc preparations that retain rostral

nuclei. Subsequent removal of inhibition from BötC

expiratory neurons associated with removal of tonic drive

from RTN converted the two-phase oscillations to one-

phase inspiratory oscillations characteristic of slice prep-

arations of the pre-BötC.

Two oscillatory mechanisms appear to underlie these

oscillatory patterns at the cellular level, in particular in

the pre-BötC complex: a persistent sodium-driven oscil-

lation and a calcium-driven oscillation. Two recent papers

[30,31�] present models which include both Nap and Ca

driven oscillatory behavior, although the specifics of the

models presented differ. An important aspect of the

Toporikova and Butera model [31�] is that several import-

ant responses to neuromodulator, pharmacological, and

environmental influences are replicated, despite its rela-

tively simple construction.

Food processing in Crustaceans
The food processing CPGs in the stomatogastric nervous

system (STN) of decapod crustaceans continue to be a

focus of modeling studies with wide implications for how

neuronal networks achieve functional output. Early last

decade, researchers began to use the STG system to

address questions of model degeneracy, where the same

functional output resulted from models with widely dif-

fering underlying parameters. This raised the question of

how reliable network activity as well as sensitivity to

neuromodulation and perturbation could be achieved

in these small neural networks.
www.sciencedirect.com 
Recent investigation by Grashow et al. [32], used a sim-

plified neuronal model to approach the broad question of

how underlying neural parameters contribute to overall

network performance. The authors coupled a Morris

Lecar model neuron with a pharmacologically isolated

living STG neuron via dynamic clamp, and then varied

the maximal conductance of the artificial synapses and a

model Ih current injected into the STG neuron. Echoing

Prinz [3], the results showed that diverse parameter

values can lead to similar network output. In other cases,

however, the same parameter values can also result in

wildly different network output, showing that differences

between the intrinsic properties of the biological neurons

can drastically alter the resulting pattern in the hybrid

network. Thus, network activity is more resilient to

variations in some regions of parameter space than others,

strongly supporting earlier modeling work [1].

Nadim et al. [33�], also used a simplified model to inves-

tigate how a specific synapse influences network activity.

Their stripped down model of a primary STN pacemaker

network, composed of the anterior burster (AB) and

pyloric dilator (PD) neurons, allowed them to apply phase

plane analysis to investigate the role of the only known

chemical synapse onto this network, the lateral pyloric

(LP) to PD synapse. In the living system, the removal of

this synapse has no effect under control conditions,

although it was proposed that the LP-PD synapse would

stabilize the AB/PD cycle period [34,35]. Nadim et al.
[33�], verified this experimentally, and then used their

model to help explain how. Essentially, the synapse

reinforces the stability of the pacemaker by overriding

the influence of perturbations — either slowing down

incipient advances or speeding up incipient delays.

Moving from highly reduced to more complicated

models, Taylor et al. [36��], uses what is variously referred

to as ensemble [6], family [4], or population modeling. In

this approach, many similar models are considered and

each instance, or individual, is a different combination of

free parameter values. They constructed a biophysical

baseline model, tuned to a subset of experimental data,

and then explored the parameter space around this

model. By randomly sampling the parameter space and

then simulating and perturbing each instance, they could

identify models which were acceptable across all of

several metrics. Those acceptable models had widely

differing parameters, but did not have the strong corre-

lations between these parameters that were expected

based on experimental correlations between channel

mRNA [37–39].

Conclusions
Each of these models has advantages and limitations, but

all contribute to our understanding of neuronal net-

works — from circuit-specific findings, such as putative

new members, to broad conclusions about the likely
Current Opinion in Neurobiology 2012, 22:670–675
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structure and regulation of network topology and cellular

properties. We were only able to present a selection of

small network models, leaving out many other fascinating

systems which are actively modeled, especially neuronal

circuits underlying locomotion [40–45,46�,47�]. The abil-

ity of small network models to facilitate a mechanistic

understanding of such a broad array of complex systems

speaks to their heuristic power.

As we move forward, models of small networks will no

doubt clarify many interesting issues. For example,

although some studies find that variability of intrinsic

properties at the cellular level becomes less important at

the network level [32], others suggested that network

topology and neural dynamics strongly interact and both

are of critical importance [48]. Furthermore, we know that

neuromodulation plays a key role in pattern generation in

many systems, yet much of the research on the small

neural networks which underlie behavior appears to touch

only superficially on the 2nd messenger systems involved.

The levels of regulation available to neurons are myriad:

epigenetics, transcription and translation regulatory

mechanisms, splice variation, interrupted or delayed

translation, and post-translational modification. The next

logical step is to extend our investigations into the 2nd

messenger pathways which drive observable change in

electrophysiological properties. Not only will a more

complete understanding of the cellular pathways which

influence electrophysiological activity help us understand

the unperturbed state of small neural networks, but also

the effects of and interactions between neuromodulators

and extrinsic perturbations. In addition to expanding the

complexity of our models to include more cellular com-

plexity, the ensemble modeling approach is likely to

expand as we move forward, especially given the ever-

increasing computational capabilities available.

Models of small networks are beautiful windows into how

neuronal networks in all animals function, and we look

forward to exciting new models that will continue to

expand and challenge our understanding of them.
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