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■ Abstract Synaptic transmission is a dynamic process. Postsynaptic responses
wax and wane as presynaptic activity evolves. This prominent characteristic of chemi-
cal synaptic transmission is a crucial determinant of the response properties of synapses
and, in turn, of the stimulus properties selected by neural networks and of the patterns of
activity generated by those networks. This review focuses on synaptic changes that re-
sult from prior activity in the synapse under study, and is restricted to short-term effects
that last for at most a few minutes. Forms of synaptic enhancement, such as facilitation,
augmentation, and post-tetanic potentiation, are usually attributed to effects of a resid-
ual elevation in presynaptic [Ca2+]i, acting on one or more molecular targets that appear
to be distinct from the secretory trigger responsible for fast exocytosis and phasic release
of transmitter to single action potentials. We discuss the evidence for this hypothesis,
and the origins of the different kinetic phases of synaptic enhancement, as well as the
interpretation of statistical changes in transmitter release and roles played by other
factors such as alterations in presynaptic Ca2+ influx or postsynaptic levels of [Ca2+]i.
Synaptic depression dominates enhancement at many synapses. Depression is usually
attributed to depletion of some pool of readily releasable vesicles, and various forms of
the depletion model are discussed. Depression can also arise from feedback activation of
presynaptic receptors and from postsynaptic processes such as receptor desensitization.
In addition, glial-neuronal interactions can contribute to short-term synaptic plasticity.
Finally, we summarize the recent literature on putative molecular players in synaptic
plasticity and the effects of genetic manipulations and other modulatory influences.

INTRODUCTION

Neurons communicate with each other primarily through fast chemical synapses.
At such synapses an action potential generated near the cell body propagates
down the axon where it opens voltage-gated Ca2+ channels. Ca2+ ions entering
nerve terminals trigger the rapid release of vesicles containing neurotransmitter,
which is ultimately detected by receptors on the postsynaptic cell. A dynamic
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enhancement of such synaptic transmission has been recognized for over 60 years
(1, 2). Virtually all types of synapses are regulated by a variety of short-lived and
long-lasting processes, some of which lead to a decrease in synaptic strength and
others that lead to synaptic enhancement. At some synapses with repeated use,
synaptic enhancement occurs and facilitatory processes dominate; at others the
result is a decrease in synaptic strength and depression prevails. In most cases, it is
apparent that multiple processes are present, and the result can be a combination of
facilitation and depression in which synaptic strength is highly dependent on the
details of the timing of synaptic activation (3–6). Here we are concerned with the
properties and mechanisms of use-dependent plasticity on the tens of milliseconds
to several minutes time scale.

ENHANCEMENT OF TRANSMISSION

Many chemical synapses show a multi-component increase in synaptic efficacy or
a growth in the amplitude of individual postsynaptic potentials (PSPs) or postsy-
naptic currents (PSCs) on repetitive activation. This enhancement of transmission
comes in several flavors, with quite distinct lifetimes (7).

Facilitation

Synaptic enhancement that is prominent on the hundreds of milliseconds time scale
is referred to as facilitation. It can be seen with pairs of stimuli, in which the second
PSP can be up to five times the size of the first (Figure 1). During brief trains of
action potentials (APs), successive PSPs grow within about a second to a size that
can easily reach several times—and in some synapses several dozen times—the
original PSP. Facilitation often builds and decays with a time course that can be
approximated with an exponential of∼100 ms. At some synapses, facilitation can
be further subdivided into a rapid phase lasting tens of milliseconds (F1) and a
slower phase lasting hundreds of milliseconds (F2).

Post-Tetanic Potentiation

There are also processes that become increasingly important as the number of stim-
uli in a train is increased. For these processes, each AP enhances synaptic strength
by 1–15%, but because they last for five seconds to several minutes, the inte-
grated effect of a train of hundreds of pulses can lead to a many-fold enhancement
(Figure 2). There is considerable variability in synaptic plasticity exhibited by
synapses on these time scales. Sometimes processes such as augmentation, which
grows and decays with a time constant of∼5–10 s, can be distinguished from
post-tetanic potentiation (PTP), which lasts for 30 s to several minutes. At other
synapses, these components are not easily separable, and they are often lumped
together and referred to as PTP. During realistic stimulus trains, multiple processes
are often present. This is illustrated in Figure 2 where both facilitation and PTP are
important during the prolonged train. This is further complicated by the fact that
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Figure 1 Simulated experiment showing paired-pulse facilitation of the sort that oc-
curs at many synapses. As shown in the inset, activation with pairs of stimuli separated
by time1t evokes synaptic currents with the second response (B) larger than the first
(A). As shown in the plot of B/A versus1t, the magnitude of facilitation decreases
as the interpulse interval is increased. In this experiment the amplitude of facilitation
can be approximated by a double exponential decay of the form 1+ C1exp(−t/τ 1) +
C2exp(−t /τ 2) (solid line). Based on this fit, this synapse would have two components
of facilitation: F1 facilitation withτ 1 = 40 ms, and F2 facilitation withτ 2 = 300 ms.
At many synapses the distinction between F1 and F2 is not clear, and the duration of
facilitation is well approximated by a single exponential fit.

prolonged stimulation is usually accompanied by depression, and potentiation is
often only observed after a tetanus, following recovery from depression.

MECHANISMS OF ENHANCEMENT

Statistics of Release Indicate Changes are Presynaptic

In all synapses studied, facilitation, augmentation, and PTP have all been shown by
quantal analysis to be presynaptic in origin—to involve specifically an increase in
the number of transmitter quanta released by an AP without any change in quantal
size or postsynaptic effectiveness (reviewed in 7). Much additional effort has gone
into analysis of the changes in statistics of transmitter release using a binomial
model of release from a pool of available quantan, with release probabilityp.
Enhanced release is accompanied by increases inp, n or both (8, 9). The parameter
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n corresponds most closely to the number of release sites or active zones that
contain clusters of vesicles, some of which appear docked near the presynaptic
membrane immediately opposing postsynaptic receptors (10). Interpretation of
these results is complicated by the fact that a simple binomial model, assuming
uniform p at all release sites, ignores the likely variability inp (9, 11). This can
lead to underestimation of changes inp and spurious increases inn.

It seems clear, then, that short-term synaptic enhancement reflects an increase
in the probability of release of available quanta, with perhaps also an increase in the
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number of release sites capable of releasing a quantum. Either statistical change
could be due in turn to an increase in the probability of activating exocytosis of a
docked vesicle or an increase in the probability that a release site is occupied by a
docked vesicle ready for release (12). The latter could occur if the pool of vesicles
available to rapidly occupy release sites is increased. This pool, often called the
readily releasable pool, is released within a few seconds by hyperosmotic shock
(13, 14), which provides a measure of its size similar to that obtained by measures
of synaptic depression (see below). Augmentation in hippocampal synapses is
unaccompanied by an increase in the size of this readily releasable pool, suggesting
instead an increase in the probability of release from this pool (15).

In correlated ultrastructural and statistical studies (16), control values ofn
appear to correspond to active zones with multiple dense bodies, whereas the
increasedn in PTP seems to include the number of active zones with single dense
bodies. Thus increase innmay reflect a real recruitment of release from previously
dormant or silent active zones with fewer dense bodies.

THE CRUCIAL ROLE OF Ca2+ IONS

Early attempts at explaining short-term synaptic enhancement focused on electrical
events in presynaptic terminals. Possibilities such as increased invasion of nerve
terminals by APs, or broadening APs, or effects of afterpotentials, or increased

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2 Simulated experiment showing synaptic plasticity during and following
high-frequency stimulation. In this experiment, a synaptic input was stimulated at
0.5 Hz and the amplitude of the PSC remained constant. Tetanic stimulation at
10 Hz for 10 s resulted in an eight-fold synaptic enhancement by the end of the train
(top, closed circles). Some synaptic enhancement persisted upon returning to 0.5 Hz
stimulation. In this example, the total synaptic enhancement (top, closed circles) was a
result of facilitation, PTP, and depression. Facilitation, which is relatively short-lived
with a time constant of 400 ms, built up rapidly during tetanic stimulation, but did not
persist after commencing low-frequency stimulation. A slower process resulted in en-
hancement that increased gradually during the train. After returning to low-frequency
stimulation this form of enhancement persists and is known as post-tetanic potentia-
tion (PTP). At many synapses, a form of enhancement (augmentation) intermediate
between facilitation and potentiation also exists. This experiment illustrates that at
most synapses multiple processes contribute to synaptic enhancement. It also shows
that PTP can be studied in isolation from facilitation following a train, but that during
the train, both slow and fast forms of enhancement contribute to enhancement. Because
longer-lasting forms of enhancement typically result in a small enhancement per pulse,
paired-pulse experiments as in Figure 1 are suited to studying facilitation with little
contamination from PTP.
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Ca2+ influx due to facilitation of Ca2+ channels, were eliminated in a variety of
preparations (8, 17, 18, although see below). Facilitation can even be evoked by
constant depolarizing pulses under voltage clamp that activates an invariant Ca2+

influx and constant presynaptic [Ca2+]i change (19). Although, as described below,
facilitation of Ca2+ influx can contribute to synaptic facilitation, in most cases other
mechanisms make more prominent contributions.

The Residual Ca2+ Hypothesis

At neuromuscular junctions, an AP can cause facilitation equally well, even if
transmitter release does not occur (20, 21); therefore, facilitation seems to arise
from some process following AP invasion but preceding secretion. This led natu-
rally to the possibility that facilitation was somehow a consequence of the influx
of Ca2+ ions during conditioning stimulation. Strong evidence for this idea came
from the seminal experiments of Katz & Miledi (22). They used a focal extracellu-
lar pipette to provide Ca2+ ions to neuromuscular junctions in a Ca2+-free medium
and showed that a conditioning impulse not only failed to release transmitter in the
absence of external Ca2+, it also failed to facilitate release. Subsequently it was
shown that augmentation and potentiation also depend, at least in part, on the pres-
ence of external Ca2+ during conditioning stimulation (23–25). Such results led
to the “residual Ca2+ hypothesis”: Facilitation is caused by an action of Ca2+ re-
maining in the nerve terminals after the conditioning stimulus. In the past 25 years,
substantial evidence has accumulated in support of the residual Ca2+ hypothesis:
There is a correlation between elevations in [Ca2+]i and synaptic enhancement;
elevating [Ca2+]i enhances synaptic strength, and preventing increases in [Ca2+]i

eliminates short-term enhancement.

PRESYNAPTIC [Ca2+]i CORRELATES WITH FACILITATION, AUGMENTATION, AND POTEN-

TIATION The first attempts to correlate [Ca2+]i with synaptic plasticity compared
post-tetanic Ca2+-activated K+ current in the cell body of a presynaptic neuron in
Aplysiato the decay of PTP in a postsynaptic cell (26). It can be difficult to deter-
mine the time course of [Ca2+]i with Ca2+-dependent K+ channels (27) because
of the voltage- and Ca2+ dependence of these channels and their degree of co-
localization with voltage-gated Ca2+ channels (28–30). Subsequently the kinetics
of presynaptic post-tetanic [Ca2+]i changes were measured with the Ca2+-sensitive
metallochromic dye arsenazo III and compared with PTP (31). With the advent
of fluorescent dyes allowing ratiometric measurement of [Ca2+]i without knowl-
edge of dye concentration, more accurate estimation of [Ca2+]i became possible.
Numerous studies have demonstrated an apparently linear relationship between
magnitude of potentiation, augmentation, or F2 facilitation, and residual [Ca2+]i

concentration in vertebrate and invertebrate neuromuscular junctions and mam-
malian central and peripheral synapses (18, 32–42). Facilitation triggered by condi-
tioning pulses under voltage clamp also correlates linearly with the measured (43)
or inferred (44) magnitude of Ca2+ influx during those pulses. That this residual
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Ca2+ is capable of influencing transmitter release is suggested by the fact that all
phases of enhancement of evoked release are accompanied by an increase in the fre-
quency of spontaneously released quanta (miniature PSPs or mPSPs) (42, 45–54).

ELEVATING PRESYNAPTIC [Ca2+]i ENHANCES AP-EVOKED RELEASE Various manip-
ulations have been used to mimic the effect of residual Ca2+: fusion of Ca2+-
containing liposomes with nerve terminals (55), exposure to Ca2+ ionophores
(56, 57), release of Ca2+ from poisoned mitochondria (58), presynaptic Ca2+ in-
jection by iontophoresis (19), or release of Ca2+ by photolysis of presynaptic
caged Ca2+ chelators (59–62). In all cases, AP-induced PSPs were dramatically
increased. At calyx of Held synapses, small conditioning Ca2+ influx could facil-
itate release to a later influx (63).

BUFFERING PRESYNAPTIC [Ca2+]i REDUCES SHORT-TERM ENHANCEMENT The Ca2+

chelators EGTA and BAPTA can be loaded into nerve terminals in the ace-
toxymethylester form, where they can be de-esterified by endogenous esterases.
The de-esterified buffer can accumulate to millimolar levels (as opposed to the
micromolar concentration of the AM-ester used to bathe the preparation). In many
studies, presynaptic loading of such exogenous Ca2+ buffers strongly reduced
both components of facilitation (34–36, 40, 41, 45, 52, 64–69) and augmentation
(15, 69). Facilitation and augmentation have also been reduced by presynaptic in-
jection of Ca2+ buffers into squid and crayfish terminals (66, 70–72), and PTP is
reduced in hippocampal synapses expressing excess amounts of the native Ca2+-
binding protein calbindin (73), whereas deletion of the gene for the Ca2+-binding
protein parvalbumin increases facilitation at cerebellar synapses (74). The finding
that the slowly acting buffer EGTA is effective in reducing synaptic enhancement
suggests that the target(s) of Ca2+ action cannot be very close to Ca2+ channels
and affected only by the transient local micro-domains of high [Ca2+]i because
these would be affected little by EGTA. In a few instances, authors have reported
difficulty in reducing facilitation or augmentation by use of exogenous buffers
(65, 75, 76), which may be due to inadequate buffer concentrations or saturation
of the buffer by repeated activity.

Another way of rapidly reducing Ca2+ concentrations is to use caged Ca2+

chelators that increase their affinity for Ca2+ upon exposure to ultraviolet light.
Zucker and colleagues (61, 77) injected the caged BAPTA diazo-2 or diazo-4
into Aplysiacentral nerve terminals and crayfish peripheral nerve terminals and
photolyzed it to increase presynaptic Ca2+ buffering after conditioning stimuli and
post-tetanic waiting periods designed to select only facilitation, augmentation, or
potentiation. All three forms of enhancement were reduced on diazo photolysis
and reduction of residual [Ca2+]i.

REDUCING Ca2+ INFLUX REDUCES SHORT-TERM ENHANCEMENT Another way to
probe the role of [Ca2+]i in synaptic enhancement is to assess the effects of altering
Ca2+ influx. This is done by changing extracellular Ca2+, blocking Ca2+ channels
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with toxins or divalent ions, or by altering the presynaptic waveform, which
changes Ca2+ entry. Experiments of this sort are, however, difficult to interpret. At
most synapses, reducing Ca2+ entry not only decreases [Ca2+]i but also reduces
depression by decreasing the initial release of neurotransmitter (see below), which
can resemble an increase in facilitation. Facilitation can also be genuinely increased
by a desaturation of the release process. In studies of synapses under conditions
of little depression and far from saturation of release, it was shown that reducing
Ca2+ influx decreased facilitation and augmentation phases of enhanced release
(78–81). Elevating external [Ca2+] was often, but not always, able to reverse the
effects of Ca2+ channel blockers.

Facilitation is sometimes stronger following a successful conditioning stimulus
than a failure (82, 83). This may reflect the fact that the number of Ca2+ channels
opening and the amount of Ca2+ entry in an active zone are stochastic processes,
and both the probability of secretion and the magnitude of residual Ca2+ and,
consequently, of facilitation depend on this random variable.

PSEUDOFACILITATION In some counterintuitive experiments, it was found that
presynaptic perfusion of the Ca2+ buffer BAPTA not only reduced transmission,
but concurrently increased facilitation, at some cortical synapses (64). The addi-
tional facilitation was shown not to reflect a reduction in depression, but rather an
artificial saturation of BAPTA by the first AP, leaving less buffer to capture Ca2+ in
a conditioned response. Unlike genuine facilitation, this pseudofacilitation could
not be blocked by EGTA perfusion because slow-binding EGTA cannot steal enter-
ing Ca2+ from fast-binding BAPTA. Moreover, pseudofacilitation increased with
elevation of external [Ca2+], unlike real facilitation. Although the results suggest
that natural facilitation does not work in the same way as pseudofacilitation, they
emphasize the possibility of modulating facilitation by altering the Ca2+ buffering
properties of cytoplasm.

The Single-Site Hypothesis

In the original formulation of the residual Ca2+hypothesis (22), it was proposed that
the peak incremental [Ca2+]i elevation following an AP acts at some presynaptic
site to trigger phasic release, while residual Ca2+ from that event summates with
the incremental Ca2+ rise in a subsequent test AP to produce short-term synaptic
enhancement. It is now recognized that neurotransmitter release is triggered by an
increase in Ca2+ levels near open voltage-gated Ca2+ channels (Calocal). Within
tens of milliseconds, Ca2+ then diffuses and equilibrates throughout the presynaptic
bouton giving rise to a residual Ca2+ signal (Cares). Thus for a bouton with a resting
Ca2+ level of Carest, the Ca2+ level available to trigger release in response to the first
stimulus is (Carest+ Calocal) and for a second closely spaced stimulus is (Carest+
Calocal+ Cares).

Independent estimates of the relative magnitudes of [Ca2+]i triggering phasic
secretion and synaptic enhancement suggest that a single type of Ca2+-binding
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site cannot account for both phasic transmitter release and short-term plasticity.
Carest is∼100 nM, Calocal is tens of micromolar or higher (84–89), whereas Cares

at times of substantial facilitation, augmentation, or potentiation reaches only
∼1µM (32–34, 41). For PSC∝Ca4 (90), Carest= 100 nM, and Calocal = 20µM,
a Cares of 1 µM would produce a synaptic enhancement of only∼20% if there
were a single type of Ca2+ binding site, far smaller than the observed enhancement,
which can be 10-fold.

Another test of this model is whether short-term synaptic enhancement accumu-
lates as predicted if each AP in a train adds a constant increment to residual Ca2+,
which decays according to kinetics necessary to account for the phases of enhance-
ment following a single AP. These sorts of calculations have almost always failed
to account for the accumulation of facilitation, augmentation, and potentiation of
evoked and spontaneous release (48, 91–97; but see 40). Instead, augmentation
and potentiation appear to multiply the effects of facilitation (48, 98), and the ef-
fect of Ca2+ on facilitation appears to multiply its effect on secretion (52). These
quantitative studies thus suggest that facilitation is a separate process from both
phasic secretion and the slower processes of augmentation and potentiation.

A comparison of the enhancement of evoked synaptic responses and sponta-
neous neurotransmitter release provides another test of the single-site hypothesis. A
conditioning stimulus also increases mPSP frequency, a phenomenon often called
delayed release and also thought to reflect increases in [Ca2+]i (49). According to
the single-site model, if Cares(t), expressed as a fraction of Calocal, is represented as
ε(t), wheret is time from the end of the conditioning stimulus and Carestis ignored,
then the fourth power dependence of transmitter release on [Ca2+]i (90) predicts
that enhanced mPSP frequency decays asε4(t), while facilitation, f (t) (the frac-
tional increase in enhanced evoked release compared with un-enhanced release),
should decay asf (t) = (1 + ε(t))4 − 1≈ 4ε(t), for small ε(t). Comparison of
post-tetanic decays in mPSP frequency and evoked PSP seemed roughly consis-
tent with this prediction, at least for facilitation, in some preparations (46, 53, 99).
Elevation of presynaptic Ca2+ at crayfish neuromuscular junctions by photolysis
of caged Ca2+ also increased evoked release and mPSP frequency in ways reason-
ably consistent with predictions (60). However, other studies have found serious
discrepancies between observations and quantitative predictions of the single-site
hypothesis. The enhancement of evoked release was much smaller then predicted
by the single-site hypothesis from the rate of spontaneous release for facilitation
at the mouse neuromuscular junctions (52); for facilitation, augmentation, and po-
tentiation at frog neuromuscular junctions (47); and for facilitation at parallel fiber
synapses onto stellate cells in the cerebellum (95, 100).

Facilitation seems to reach a peak immediately after each AP at normal temper-
ature (48). However, near 0◦C a delay of a few milliseconds appears (101), so that
facilitation is maximal long after phasic secretion has terminated. If this apparent
delay in facilitation is real, and not because of a superimposed very fast phase of
depression (82), it is further evidence that facilitation and phasic secretion result
from distinct Ca2+ actions.
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A different clue that short-term enhancement involves one or more processes
distinct from phasic release is its diversity. Different synapses in the same species,
and even different terminals from the same presynaptic neuron, can show vastly
different magnitudes of facilitation (64, 69, 102–107). Normally, synapses with a
high output to low-frequency stimulation show less facilitation than low-output
synapses, which could result from a saturation of release (93) from high-output
synapses or from a concurrent depression masking facilitation (see below). Either
action would be alleviated by reducing external [Ca2+]. However, in one study it
was found that reducing [Ca2+] did not erase the differences in amount of facilita-
tion expressed by different types of synapses (108). Synaptic enhancement is also
separable from baseline transmission inAplysianeurons, where heterosynaptic
activity was found to specifically reduce augmentation and PTP (109). A use-
dependent reduction of paired-pulse facilitation has also been reported atAplysia
synapses (72). Thus facilitation and augmentation/PTP appear to be independently
regulated properties of synaptic transmission.

Multiple Site Hypotheses

These considerations force the notion that synaptic enhancement is due to Ca2+

acting at a site or sites different from the fast low-affinity site triggering secre-
tion (32–35, 45, 48, 52, 89, 97, 110–112). There are many unresolved questions
regarding the properties of the Ca2+-binding sites and the factors governing the
time course and magnitude of synaptic enhancement.

WHAT DETERMINES THE TIME COURSE OF ENHANCEMENT? Does enhancement
arise from the continuing action of residual Ca2+ due to the extended presence of
free Ca2+ ions acting in equilibrium with the sites causing enhancement? If so, the
kinetics (accumulation and decay) of facilitation, augmentation, and potentiation
depend on the kinetics of residual Ca2+. Alternatively, enhancement may decay
with its own intrinsic kinetics, reflecting slow unbinding of Ca2+ from enhancement
sites or, alternatively, aftereffects of Ca2+ binding owing to subsequent reactions.

Initially, the bound Ca2+ idea was favored, especially for facilitation, which
seemed to last longer than would be expected from calculations of diffusion of Ca2+

away from the region where secretion is triggered near Ca2+ channel mouths (89).
Also, a lower apparent Ca2+ cooperativity in triggering facilitated release (110)
was interpreted as meaning that some Ca2+ ions were already bound, although
the results could be explained by effects of depression and saturation. Persistent
binding was also suggested by measures of residual Ca2+based on Ca2+-dependent
K+ current (27), but these results were confounded by the voltage dependence of
the K+ channels, and bound Ca2+models were favored by investigators who could
not block enhancement with exogenous Ca2+ buffers (see above).

Many studies indicate that the time course of residual Ca2+ contributes to the
duration of synaptic enhancement. Recent Ca2+diffusion simulations suggest slug-
gish residual Ca2+kinetics at a diffusional distance of∼100 nm from Ca2+channels
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where facilitation could be activated (70). Ca2+ accumulation at such sites can
account roughly, but with some significant imperfections, for accumulation of fa-
cilitation in a train. At many synapses there is a close correlation between the
time course of residual Ca2+ and the durations of facilitation, augmentation, and
potentiation (18, 32–42). At crayfish neuromuscular junctions andAplysiacentral
synapses, elimination of all phases of enhancement by flash photolysis of diazo
supports a causal relation between residual Ca2+ and these forms of plasticity
(61, 77). Further support for facilitation arising from residual Ca2+ comes from
studies of cerebellar parallel fiber synapses onto Purkinje cells (35). Buffering
presynaptic residual Ca2+ with EGTA reduces both the magnitude and the dura-
tion of facilitation from 200 ms to a process decaying with a 40-ms time constant.
The remaining facilitation appears to reflect the intrinsic kinetics of facilitation,
when chelation of residual Ca2+ allows Ca2+ ions to bind to the facilitation site
only during the AP.

HOW MANY SITES OF Ca2+ ACTION? Although there is strong evidence in support of
at least one high-affinity Ca2+ binding site responsible for synaptic enhancement,
it is not clear how many types of Ca2+ binding sites are involved in synaptic
enhancement. The existence of four phases of enhancement—F1, F2, augmentation
and PTP—suggests that four distinct processes are involved, each, perhaps, with
its own unique binding site. But all of these phases could in principle arise from
Ca2+ acting at one site but decaying (and accumulating) with multiple phases
controlled by diffusion, buffering, extrusion, and uptake. Numerous studies have
examined the issue of the number of Ca2+ binding sites involved in enhancement,
but no consensus has been reached.

The effects of rapid reductions in [Ca2+]i with flash photolysis of diazo suggest
that there are two distinct sites involved in synaptic enhancement at the cray-
fish neuromuscular junction (61). F1 and F2 facilitation were eliminated within
10 ms. Only part of augmentation and potentiation disappeared this rapidly; most
decayed with a time constant of∼0.4 s after photolysis. Augmentation and poten-
tiation also show similar dependence on residual [Ca2+]i, increasing transmission
about 10-fold per micromolar (33). These results are consistent with three types of
Ca2+ binding sites: a low-affinity rapid site involved in phasic release, a moderate-
affinity site with relatively rapid kinetics involved in the F1 and F2 components of
facilitation, and a high-affinity site with slow kinetics that contributes to PTP and
augmentation.

A multiplicative relationship between augmentation and potentiation on the
one hand, and facilitation on the other (48, 98), suggests that at vertebrate neuro-
muscular junctions there are at least two distinct processes governing short-term
synaptic enhancement. As argued previously, these two sites are separate from the
site triggering phasic secretion. However, at lobster neuromuscular junctions, a
model in which fast and slow facilitation components and augmentation summate
in accordance with Ca2+ accumulating at a single site, describes the accumulation
of synaptic enhancement better than multiplicative models (40).
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Differential effects of Sr2+ or Ba2+ ions on synaptic enhancement suggest mul-
tiple sites of enhancement. Ba2+ selectively increases augmentation, whereas Sr2+

selectively increases and prolongs F2 facilitation of both evoked and post-tetanic
delayed release (47, 113–115). However, measurements of presynaptic Sr2+ dy-
namics show that the effects of Sr2+ are due to differences in buffering and removal
between presynaptic Sr2+ and Ca2+ (100, 116), leading specifically to an increase
in [Sr2+]i during the F2 facilitation phase. Thus the Sr2+ results do not necessarily
imply different sites of action.

Thus further experiments are required to determine how many types of Ca2+-
binding sites are involved in synaptic enhancement at different synapses. Based on
the evidence above, it seems likely that for some synapses synaptic enhancement
is best described by at least a fast site involved in facilitation and a slower site in
augmentation and potentiation.

KINETICS OF POTENTIATION AND AUGMENTATION Augmentation arises from the
phase of [Ca2+]i decay that follows diffusional equilibration in nerve boutons
and appears to be regulated by two plasma membrane extrusion pumps—a Ca2+-
ATPase and Na+/Ca2+ exchange (117–119). Prolonged stimulation loads nerve
terminals with both Na+ and Ca2+. The reduction in the Na+ gradient reduces
removal of Ca2+ by Na+/Ca2+ exchange and can even reverse this process, which
results in influx through this system during and after a long tetanus (118, 119). This
results in amplification of residual [Ca2+]i and prolongation of its removal, con-
tributing to PTP, the slowest phase of synaptic enhancement (120–124). Prolonged
stimulation also results in Ca2+-loading of presynaptic mitochondria at crayfish
and lizard neuromuscular junctions; leakage of this stored Ca2+ provides a major
source of the long-lasting residual Ca2+ underlying PTP (39, 125–127). A similar
role is played by endoplasmic reticulum at frog neuromuscular junctions (128),
while both mitochondria and endoplasmic reticulum appear to be involved in the
regulation of residual Ca2+ at peptidergic nerve terminals (129–131). Thus aug-
mentation and potentiation result from the different dynamics of Ca2+ removal,
dependent on extrusion and uptake processes, that dominate, respectively, after
short and long tetani. Residual Ca2+ acts on both rapid (<10 to 40 ms) and some-
what slower-acting (∼0.4 s) targets to regulate transmission.

KINETICS OF FACILITATION Facilitation appears to arise from Ca2+ acting at a site
with intrinsic kinetics of<10 ms at crayfish neuromuscular junctions (61) and
∼40 ms at cerebellar synapses (35). The longer duration of normal facilitation
apparently reflects the duration of [Ca2+]i at its site(s) of generation. The two
components of facilitation observed at some synapses may reflect two separate
sites of action in F1 and F2 facilitation. Alternatively, [Ca2+]i may decay non-
exponentially, for example by diffusion away from active zones or clusters of ac-
tive zones, with non-exponential kinetics (70, 132, 133). At hippocampal synapses,
residual Ca2+ underlying facilitation can also be affected by release from intracel-
lular stores such as the endoplasmic reticulum (134), although this contribution
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of release from internal stores to facilitation is controversial (135). Treatments
such as Sr2+may affect the two sites differentially (47, 113), or may have different
effects on the processes controlling diffusion, such as buffer mobility or saturation
(100, 116). The number of sites involved in facilitation remains unclear.

The quantitative relationship between decay of mPSP frequency and enhanced
evoked release is not simple (95). However, it is possible that the two processes
may be controlled by Ca2+ acting at two sites, the facilitation site and the secre-
tory trigger, in ways that reflect different degrees of saturation and interaction in
controlling spontaneous release and evoked release.

SYNAPTIC ENHANCEMENT, SLOW RELEASE, AND MOBILIZATION When presynaptic
[Ca2+]i is suddenly elevated, either by strong depolarization or photolysis of caged
Ca2+, transmitter release often exhibits a biphasic time course: an initial intense
rapid phase of secretion, called the secretory burst, followed by a slower phase with
a time constant of hundreds of milliseconds to seconds (136–142). This phase is
intermediate in duration between F2 facilitation and augmentation and shares with
them a Ca2+ dependence that is easily blocked by intracellular EGTA. It is usually
interpreted as a Ca2+-dependent mobilization of vesicles from a reserve to a read-
ily releasable pool. After exhaustion of the readily releasable pool, recovery also
proceeds with time constants of hundreds of milliseconds to seconds, and this pro-
cess can also be Ca2+ dependent (138, 140, 142–145). Finally, recovery of secreted
vesicles can occur by slow and fast pathways, and Ca2+ can favor a fast pathway
occurring within seconds (146, 147, but see 148) or a fraction of a second (137).

It is tempting to suppose that one or both of these processes (mobilization
and Ca2+-dependent recovery of released vesicles) are related to enhancement
of synaptic transmission on repetitive stimulation. This is not likely, however,
especially for facilitation. The reason is that facilitation has intrinsic kinetics of
tens of milliseconds or less (35, 61), much faster than mobilization of vesicles into
or recovery from depletion of the releasable pool.

Augmentation may resemble a seconds-long component of recovery from de-
pletion of the readily releasable pool (138, 142, 145). However, augmentation’s
intrinsic rate constant is∼0.4 sec (61) and could only be related to the fastest
forms of replenishment of the readily releasable pool. But augmentation appears
to occur without any increase in the size of that pool (15). PTP is certainly long
enough that it could involve slow recovery and mobilization processes. However,
its intrinsic time constant is also a fraction of a second (61) and normally PTP is
governed by the slow removal of residual Ca2+. Any relationship between synaptic
enhancement and vesicle recovery processes is therefore unlikely.

USE-DEPENDENT CHANGES IN Ca2+ ENTRY

The picture painted here of residual Ca2+-dependent short-term plasticity describes
the situation at the great majority of chemical synapses. However, a few examples
have arisen where there is a change during repetitive activation in the Ca2+ influx
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evoked by an AP. In most cases the contributions of such changes in Ca2+ entry
make a relatively small contribution to the overall plasticity of the synapse.

Ca2+ influx during a train can change by virtue of the properties of the Ca2+

channels. At the brainstem calyx of Held giant synapse, a form of Ca2+ channel
facilitation to repeated depolarizations dependent on the build-up of presynaptic
Ca2+ has been observed (149, 150). For other experimental conditions there can
be a reduction in presynaptic Ca2+ current (151). It is possible that this behavior
contributes to synaptic facilitation or depression at some synapses. In hippocampal
neurons, facilitation was attributable partly to a potential-dependent relief of G-
protein–mediated Ca2+ channel inhibition, resulting in increased influx through
P/Q-type Ca2+ channels in repeated APs (152).

Another possibility is that during trains of activity Ca2+ entry into cells is suffi-
cient to reduce [Ca2+] in extracellular space. At the calyx of Held, depolarization
of the postsynaptic cell to 0 mV for 100 ms resulted in a 35% reduction in the PSC
(153). This depression recovered within half a second and was accompanied by an
inhibition of postsynaptic Ca2+ entry. Such a decrease in Ca2+ entry is consistent
with the small volume of extracellular space and the magnitude of Ca2+ influx that
can occur during prolonged depolarization (154). For typical levels of activity,
the depletion of extracellular Ca2+ and its contribution to short-term plasticity are
likely to be small.

At a few synapses, presynaptic spike broadening owing to cumulative K+ chan-
nel inactivation contributes to facilitation by increasing Ca2+entry during later APs
in a train. Whole-cell recording from pituitary terminals reveals that repeated stim-
ulation produces presynaptic APs that broaden, which in turn produces more Ca2+

influx per spike and facilitation of hormone release (155). Similarly, whole-cell
voltage clamping of hippocampal mossy fibers revealed that spike broadening
occurs during trains of presynaptic activity and that this broadening results in in-
creased Ca2+ entry evoked by APs late in a train (156). This broadening arises
from rapid inactivation of a K+ channel involved in AP repolarization.

At some synapses, reductions in spike amplitude or duration, or failures of
spike invasion of terminals seem to play a role in synaptic depression, especially
to long trains of stimuli (157–160). In one instance, AP failure was attributable to
the gradual activation of Ca2+-dependent K+ current (161).

Consideration of the magnitude of synaptic plasticity present at synapses where
changes in Ca2+ entry has been observed suggests that often other mechanisms
dominate the overall plasticity of the synapse. For example, at the calyx of Held,
facilitation of Ca2+ entry occurs even while depression dominates the overall
behavior of the synapse (150). The inaccessibility of presynaptic terminals has
made it difficult to assess the importance of changes in Ca2+ entry to plasticity at
synapses where the presynaptic terminal cannot be voltage clamped. Sometimes
it is possible to use optical techniques to measure presynaptic AP waveforms
or Ca2+ influx. Such an approach at the parallel fiber synapses in the cerebellum
suggests that neither waveform changes nor changes in Ca2+ entry make important
contributions to plasticity during trains of presynaptic APs (18, 162–164).
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DEPRESSION OF TRANSMITTER RELEASE

At many synapses, periods of elevated activity lead to a decrease in synaptic
strength. Multiple mechanisms can contribute to such synaptic plasticity. The most
widespread mechanism appears to be a presynaptic decrease in the release of neu-
rotransmitter that likely reflects a depletion of a release-ready pool of vesicles. In
addition, a decrease in synaptic strength can arise from the release of modulatory
substances from the activated presynaptic terminals, postsynaptic cells, or neigh-
boring cells. Finally, postsynaptic properties such as desensitization of ligand-gated
receptors can make the target neuron less sensitive to neurotransmitter.

Often a presynaptic mechanism contributes to a decline in PSC amplitude during
repeated stimulation and takes seconds to minutes to recover after stimulation
(4, 20, 165, 166). Although such synaptic depression was described nearly 60 years
ago (1, 2), the mechanisms responsible for it are still poorly understood.

Statistical analysis of changes in quantal parameters during depression almost
always reveals a reduction in the average number of quanta released, but binomial
models of release may indicate reductions either inp, the probability of release of
releasable quanta, orn, the number of releasable quanta, or both (reviewed in 8).
Both changes could result from a reduction in AP effectiveness or Ca2+ influx, from
feedback inhibitory actions of released transmitter on presynaptic autoreceptors,
or from a reduction in the occupation of release sites by docked vesicles.

Depletion Models of Depression

A key characteristic of depression at many synapses is use dependence. Higher
levels of transmission are associated with larger depression, and reduction of
baseline transmission (for example by reducing external [Ca2+]), relieves depres-
sion. Sometimes there is even a negative correlation between statistical fluctua-
tions in the first of paired responses and the magnitude of the second (166, 167).
Most models of short-term synaptic depression are based on the idea that it re-
flects depletion of a pool of vesicles that are poised and release ready. A num-
ber of such depletion models exist that vary in their assumptions and level of
complexity.

According to the depletion model in its simplest form (165, 168), a synaptic
connection contains a store ofSreleasable vesicles, and an AP releases a fraction,
F, of this store. If each vesicle released produces a synaptic currenti, stimulation
produces a response equal toFSi. In this model, the store is transiently depleted
of FS vesicles, so immediately following a stimulation, onlyS-FSvesicles are
available for release. If the fraction of available vesicles released by an AP remains
unchanged, then a second stimulus will produce a response that is proportional to
the number of remaining release-competent vesicles. The amplitude of the second
response is thenS(1-F )Fi, and the ratio of the amplitude of two closely spaced
responses is (1-F ). It is usually assumed that there is a mono-exponential recovery
of the release-ready store or pool of vesicles.
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This model provides a simple explanation of some basic features of depression
that are apparent at many synapses. For example, the larger the initial probability
of release, the more pronounced is depression for two closely spaced stimuli. If
F is very low initially, there is no depression, ifF is 0.5, the second PSC is half
as large as the first, and ifF is 1, the second stimulus evokes no response at all
because no releasable vesicles are available. This dependence of the magnitude
of depression on the baseline probability of release has been described at many
synapses. The exponential recovery from depression has also been observed at
many synapses for a variety of experimental conditions.

It is important to distinguish measures of store sizeS and fraction of release
F, estimated from the magnitude of depression, from measures of the statistical
parameters of transmitter releasen andp, estimated from a statistical quantal anal-
ysis of the variance of transmitter release (8, 10, 169). Typically,F is greater than
p andS is less thann (170). This is because the statistical parametern apparently
corresponds to the total number of release sites, each of which may be able to
release only one quantum (vesicle) to an AP (see below). The statistical parameter
p has two components, one (pocc) corresponding to the probability that a release
site is occupied by a docked and releasable vesicle, and one (peff) the probability
that an AP releases docked vesicles. The pool of immediately releasable vesicles
(S) then corresponds topoccn, which is less thann, and the fraction of this pool
released by an AP (F ) corresponds topeff, which is greater thanp = pocc peff.

In spite of its success, this form of the depletion model is inadequate in several
ways. Some of the basic assumptions are likely incorrect, such asF being con-
stant. For example, different release sites are likely to release quanta with different
initial probabilities,peff (107): The sites with highest release probability are de-
pleted of more “willing” vesicles first, and the sites containing more “reluctant”
docked vesicles after some stimulation have a lower probability of release. This
results in a reduction in the average value ofF, as well as inSduring depression
(63, 165, 171, 172). The simple model can also either underpredict or overpredict
steady-state depression produced by trains of activity, and the assumption of a
mono-exponential recovery has been questioned (4, 173–177).

In trying to improve upon such a model it is instructive to consider the anatomy
of synapses. Studies at the electron microscope level reveal that synapses usually
contain hundreds of vesicles in the vicinity of release sites, but only a small number
of these vesicles are in contact with the membrane. These docked vesicles are
thought to be poised and nearly ready to fuse in response to AP invasion of the
presynaptic bouton or are at least available for immediate replenishment of release
sites that are vacated by exocytosis. These vesicles are referred to as the readily
releasable pool, whereas the more distant vesicles that are unable to respond rapidly
are referred to as the reserve pool. In some synapses, the immediately releasable
vesicles may be restricted to a fraction of the apparently docked and release-ready
vesicles, with perhaps only one per active zone (see below). These immediately
releasable vesicles are sometimes referred to conceptually as docked and primed
for release. Following exocytosis of docked vesicles, recovery appears to occur by
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multiple processes into both reserve and readily releasable pools (Figure 3) (146,
178–180).

The concept of pools of vesicles in different states has provided a useful frame-
work for thinking about synaptic depression (3, 4, 171, 175–177, 181–185). Re-
peated stimulation would result in the depletion of the readily releasable pool,
which in turn would lead to a decrease in the number of vesicles that could be
released by an AP and depression. According to depletion models that consider
pools of vesicles, the extent of depression will depend on the number of vesicles
in the reserve and release-ready pools and the transition rates between these pools.
Other factors such as maximum sizes of the immediately releasable pool (lim-
ited by number of active zones), the release-ready pool (limited by the number of
docking sites), the reserve pool (limited by the availability of vesicle membrane
recoverable by endocytosis from recently secreted vesicles), and use-dependent
changes in the movements of vesicles between pools impose additional restrictions
not envisioned in the classical depletion models that treated vesicle movements
between pools as a simple mass action without any limits on pool size. The mathe-
matical description of such models can be quite complex, and several unanswered
questions remain that are important to developing and assessing such models.

A curious aspect of synaptic depression is that it is not accompanied by a reduc-
tion in frequency of spontaneous release of quanta (186–188). This is hard to rec-
oncile with depletion models of depression unless spontaneous release comes from
a different pool of vesicles than evoked release or is subject to different limitations.

In a few instances, deep depression on extensive stimulation is accompanied
by a presynaptic reduction in quantal amplitude (189–191). This may reflect the
release of newly recovered and incompletely filled vesicles.

HOW BIG IS THE READILY RELEASABLE POOL AT INDIVIDUAL RELEASE SITES? A
number of approaches have been taken to measure the size of this pool of vesicles,
including a large depolarizing pulse in the presynaptic terminal, caged Ca2+ in
the presynaptic terminal, application of high-osmolarity solution, and integration
of fully depressing responses to brief stimulus trains (13, 14, 107, 171). The chal-
lenge with all of these approaches is to measure the full size of the release-ready
pool without it being replenished from the reserve pool. Failure to release all of
the vesicles will lead to an underestimation of the size of the pool, whereas contri-
butions from the reserve pool can lead to an overestimation (192). Serial electron
microcopy has also been used to determine the number of morphologically docked
vesicles, which may correspond to the readily releasable pool. Estimates of the
functional size of the readily releasable pool per active zone are 7–8 at the parallel
fiber and climbing fiber synapses, 22 in goldfish bipolar neurons (193), 32 in frog
saccular hair cells (194), 130 in cat rod photoreceptors (195), an average of about
10 for the CA1 region of the hippocampus (196, 197), and in layers 1a and 1b
of pyriform cortex, the average number of docked vesicles is 16 and 27, respec-
tively (198). There is considerable variability in the number of docked vesicles at
individual synapses, even for the same type of synapse.
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AT A SINGLE RELEASE SITE, CAN ONLY A SINGLE VESICLE BE RELEASED IN RESPONSE

TO AN AP, OR IS IT POSSIBLE TO HAVE MULTIVESICULAR RELEASE? The observation
that the number of release sites determined by quantal analysis is very similar to the
number of active zones or synaptic contacts gives rise to the idea that some mech-
anism restricts the number of vesicle fusions to a single one per synaptic contact
per impulse, so that a single release site is a single active zone (10, 197, 199, 200).
More recent experiments support this hypothesis and also propose that following
neurotransmitter release at an individual release site the inability to trigger addi-
tional release events persists for∼10 ms (13). However, other studies at hippocam-
pal synapses (201) and inhibitory (202) and excitatory (203) cerebellar synapses
suggest that individual release sites may release multiple vesicles.

The issue has important implications for the mechanisms that give rise to de-
pression. This is illustrated by considering the cerebellar climbing fiber synapse,
which is depressed to 50% of control amplitudes by a single conditioning pulse.
If depression reflects a depletion of the readily releasable pool, and there is an
average of 7–8 morphologically docked vesicles at each release site (204), how
can a single conditioning pulse result in so much depression? This suggests that ei-
ther each morphological docked vesicle is not release ready, or that multivesicular
release must occur (203).

Ca2+-DEPENDENT RECOVERY FROM DEPRESSION Recent studies have provided new
insight into depression and recovery from depression. Whereas recovery from de-
pression usually can be approximated by an exponential with a time constant of
several seconds, for some experimental conditions an elevation of presynaptic
Ca2+ levels accelerates the recovery from depression (143–145). At the climbing
fiber synapse, when external [Ca2+] is elevated to 4 mM, significant recovery from
depression occurs in less than 100 ms. This finding suggested the hypothesis that
high levels of residual Ca2+ accelerate recovery from depression. To test the in-
volvement of residual Ca2+, EGTA was introduced into the presynaptic terminal
to accelerate the decay of residual Ca2+, which did not affect the initial probabil-
ity of release but eliminated rapid recovery from depression. Residual Ca2+ also
accelerated recovery from depression at the calyx of Held.

These studies help to resolve a long-standing deficiency of depletion models of
depression in that they failed to predict the magnitude of synaptic responses dur-
ing high-frequency presynaptic activity. Based on the magnitude and time course
of depression evoked by a brief conditioning train, depletion models greatly un-
derestimated synaptic efficacy during prolonged trains of activity. This led to the
hypothesis that the rate of recovery from depression is accelerated during trains.
This can now be understood in terms of the build-up of presynaptic Ca2+ levels
accelerating recovery from depression, and allowing the presynaptic terminal to
meet the increased demand for neurotransmitter during a train.

One way of accounting for Ca2+-dependent recovery from depression is to
update the depletion model such that increases in residual [Ca2+]i accelerate the
mobilization of vesicles from a reserve pool (143–145). Another possibility, put
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forth by Wu & Borst (171), suggests that “during repetitive firing, accumulation of
intracellular calcium may facilitate release of the rapidly replenished but reluctant
vesicles, making them available for sustaining synaptic transmission.” This study
suggests that recovery from depression at the calyx of Held does not result from
the Ca2+ dependence of recruitment of vesicles from a reserve pool to a ready
releasable pool.

Other studies have also questioned a role for residual Ca2+ in the acceleration
of recovery from depression. Weis et al. (205) manipulated presynaptic levels at
the calyx of Held with the rapid Ca2+ chelator fura-2 and observed the effects on
presynaptic [Ca2+]i and on synaptic transmission. Based on these experiments and
the behavior of several models, they concluded that at the calyx of Held “[Ca2+]i in
the range 50–500 nM does not significantly affect the rate of vesicle filling at this
synapse,” and that recovery from synaptic depression is “governed by localized,
near membrane Ca2+ signals not visible to the indicator dye, or else by an altogether
different mechanism.”

A recent study by Sakaba & Neher of the calyx of Held (206) resolves some
of the questions regarding Ca2+-dependent recovery from depression. They ma-
nipulated resting presynaptic [Ca2+]i levels and found that higher initial [Ca2+]i

accelerates recovery from depression. These findings argue against the study by
Weis et al. (205) and confirm the importance of residual Ca2+ (143–145).

WHY DO SOME SYNAPSES SHOW NO DEPRESSION? Some synapses, for example at
crayfish opener muscles (207) and chick ciliary ganglion (208), show virtually no
sign of synaptic depression. Prolonged high-frequency activity eventually depletes
the entire or reserve pool of transmitter, but no immediately releasable and rapidly
depletable pool is evident. Presumably, this is because at such synapses the read-
ily releasable pool is very rapidly replenished between APs and thus is effectively
never depleted.

DEPRESSION INCONSISTENT WITH DEPLETION MODELS At crayfish fast flexor neu-
romuscular junctions (209), locust motor neuron synapses (160), and atAplysia
synapses between sensory and motor neurons (210–212), depression arising presy-
naptically occurs independently of changes in the initial level of transmission,
and the steady-state degree of depression is nearly independent of stimulation fre-
quency. At theAplysiasynapses, buildup of residual [Ca2+]i and Ca2+ channel inac-
tivation also play no roles in depression (212), which is probably caused by switch-
ing off of release sites (213). Similarly, for both an excitatory synapse in the goldfish
(214) and inhibitory synapses in the rat (164), the extent of depression does not de-
pend on the magnitude of the first release, and at giant cochlear nucleus synapses, a
Ca2+-dependent form of depression appears to occur independently of changes in
initial release level (215). Strangely, cyclothiazide (normally a blocker of glutamate
receptor desensitization) appears to eliminate this depression by some presynap-
tic action. These studies argue for a mechanism of presynaptic depression that
does not reflect depletion of neurotransmitter-containing vesicles. One possible
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explanation is that there is an activity-dependent gating mechanism limiting vesi-
cle fusion through a refractory process and that this actually prevents vesicle
depletion. At the crayfish synapse, depression is largely relieved by inhibition of
NO synthase (216), suggesting that at this synapse NO generation is somehow
responsible for synaptic depression.

At the squid giant synapse, a step elevation in [Ca2+]i by caged Ca2+ photolysis
activated secretion that decayed with a 30-ms time constant (217). Although resem-
bling depletion of a readily releasable store, this explanation appears inconsistent
with the property that further step increases in [Ca2+]i evoked additional bouts of
secretion and that the rate of fatigue is independent of [Ca2+]i step magnitude. The
authors characterized this behavior as a form of adaptation in Ca2+ sensitivity of
release that could contribute to depression, although its kinetics seem too slow to
be involved in AP-evoked release. Some of these properties could be explained by
the existence of multiple pools of vesicles with different Ca2+ sensitivities, as has
been shown for secretion of cortical granules by sea urchin eggs (218, 219). Other
properties can be explained by invoking a Ca2+-sensitive mobilization of vesicles
from reserve to readily releasable pools (R. S. Zucker, unpublished calculations).

SYNAPTIC DEPRESSION VIA ACTIVATION
OF METABOTROPIC RECEPTORS

Many presynaptic terminals in the mammalian CNS possess high-affinity metabo-
tropic receptors that can be activated by chemical messengers such as GABA,
glutamate or adenosine. Synaptic strength is controlled in part by the occupancy
of these receptors, which in turn is set by the extracellular concentrations of their
agonists. In some cases, tonic levels are sufficient to partially activate the recep-
tors, but synaptic activity can further increase receptor occupancy by transiently
elevating neuromodulator concentration. Following release, transmitter molecules
can act either homosynaptically and bind to presynaptic autoreceptors or heterosy-
naptically by diffusing to nearby terminals. Examples of such signaling are given
below and reviews of such modulation (220, 221) should be consulted for a more
comprehensive treatment of synaptic modulation by activation of metabotropic
receptors.

Homosynaptic Inhibition

The contents of a vesicle can act on the presynaptic terminal from which they were
released. This is called homosynaptic modulation, and it is usually inhibitory. In
most cases, when neurotransmitter builds up sufficiently to activate presynaptic
receptors, the end result is negative feedback and a reduction in the future release of
neurotransmitter. For example, vesicles contain ATP at relatively high concentra-
tions, and when a vesicle fuses, ATP is released (222). In extracellular space, ATP
is broken down into adenosine, which can activate presynaptic adenosine receptors
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and lead to homosynaptic inhibition (223). At neuromuscular junctions, this pro-
cess contributes to depression to prolonged stimulation, but it is not responsible
for the major part of synaptic depression (224). At some GABAergic synapses
(225, 226), but not at others (227, 228), depression arises partly from a retrograde
action of GABA on presynaptic GABAB receptors, presumably reducing Ca2+

influx to subsequent APs. A similar process involving presynaptic metabotropic
glutamate receptors appears responsible for only a very tiny proportion of synaptic
depression at calyx of Held synapses (229).

Heterosynaptic Inhibition

Activation of synaptic inputs can also affect neighboring synapses. For example,
activation of excitatory inputs to a region can activate GABAergic interneurons
causing a widespread increase in extracellular GABA levels (230–232). This can
activate presynaptic GABAB receptors and inhibit synaptic strength for seconds
following periods of elevated activity. Presynaptic boutons contain many types of
receptors that sense a variety of extracellular chemical messengers, all potentially
involved in heterosynaptic depression.

Retrograde Control of Neurotransmitter Release

It is also possible for the postsynaptic cell to influence release from the presyn-
aptic terminal. Different types of dendrites can release a variety of messengers
that can act through G-protein–coupled receptors located on presynaptic terminals
to influence neurotransmitter release. Neuromodulators such as dopamine, dynor-
phin, glutamate, GABA, and oxytocin are released by fusion of vesicles that are
located within the dendrites and cell bodies (233–239). Retrograde messengers
are also released by non-vesicular mechanisms. Endogenous cannabinoids such as
anandimide and 2-AG are produced by cleavage of phospholipids and are sensed by
CB1 receptors on presynaptic terminals. Retrograde signaling by endogenous non-
vesicular release of cannabinoids has been shown to suppress inhibitory synapses
in the hippocampus and both excitatory and inhibitory synapses in the cerebellum
(240–244). Vesicular and non-vesicular release of retrograde messengers are both
Ca2+ dependent and provide a way for activity of the postsynaptic cell to influence
release from its synaptic inputs.

PRESYNAPTIC IONOTROPIC RECEPTORS

Many presynaptic terminals contain ionotropic receptors that can also contribute
to short-term synaptic plasticity (245). A variety of ionotropic receptors can be
present, although the extent to which these receptors contribute to synaptic plastic-
ity is not known. These receptors include Ca2+permeable receptors such as NMDA
receptors andα7 nicotinic receptors, as well as Ca2+ impermeable receptors such
as GABAA and glycine receptors, which are coupled to Cl−-permeable channels.
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Activation of presynaptic ionotropic receptors can either increase or decrease neu-
rotransmitter release by several mechanisms.

At brain stem synapses, glycine opens presynaptic Cl− channels, which in turn
depolarizes the terminal, opens voltage-gated Ca2+ channels, elevates presynap-
tic [Ca2+]i, and facilitates subsequent release of neurotransmitter (246). At the
mossy fiber synapse on hippocampal CA3 pyramidal cells, glutamate activation of
presynaptic kainate autoreceptors can contribute to synaptic enhancement (247).
Blockade of these autoreceptors, as well as their genetic deletion (248), reduces
the magnitude of synaptic enhancement during trains. It is hypothesized that this
synaptic enhancement is caused by presynaptic depolarization induced by kainate
receptor activation by previously released glutamate. High levels of kainate can
also contribute to synaptic depression at this synapse (249); thus it appears that a
bi-directional short-term regulation of synaptic transmission by autoreceptors is
possible.

INVOLVEMENT OF GLIA IN SHORT-TERM PLASTICITY

There is growing realization that glia may be involved in some forms of short-term
plasticity (250, 251). With their intimate association with synapses, astrocytes and
perisynaptic Schwann cells are well positioned to regulate synapses. They have an
established role in clearance of neurotransmitter and may participate in synaptic
plasticity by controlling the speed and extent of such clearance (252, 253). This can
in turn impact the degree of postsynaptic receptor activation and desensitization.

Another way that glia may be involved in synaptic plasticity is by sensing
extracellular messengers and then releasing substances that can affect synap-
tic efficacy (250, 251). Glia have receptors for many neurotransmitters such as
glutamate, GABA, acetylcholine, and ATP. Appropriate signaling molecules el-
evate glial [Ca2+]i levels either through Ca2+-permeable channels or by release
from internal stores. The resulting increases in [Ca2+]i can trigger vesicular re-
lease of substances from astrocytes, which can then act on presynaptic terminals
to regulate neurotransmitter release. This signaling system provides a way for
glia to sense release from presynaptic terminals and provide feedback to that
terminal.

This interaction between neurons and glia and a potential role for glia in short-
term synaptic plasticity have been observed at several synapses. In hippocampal
cell culture, stimulation of astrocytes can depress the strength of synaptic con-
tacts between neurons (254). This is the result of Ca2+-evoked glutamate release
that inhibits release by activating presynaptic metabotropic glutamate receptors
(254–256). At the frog neuromuscular junction, perisynaptic Schwann cells can
either potentiate or depress transmission. During prolonged repetitive stimula-
tion of motor neurons, perisynaptic Schwann cells show a rise in [Ca2+]i levels
owing to ATP- and acetylcholine-activated IP3-dependent release from endoplas-
mic reticulum (257–259). This increase in [Ca2+]i can enhance the release of
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neurotransmitter from the presynaptic terminal (260). In addition, disruption of
G protein and NO signaling reduced the extent of depression induced by high fre-
quency stimulation, suggesting that glia can also contribute to depression at this
synapse (261, 262). In hippocampal slices, glia are involved in the enhancement
of transmission between interneurons and pyramidal cells (263). During repetitive
stimulation, inhibitory neurons activate GABAB receptors on astrocytes, which
raises their internal [Ca2+]i and somehow feeds back to the presynaptic terminal
to enhance transmission.

These studies suggest that astrocytes contribute to multiple forms of synaptic
plasticity at many synapses in the brain. Clarification of the role of glia in short-
term plasticity is in its early stages and promises to remain an exciting area of
research in coming years.

POSTSYNAPTIC MECHANISMS
OF SYNAPTIC DEPRESSION

Desensitization

Another mechanism that can lead to use-dependent decreases in synaptic strength is
through desensitization of postsynaptic receptors (reviewed in 264). Ligand-gated
channels undergo a process called desensitization that is analogous to inactivation
of voltage-gated channels. Exposure of ligand-gated channels to an agonist can
lead to channel opening and can also put some of the channels into a nonresponsive
state. It can take tens of milliseconds or even minutes for channels to recover from
such a desensitized state.

In Aplysia, early work revealed cholinergic excitatory and inhibitory synapses
in which desensitization of postsynaptic receptors is the major process responsible
for depression of a component of the postsynaptic potential (265, 266). Desensi-
tization of AMPA receptors has been shown to play a role in synaptic trans-
mission at a number of synapses. Desensitization contributes to plasticity at the
calyceal synapse between the auditory nerve and the nucleus magnocellularis of
the chick (267, 268). At this synapse, inhibitors of desensitization partially relieve
synaptic depression to pairs of pulses and trains (269). Blockade of glutamate
transporters enhanced depression (270), suggesting that they normally limit de-
pression by reducing the extracellular accumulation of glutamate. Desensitization
also occurs at the synapses between cones and bipolar cells in the retina (271),
at giant cochlear nucleus synapses (272), and at retinogeniculate synapses, where
AMPA receptor desensitization contributes to a reduction in AMPA receptor ePSCs
during realistic patterns of activity (C. Chen, D.M. Blitz & W.G. Regehr, in review).
Desensitization also contributes to depression of NMDA receptor responses in
hippocampal cultures, where the amount of desensitization is regulated by postsyn-
aptic potential (274). Desensitization may also play a role in the apparent reduction
in quantal amplitude inferred at hippocampal glutamatergic synapses (275).
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The extent of AMPA receptor desensitization to short-term plasticity is likely
dictated by the structure of the synapse, the probability of release, and the time
course of transmitter clearance. Receptor desensitization does not play a widespread
role in short-term plasticity (162, 276, 277). The chick calyceal synapse and the
retinogeniculate synapse both have many closely spaced release sites that are not
well isolated from one another. This allows glutamate release at one site to dif-
fuse, bind to, and desensitize nearby receptors. The glial sheath that encompasses
aggregates of synaptic contacts onto the geniculate neuron may allow glutamate
to pool and may contribute to the occurrence of AMPA receptor desensitization.
In contrast, even though climbing fibers make hundreds of synaptic contacts with
Purkinje cells, because each synapse is ensheathed by glia, the release sites are
well isolated from one another, and there is no opportunity for glutamate released
from one site to desensitize AMPA receptors at nearby release sites (204, 278). An-
other consideration is that if vesicle fusion occurs at a given release site and leads
to receptor desensitization of the corresponding receptors, presynaptic depression
could prevent the release of transmitter at that site and obscure receptor desensiti-
zation. Desensitization occurs at other types of receptors where it may contribute to
synaptic plasticity (279). Low concentrations of GABA reduce synaptic currents at
GABAergic hippocampal synapses, and it has been proposed that desensitization
can regulate the availability of GABA receptors (280). NMDA receptors can also
be desensitized by a variety of mechanisms (264, 281–283) that may contribute to
synaptic plasticity of the NMDA responses. For acetylcholine receptors, although
they can also desensitize, at the neuromuscular junction desensitization has little
effect on the amplitude of synaptic responses during trains of activity (284).

Relief of Polyamine Block

Another postsynaptic mechanism leading to short-term synaptic plasticity was
revealed at synaptic connections between pyramidal neurons and postsynaptic
multipolar interneurons in layer 2/3 of rat neocortex (285). Synaptic currents at
this synapse are mediated by AMPA receptors, which are blocked by endogenous
intracellular polyamines that are present in almost all cells. In excised patches,
this polyamine block is relieved by depolarization (286). At the synapses onto
layer 2/3 interneurons, this relief of polyamine block enhances the responses of
AMPA receptors and helps to offset a synaptic depression produced by another
mechanism. Thus a facilitation of AMPA receptors due to potential-dependent
relief of polyamine block can lead to a postsynaptic form of facilitation.

MOLECULAR TARGETS IN SYNAPTIC ENHANCEMENT

The search for molecular mediators of short-term synaptic plasticity has been
intense. In the case of postsynaptic mechanisms, presynaptic ionotropic receptors,
and metabotropic receptors, there has been good success in identification of the
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molecules involved in synaptic plasticity. It has proven to be more difficult to
identify the molecules responsible for facilitation, PTP, and depression, but many
possibilities remain to be explored.

Difficulties In Identifying Specific Effects
on Short-Term Plasticity

One of the primary difficulties in the identification of molecules directly involved in
short-term plasticity is that manipulations affecting the baseline level of transmis-
sion indirectly influence the magnitude of short-term plasticity. At most synapses,
an increase in the initial probability of transmitter release decreases the magnitude
of synaptic enhancement, and, conversely, a decrease in the probability of release
results in larger synaptic enhancement or reduced synaptic depression. This is such
a widely recognized relationship that it has become a standard means of gauging
whether a neuromodulator has a presynaptic or postsynaptic site of action.

Thus the interpretation of effects on short-term plasticity often requires a mea-
sure of the effects on the baseline level of transmission. There are several possible
ways of making such measurements: (a) Ideally, an analysis of quantal content
should be performed. Often neurons are connected by a large number of synaptic
contacts and determining the quantal content of baseline recordings is not straight-
forward. In that case, measures of PSP or PSC amplitude should be made, along
with tests for postsynaptic effects such as measuring miniature PSP or PSC ampli-
tudes. (b) At synapses where NMDA receptors are present, use-dependent block
of NMDA receptors by MK801 can be used to detect changes in the probability
of release. (c) With use of styryl dyes such as FM1-43, vesicle turnover rates to
low-frequency stimulation can be assessed.

Often it is experimentally difficult to measure the baseline level of synaptic
transmission. For example, transmission may be examined in brain slices where
extracellular stimulation is used to evoke responses that are detected with extracel-
lular electrodes. The amplitude of the evoked response does not provide a measure
of baseline transmission because it reflects the activation of many presynaptic
fibers and depends upon the positioning of the stimulus and recording electrodes,
the intensity of stimulation, and the overall health of the slice. Although NMDA
receptors may be present, they are difficult to measure with extracellular methods
because of their slow time course. Thus it is difficult to quantify the initial mag-
nitude of release with extracellular methods, and many studies do not determine
whether changes in plasticity are direct effects on facilitation or depression, or if
they are secondary consequences of changes in the initial probability of release.

Another potential complication arises in situations where synapses are manip-
ulated for a prolonged time before the effects on plasticity are assessed. Particu-
larly in the case of genetic mutations, a variety of homeostatic mechanisms allow
neuronal systems to respond to the initial effect of a manipulation with secondary
changes. This makes it difficult to exclude the possibility that changes in short-term
plasticity arise as a secondary consequence through a homeostatic mechanism.
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Despite these potential complications, important advances have been made
both in the elimination of certain molecular schemes and in the identification of
molecules with potential roles in synaptic transmission.

Ca2+-Binding Proteins

An early hypothesis (287) for longer forms of enhancement, particularly PTP,
posed that it was caused by Ca2+ acting via calmodulin and Ca2+/calmodulin-
dependent protein kinase II (CaMKII) to phosphorylate synapsin I, a vesicle-
associated protein that binds actin filaments. Phosphorylation was shown to reduce
synapsin I cross-linking to actin, and this could liberate vesicles and make them
more available for release.

TESTS OF THE SYNAPSIN HYPOTHESIS Unfortunately, most data from genetic mu-
tants of CaMKII and synapsin I failed to corroborate predictions of this elegant
hypothesis. Synapsin I null mutants display normal PTP in hippocampal CA1 neu-
rons, as do CaMKII heterozygotes expressing reduced CaMKII (288–291). PTP
was reduced in synapsin II mouse knockouts (292), but this form of the protein
is not phosphorylated by CaMKII. CaMKII inhibitors failed to block PTP in hip-
pocampal neurons (293), augmentation at CA3 association/commissural synapses
(69), or any form of short-term enhancement at crayfish neuromuscular junctions
(61). In contrast, atAplysiasynapses PTP was reduced by presynaptic injection of
synapsin I/II antibodies and was enhanced by synapsin I injection (294).

Synapsins do appear to play an important role in the maintenance of a reserve
pool of vesicles and the mobilization of vesicles from that pool to the readily re-
leasable pool (292, 295–297). Genetic disruption of synapsins leads to a deepening
of synaptic depression and loss of undocked vesicles from active zone clusters.
The association of vesicle-associated synapsin with actin filaments may also ex-
plain why actin depolymerization deepened synaptic depression and slowed its
recovery in snake motor neurons (298) and disrupted the reserve pool of vesicles
and deepened depression atDrosophilamotor neurons (299).

CaMKII also seems to influence synaptic plasticity at some synapses. CaMKII
inhibition reduced PTP at several fish electroreceptor lateral line synapses, but not
others (300), and it reduced augmentation at CA3 mossy fiber synapses (69). Mu-
tations in CaMKII targeted toDrosophilapresynaptic sensory terminals reduced
depression without necessarily affecting baseline transmission (301). Facilitation
was increased in the synapsin I null mutants and decreased in CaMKII mutants
(290), but unaffected inAplysiasynapses (72); these effects occurred in the absence
of effects on baseline transmission. It seems likely that synaptic plasticity can be
regulated by, if not mediated by, the phosphorylation state of presynaptic proteins.

OTHER SECRETORY PROTEINS A lot of attention is focused now on a number of
Ca2+-binding proteins found in synaptic terminals, especially proteins associated
with the secretory apparatus. The discovery that facilitation is accompanied by a
reduction in synaptic delay or speeding of release kinetics (302, 303) encourages
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interest in such proteins. So does the inference from modeling studies that facili-
tation is caused by Ca2+ acting fairly close to Ca2+ channel mouths, although not
as close as the secretory trigger (70).

Synaptotagmin III and VII are isoforms of synaptotagmin I, the low-affinity
Ca2+-binding vesicle protein that is the most popular candidate for the Ca2+ trig-
ger of phasic exocytosis (304, 305). These plasma membrane isoforms (306) have
higher Ca2+-binding affinity to their C2 domains (307), and interfering with their
Ca2+ binding blocked exocytosis (308). Because a high-affinity Ca2+ receptor
involved in generating facilitation could also be required for normal baseline se-
cretion (70), these synaptotagmins are good candidates as Ca2+ targets involved
in facilitation.

Doc2α (for double C2 domain) is a presynaptic Ca2+-binding protein involved
in synaptic transmission (57). Overexpression of Doc2 enhanced growth hormone
secretion from PC12 cells, and peptides disrupting its interaction with Munc13
(another presynaptic protein; see below) inhibited transmitter release from sympa-
thetic neurons (309). Doc2 was a good candidate Ca2+ target in synaptic enhance-
ment until recently, when it was found that in Doc2α null mutants paired-pulse
facilitation and PTP were normal (310). Steady stimulation for 30 s resulted in even
more enhancement in Doc2α null mutants, possibly reflecting an enhancement in
augmentation. These results suggest that Doc2α may under some circumstances
modulate synaptic enhancement, but it is unlikely to mediate its activation by Ca2+.

RIM (for rab-3 interacting molecule) is a third Ca2+-binding protein localized
to the plasma membrane (311), which binds to rab-3, a vesicle protein thought to
be involved in vesicle trafficking and targeting. Transfection of PC12 cells with
RIM enhances secretion, so this protein remains another putative Ca2+ target for
activating synaptic enhancement.

An additional rab-3 and Ca2+-binding protein called rabphilin is located in
synaptic vesicle membranes. Reducing normal rabphilin expression inhibited se-
cretion in PC12 cells (312), while injecting rabphilin into squid giant presynaptic
terminals also inhibited secretion (313). Rabphilin knockout mice, on the other
hand, showed normal hippocampal baseline synaptic transmission, as well as nor-
mal facilitation and augmentation (314). Thus rabphilin is a less-favored candidate
as a Ca2+ sensor mediating short-term synaptic enhancement.

Munc13-1 is a syntaxin-binding presynaptic protein containing C2 domains,
although its Ca2+binding could not be established (315). In mouse knockouts, most
hippocampal excitatory synapses were defective, apparently due to interference
with a vesicle priming step (316), but in the few synapses where transmission
remained, augmentation was enhanced by increase in the store of readily releasable
vesicles (A. Sigler, J.-S. Rhee, I. Augustin, N. Brose & C. Rosenmund, in review).
This contrasts with normal augmentation where no increase in store size is observed
(15). Thus rather than mediating normal synaptic enhancement, this protein may
modulate its expression.

CAPS (Ca2+-dependent activator protein for secretion), a protein restricted to
dense core vesicles, binds Ca2+with low affinity (270µM) (318). CAPS antibodies
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inhibit norepinephrine release from synaptosomes, which suggests a role in trig-
gering phasic secretion. But in melanotrophs, CAPS antibodies specifically block
a phase of secretion that is highly sensitive to [Ca2+]i levels below 10µM, leaving
open the possibility that this site may play a role in synaptic enhancement (319).

Another presynaptic protein with Ca2+-binding C2 domains is called piccolo or
aczonin (320, 321). This protein binds Ca2+with low affinity, more consistent with
a role in triggering phasic vesicle fusion than in mediating synaptic enhancement
(322). At present, physiological evidence for any role of this protein in synaptic
transmission is lacking.

Scinderin is a Ca2+-dependent actin-binding protein that appears to regulate
exocytosis in chromaffin cells (323). Although no neuronal homologue is known,
such a protein could easily mediate Ca2+-dependent changes in the size of the
readily releasable store or the probability of release of quanta by APs.

Frequenin is a presynaptic Ca2+-binding protein whose overexpression can
greatly enhance synaptic facilitation (324). However, depolarizing pulses without
Na+ influx (in tetrodotoxin) do not exhibit excessive facilitation. Frequenin may
therefore affect the accumulation of [Na+]i, and consequently of [Ca2+]i under
regulation of Na+/Ca2+ exchange and lead to an increase in synaptic enhancement.

There are two other Ca2+-dependent presynaptic protein interactions. Ca2+

acting at low micromolar concentrations can trigger binding of the presynaptic
Ca2+ channels to the plasma membrane SNARE proteins syntaxin and SNAP-25
(325). A potential cation-binding site coordinated with synaptobrevin and syntaxin
within the SNARE assembly has also been inferred from structural studies (326).
Effects of Ca2+ binding to either of these sites on synaptic transmission remain to
be studied.

Other Genetic Manipulations

In addition to Ca2+-binding proteins, a number of other presynaptic proteins have
been identified that play important roles in synaptic transmission. Mutations or
knockouts of genes encoding such proteins have been used to probe their roles in
synaptic plasticity, particularly in mice and fruit flies.

MOUSE MUTANTS Rab-3A is a GTP-binding protein found in synaptic vesicle
membranes, believed to function in the targeting of vesicles to active zones. Mouse
knockouts of this gene show enhanced facilitation, even in the presence of in-
creased baseline transmission (327); PTP was unaffected (304). Synapses showed
an unusual ability to release more than one vesicle per active zone, suggesting
that a limit on secretion had been removed, thereby allowing more facilitation to
be expressed. Curiously, presynaptic injection of rab-3 intoAplysianeurons also
increased facilitation (but not PTP), but now baseline transmission was reduced
(81); thus in these experiments release could have been desaturated. It appears
that Rab-3A can modulate synaptic transmission in a way that indirectly affects
facilitation.
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Synaptogyrin I and synaptophysin I are synaptic vesicle membrane proteins of
unknown function. Double knockouts of both genes showed modest reductions
in facilitation and PTP, whereas facilitation was normal in single knockouts of
either gene, and PTP was only slightly depressed in synaptogyrin mutants (328).
Baseline transmission was unaffected. These proteins can influence, especially in
concert, the magnitude of short-term enhancement.

Facilitation was impaired in null mutants of the gene encoding neurotrophin-3,
a nerve growth factor expressed mainly in the hippocampal dentate gyrus (329).
Baseline transmission was normal. Application of exogenous neutrophilin-3 also
reduces facilitation in normal rat hippocampal CA1 cells, but this is probably a
consequence of a strengthening of synaptic transmission (330).

Mutations in the gene encoding the brain protein ataxin-1 showed a modest
impairment in paired-pulse facilitation, although PTP remained normal (331).
However, reduced facilitation could be an indirect consequence of altered baseline
transmission, which was not recorded.

Mouse knockouts of the mGluR4 subtype of metabotropic glutamate receptor
show reduced facilitation and PTP (332). The results suggest a role for glutamater-
gic feedback via presynaptic metabotropic receptors in enhancing transmitter re-
lease. However, effects on baseline transmission were not assessed, so effects of
saturation or countervailing depression cannot be excluded.

DROSOPHILA MUTANTS A number of genetic manipulations inDrosophilahave
interesting effects on short-term synaptic enhancement.Rutabagaanddunceare
mutants defective in an adenylyl cyclase and phosphodiesterase, respectively. The
former has reduced capability for cAMP synthesis; the latter has enhanced levels of
cAMP owing to diminished degradative activity. Both mutants displayed remark-
ably diminished facilitation and PTP under low-[Ca2+] conditions in which basal
transmission was also reduced inrutabagabut was normal in theduncemutants
(333). The latter also showed reduced Ca2+ cooperativity in triggering secretion.
Surprisingly, some boutons showed enhanced augmentation. Without knowledge
of possible changes in presynaptic [Ca2+]i regulation, the results are difficult to
interpret. In a different study,rutabagamutants and inhibitors of adenylate cyclase
and protein kinase A showed a diminished mobilization of vesicles from reserve to
readily releasable pools (334). Certainly a role or roles, although perhaps indirect,
are implicated for cAMP in the regulation of synaptic plasticity.

Shibire is a temperature-sensitive mutant of the gene for dynamin, a protein
essential for vesicle endocytosis. At non-permissive temperatures, in addition to the
expected gradual decline in transmission owing to the inability to restore vesicles
to the reserve pool, a rapid form of depression is seen that is inconsistent with the
delays involved in recovering vesicles by endocytosis, which suggests an additional
role for dynamin in maintaining an intact readily releasable pool (335).

Leonardo is aDrosophilacytosolic protein also located in synaptic vesicles
and involved in regulation of a number of second messenger pathways. Null mu-
tants displayed enhanced facilitation but reduced augmentation and PTP (336).
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However, baseline transmission was reduced, which could account for the effect
on facilitation, whereas excessive depression could have been mistaken for effects
on augmentation and PTP.

Latheo is a DNA-regulating protein inDrosophilaalso concentrated presynapti-
cally and able to affect synaptic transmission. Null mutants of thelatheogene show
seriously impaired facilitation, augmentation, and PTP at neuromuscular junctions
(337). Although transmission is strongly increased, the effects on synaptic plas-
ticity persist even when baseline transmission is restored to normal in low-[Ca2+]
medium. Transgenic overexpression of latheo rescues synaptic enhancement in
the mutants. Not known to be a Ca2+-binding protein, latheo may not be the target
of Ca2+ action in regulating synaptic transmission, but it certainly seems to play
important roles in short-term synaptic enhancement.

Finally,αPS3-integrin is aDrosophilacell adhesion protein localized to presyn-
aptic boutons. Its genetic inactivation results in enlarged presynaptic arborizations,
enhanced transmission, and reduced facilitation and PTP (338). Integrin inhibitory
peptides have similar effects. Compensating the effect on baseline transmission
by reducing [Ca2+] leaves PTP impaired, but surprisingly restores augmentation
to greater than control levels (facilitation was not tested under these conditions).
Deficits in synaptic enhancement are conditionally rescued by heat shock when
mutants are transfected with an integrin gene under control of a heat shock pro-
moter. Integrins thus also appear capable of strongly influencing the expression of
short-term synaptic enhancement.

SUMMARY OF MOLECULAR MEDIATORS There are indications that the presynaptic
proteins synapsin I and II, synaptogyrin, synaptophysin, munc13-1, latheo, inte-
grin, and native Ca2+-binding proteins all influence the expression of facilitation,
augmentation, and/or potentiation. Neutrophilin-3 and metabotropic glutamate re-
ceptors can also influence synaptic plasticity. However, present evidence does
not point to any of these as the Ca2+ target in activating any particular phase of
short-term synaptic plasticity.

Other Modulatory Influences

Many factors can influence synaptic plasticity, but the effects may be indirect,
merely a consequence of changes in strength of synaptic transmission. For example,
numerous aminergic and peptidergic neuromodulators either enhance or reduce
facilitation at crustacean neuromuscular junctions, but the reported effects are
always inversely related to effects on baseline transmission (339). At crayfish
neuromuscular junctions, serotonin enhances synaptic transmission and prolongs
facilitation without prolonging the time course of residual Ca2+ (340). This curious
result is hard to reconcile with the evidence that the duration of facilitation reflects
that of residual Ca2+.

The identity of postsynaptic targets can influence the magnitude or dominance
of facilitation or depression (341, 342), as can developmental age (343) and the
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removal of synaptic competition by sensory deprivation (344, 345). These find-
ings support the possibility of independent developmental regulation of short-term
synaptic plasticity.

Disruption of the tight association of presynaptic Ca2+channels with the SNARE
complex can be achieved by injecting peptides that compete with this binding. This
increases synaptic facilitation, but also decreases baseline transmission (346). A
low-[Ca2+] medium had similar effects, so the modulation of facilitation is prob-
ably a consequence of the reduction in basal transmission.

Perfusion of calyx of Held terminals with inhibitors of G proteins increased
synaptic depression and slowed its recovery (347). It is not clear what proteins were
affected by this treatment, but because rab3 mutants show increased facilitation
(327), they may not be the only targets affected by G protein inhibitors.

Calmodulin inhibition slowed recovery from depression at the calyx of Held
and prevented refilling of the readily releasable pool of vesicles (206). It is possible
that calmodulin is required for the Ca2+-dependent mobilization of transmitter.

The phosphatase inhibitor okadaic acid depressed facilitation at frog neuro-
muscular junctions (45). But effects on basal transmission and depression were
not reported, so the effect may be only indirect or apparent. Another phosphatase
inhibitor with a similar spectrum of action, calyculin A, was without effect.

Overexpression of synaptotagmin I or II and treatment with cytochalasin (an
actin depolymerizer) can appear to increase facilitation at neuromuscular junctions,
but this may be a consequence of reduced short-term depression (348, 349).

Brain-derived neurotrophic factor reduced facilitation at these junctions as well
as at cortical synapses, but this could be a consequence of increased basal trans-
mission (330, 350).

Induction of status epilepticus by kainate reduces facilitation and PTP, probably
by increasing the basal probability of transmitter release (351).

Deletion of the gene for the Ca2+-binding protein calbindin-D28k reduced fa-
cilitation and PTP (352), a surprising result because overexpression of calbindin
has similar effects (73); however, the effects on synaptic plasticity in the deletion
mutants might have been caused by effects on basal transmission levels, which
were not monitored.

Bacterial lipopolysaccharide endotoxin increased paired-pulse facilitation with-
out affecting baseline transmission (353), but a possible reduction in concurrent
depression was not eliminated.

Finally, tetanic stimulation of cortical synapses has been found to reduce post-
tetanic paired-pulse facilitation in a way dependent upon a postsynaptic [Ca2+]i

elevation and protein kinase activation (354, 355). The apparent reduction in facili-
tation was actually caused, however, by a concurrent desensitization in postsynaptic
AMPA-type glutamate receptors and so was really a modulation of depression (see
below).

A rise in postsynaptic [Ca2+]i has been reported to be essential for PTP in
someAplysiacentral synapses (356). However, it appears that it is a particularly
long-lasting component of PTP that is affected (357); therefore this may more
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Figure 4 Sites of regulation of short-term synaptic plasticity. (1) AP waveform,
(2) Ca2+ channel activation, (3) facilitation trigger and the readily releasable pool, (4)
residual [Ca2+]i, (5) reserve pool, (6) metabotropic autoreceptors, (7) ionotropic autore-
ceptors, (8) Ca2+-ATPase, regulating residual [Ca2+]i in augmentation, (9) mitochon-
drial regulation of residual [Ca2+]i in PTP, (10) postsynaptic receptor desensitization.

properly be considered an example of a decremental form of long-term potentia-
tion, sometimes called short-term or slowly-decrementing potentiation, known to
depend on postsynaptic Ca2+ (358, 359).

At cricket central synapses, a form of short-term synaptic depression appears to
be mediated by a rise in postsynaptic [Ca2+]i (360). The mechanism of this effect
remains to be elucidated.

This summary of the search for molecular targets and regulatory influences in-
dicates how important it is to distinguish effects on synaptic plasticity from effects
on baseline transmission (Figure 4). If baseline transmission is in fact affected,
alterations in external [Ca2+]i or [Mg2+]i can be used to restore transmission to
comparable levels in experimental and control preparations. Effects on depres-
sion can usually be distinguished from short-term enhancement by their kinetic
differences and by the relief of depression by reducing external [Ca2+].

Why is reducing external [Ca2+]i usually so much more effective in relieving
depression than in reducing synaptic enhancement? The reason is that baseline
transmission normally depends on about the third power of external [Ca2+] near
normal [Ca2+] levels. Thus a reduction of [Ca2+] to half will reduce transmission
to about one tenth. Because depression by depletion is proportional to transmission
strength, depression is also reduced to 10%. However, because synaptic enhance-
ments all seem to be approximately linearly dependent on [Ca2+]i accumulation,
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they should be reduced to only half and can now easily be studied in relative
isolation from depression.

CONCLUSIONS, PERSPECTIVES

An impressive array of mechanisms have been identified that contribute to short-
term synaptic plasticity (Figure 4). In coming years advances will be made on
several fronts. First, it is likely that additional mechanisms of short-term synaptic
plasticity will be discovered. The past decade saw a new appreciation of retro-
grade control of synapses, glial contributions to short-term plasticity, the discov-
ery of Ca2+-dependent recovery from depression, and contributions of presynaptic
metabotropic ionotropic receptors. It therefore seems likely that new, perhaps
unanticipated, forms of short-term plasticity remain to be discovered. A second
area of interest is the clarification of the various mechanisms that give rise to
different forms of short-term plasticity. Short-term presynaptic depression is one
of the least understood forms of plasticity, despite its prevalence. Although more
is known about the mechanisms that give rise to facilitation and posttetanic po-
tentiation, a more detailed understanding awaits the identification of the proteins
that give rise to these forms of synaptic enhancement. A third challenging area of
investigation is the determination of the physiological roles of these various forms
of short-term plasticity.

ACKNOWLEDGMENTS

Our research is this area is supported by grants from the National Institutes of
Health and the National Science Foundation.

Visit the Annual Reviews home page at www.AnnualReviews.org

LITERATURE CITED

1. Feng TP. 1941. The changes in the end-
plate potential during and after prolonged
stimulation.Chin. J. Physiol.13:79–107

2. Eccles JC, Katz B, Kuffler SW. 1941.
Nature of the “endplate potential” in cu-
rarized muscle.J. Neurophysiol.4:362–87

3. Tsodyks MV, Markram H. 1997. The neu-
ral code between neocortical pyramidal
neurons depends on neurotransmitter re-
lease probability.Proc. Natl. Acad. Sci.
USA94:719–23

4. Varela JA, Sen K, Gibson J, Fost J, Ab-
bott LF, Nelson SB. 1997. A quantitative

description of short-term plasticity at ex-
citatory synapses in layer 2/3 of rat pri-
mary visual cortex.J. Neurosci.17:7926–
40

5. Magleby KL. 1987. Short-term changes
in synaptic efficacy. InSynaptic Function,
ed. GM Edelman, WE Gall, WM Cowan,
pp. 21–56. New York: Wiley

6. Dittman JS, Kreitzer AC, Regehr WG.
2000. Interplay between facilitation,
depression, and residual calcium at
three presynaptic terminals.J. Neurosci.
20:1374–85

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
2.

64
:3

55
-4

05
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
A

ri
zo

na
 -

 L
ib

ra
ry

 o
n 

10
/2

8/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



11 Jan 2002 10:52 AR AR148-13.tex AR148-13.SGM LaTeX2e(2001/05/10)P1: GJC

SHORT-TERM SYNAPTIC PLASTICITY 389

7. Fisher SA, Fischer TM, Carew TJ. 1997.
Multiple overlapping processes under-
lying short-term synaptic enhancement.
Trends Neuosci.20:170–77

8. Zucker RS. 1989. Short-term synaptic
plasticity.Annu. Rev. Neurosci.12:13–31

9. McLachlan EM. 1978. The statistics of
transmitter release at chemical synapses.
Int. Rev. Physiol.17:49–117

10. Zucker RS. 1973. Changes in the statistics
of transmitter release during facilitation.
J. Physiol.229:787–810

11. Zucker RS. 1977. Synaptic plasticity
at crayfish neuromuscular junctions. In
Identified Neurons and Behavior of
Arthropods, ed. G Hoyle, pp. 49–69. New
York: Plenum

12. Worden MK, Bykhovskaia M, Hackett
JT. 1997. Facilitation at the lobster neuro-
muscular junction: a stimulus-dependent
mobilization model. J. Neurophysiol.
78:417–28

13. Stevens CF, Tsujimoto T. 1995. Estimates
for the pool size of releasable quanta at a
single central synapse and for the time re-
quired to refill the pool.Proc. Natl. Acad.
Sci. USA92:846–49

14. Rosenmund C, Stevens CF. 1996. Def-
inition of the readily releasable pool of
vesicles at hippocampal synapses.Neuron
16:1197–207

15. Stevens CF, Wesseling JF. 1999. Aug-
mentation is a potentiation of the exocy-
totic process.Neuron22:139–46

16. Wojtowicz JM, Marin L, Atwood HL.
1994. Activity-induced changes in synap-
tic release sites at the crayfish neuromus-
cular junction.J. Neurosci.14:3688–703

17. Atwood HL. 1976. Organization and
synaptic physiology of crustacean neu-
romuscular systems.Prog. Neurobiol.
7:291–391

18. Kreitzer AC, Regehr WG. 2000. Modu-
lation of transmission during trains at a
cerebellar synapse.J. Neurosci.20:1348–
57

19. Charlton MP, Smith SJ, Zucker RS.
1982. Role of presynaptic calcium ions

and channels in synaptic facilitation and
depression at the squid giant synapse.J.
Physiol.323:173–93

20. Del Castillo J, Katz B. 1954. Statis-
tical factors involved in neuromuscular
facilitation and depression.J. Physiol.
124:574–85

21. Dudel J, Kuffler SW. 1961. Mechanism of
facilitation at the crayfish neuromuscular
junction.J. Physiol.155:530–42

22. Katz B, Miledi R. 1968. The role of
calcium in neuromuscular facilitation.J.
Physiol.195:481–92

23. Rosenthal J. 1969. Post-tetanic potentia-
tion at the neuromuscular junction of the
frog. J. Physiol.203:121–33

24. Weinreich D. 1971. Ionic mechanism of
post-tetanic potentiation at the neuromus-
cular junction of the frog.J. Physiol.
212:431–46

25. Erulkar SD, Rahamimoff R. 1978. The
role of calcium ions in tetanic and post-
tetanic increase of miniature end-plate po-
tential frequency.J. Physiol. 278:501–
11

26. Kretz R, Shapiro E, Kandel ER. 1982.
Post-tetanic potentiation at an identified
synapse inAplysia is correlated with a
Ca2+-activated K+ current in the presyn-
aptic neuron: evidence for Ca2+ accu-
mulation. Proc. Natl. Acad. Sci. USA
79:5430–34

27. Blundon JA, Wright SN, Brodwick MS,
Bittner GD. 1993. Residual free calcium
is not responsible for facilitation of neuro-
transmitter release.Proc. Natl. Acad. Sci.
USA90:9388–92

28. Roberts WM. 1993. Spatial calcium
buffering in saccular hair cells.Nature
363:74–76

29. Robitaille R, Garcia ML, Kaczorowski
GJ, Charlton MP. 1993. Functional colo-
calization of calcium and calcium-gated
potassium channels in control of transmit-
ter release.Neuron11:645–55

30. Yazejian B, Sun XP, Grinnell AD. 2000.
Tracking presynaptic Ca2+ dynamics dur-
ing neurotransmitter release with Ca2+-

A
nn

u.
 R

ev
. P

hy
si

ol
. 2

00
2.

64
:3

55
-4

05
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
A

ri
zo

na
 -

 L
ib

ra
ry

 o
n 

10
/2

8/
20

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



11 Jan 2002 10:52 AR AR148-13.tex AR148-13.SGM LaTeX2e(2001/05/10)P1: GJC

390 ZUCKER ¥ REGEHR

activated K+ channels.Nat. Neurosci.
3:566–71

31. Connor JA, Kretz R, Shapiro E. 1986.
Calcium levels measured in a presynaptic
neurone ofAplysiaunder conditions that
modulate transmitter release.J. Physiol.
375:625–42

32. Delaney KR, Zucker RS, Tank DW. 1989.
Calcium in motor nerve terminals associ-
ated with posttetanic potentiation.J. Neu-
rosci.9:3558–67

33. Delaney KR, Tank DW. 1994. A quan-
titative measurement of the dependence
of short-term synaptic enhancement on
presynaptic residual calcium.J. Neurosci.
14:5885–902

34. Regehr WG, Delaney KR, Tank DW.
1994. The role of presynaptic calcium
in short-term enhancement at the hip-
pocampal mossy fiber synapse.J. Neu-
rosci.14:523–37

35. Atluri PP, Regehr WG. 1996. Determi-
nants of the time course of facilitation at
the granule cell to Purkinje cell synapse.
J. Neurosci.16:5661–71

36. Feller MB, Delaney KR, Tank DW.
1996. Presynaptic calcium dynamics at
the frog retinotectal synapse.J. Neuro-
physiol.76:381–400

37. Brain KL, Bennett MR. 1995. Calcium in
the nerve terminals of chick ciliary gan-
glia during facilitation, augmentation and
potentiation.J. Physiol.489:637–48

38. Brain KL, Bennett MR. 1997. Calcium
in sympathetic varicosities of mouse vas
deferens during facilitation, augmentation
and autoinhibition.J. Physiol.502:521–
36

39. Lin YQ, Brain KL, Bennett MR. 1998.
Calcium in sympathetic boutons of rat
superior cervical ganglion during facili-
tation, augmentation and potentiation.J.
Auton. Nerv. Syst.73:26–37

40. Ogawa S, Takeuchi T, Ohnuma K, Suzuki
N, Miwa A, et al. 2000. Facilitation
of neurotransmitter release at the spiny
lobster neuromuscular junction.Neurosci.
Res.37:33–48

41. Suzuki S, Osanai M, Murase M, Suzuki
N, Ito K, et al. 2000. Ca2+ dynamics at the
frog motor nerve terminal.Pflügers Arch.
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René J. M. Bindels 529

The Renin Angiotensin System and Kidney Development,
Taiji Matsusaka, Yoichi Miyazak, and Iekuni Ichikawa 551

Molecular Aspects of Renal Anionic Drug Transporters,
Frans G. M. Russel, Rosalinde Masereeuw, and
Rémon A. M. H. van Aubel 563

GASTROINTESTINAL PHYSIOLOGY, Luis Reuss, Section Editor

Trafficking of Canalicular ABC Transporters in Hepatocytes,
Helmut Kipp and Irwin M. Arias 595

Chloride Channels and Hepatocellular Function: Prospects for
Molecular Indentification, Xinhua Li and Steven A. Weinman 609

Bile Salt Transporters, Peter J. Meier and B. Stieger 635

Mechanisms of Iron Accumulation in Hereditary
Hemochromatosis, Robert E. Fleming and William S. Sly 663

RESPIRATORY PHYSIOLOGY, Carole R. Mendelson, Section Editor

Molecular Pathogenesis of Lung Cancer, Sabine
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